
Monitoring the CPU loads of all SER processes of B2B agents

Emin Gabrielyan
Switzernet

Updated on 2008-03-26
Created on 2008-02-12

The web site [http://www.unappel.ch/public/080210-ser-cpu/] stores GIF images of graphs showing
the SIP servers’ CPU loads evolving over time. Each graph shows the CPU loads of all B2B SIP
servers on a time axis of about 12 hours. The last, the freshest file, covers a shorter period from
the time of its creation until the current time. The last file is extended every 20 minutes until the
end of a 12-hour period. New files are created every 12 hours. This document describes the script
for creating the graphs and for collecting the data from remote servers.

Monitoring the CPU loads of all SER processes of B2B agents .. 1

1. Introduction ... 1

2. How to install ... 3

2.1. New version ... 3

3. The Perl script converting CSV files into EPS files.. 4

3.1. Description of the script.. 5

4. The bash script monitoring the CPU loads on the remote
computers and generating the CSV files.. 13

5. Version upgrades.. 18

5.1. [update080326] using keep-alive control for simultaneous ssh sessions 18

6. Files and links ... 20

1. Introduction

A script running on one of our Geneva computers retrieves the CPU loads of all our SIP servers
(serving the customers). The loads are retrieved using the top command executed remotely on
each remote machine. Remote execution is made via ssh. For invoking a remote command in a
batch mode without an interactive prompt for a password, we use ssh authentication based on
public and shared key [SSH login without password].

The CPU load values which are retrieved with a certain periodicity and are stored into a CSV file,
are converted into a graph image file. The graph is being updated and is regularly uploaded on the
web server while the script is running and is retrieving the CPU loads from the remote machines.
The script ends its execution after approximately 12 hours and the last version of the graph on the
web server will stay unchanged.

http://www.unappel.ch/public/080210-ser-cpu/
http://linuxproblem.org/art_9.html

A crontab entry on the Geneva machine launches the script every 12 hours, so a new graph is
created twice a day (and is being updated during 12 hours):
openser3:~# crontab -l
m h dom mon dow command
...
0 0,12 * * * /root/folders/080212-portasip-ser-cpu/a6.sh.txt > /dev/null
openser3:~#

The graph files are uploaded to the web server and are available under the following URL:
[http://www.unappel.ch/public/080210-ser-cpu/]. In the URL folder, at any moment, only the last
listed graph is being updated (at a periodicity of 20 minutes) while the previous graphs are already
completed:

The central program running on the Geneva computer is a bash script [a6.sh.txt]. It is described in
details in section 4. With a periodicity of 10 minutes, the script retrieves simultaneously from each
SIP server the average CPU load of ser processes. A graph is created, and is being updated and
uploaded on the web server with a periodicity of about 20 minutes.

http://www.unappel.ch/public/080210-ser-cpu/

The main bash script uses a Perl script [b7.pl.txt] for converting the CSV files into graphical EPS
files (which are further convertible into bitmap files). The Perl script is described in section 3.

2. How to install

You can download and run the program under Cygwin. You need to have installed the lftp tool
(command line ftp tool, which makes a part of the Cygwin package) and the Imagemagick program
[http://www.imagemagick.org/] for converting the EPS files into GIF or PNG files.

Before running the downloaded bash and Perl scripts, you may need to convert the text files of
scripts [a6.sh.txt], [b7.pl.txt] into Unix text format. Use the d2u Cygwin tool for this (use u2d for
converting the Unix text back into the DOS format). You must manually create a cpu folder in the
current folder (the CSV, EPS, and GIF files are stored in the cpu folder).

For running from your local Cygwin, you may need to edit some of the parameters of the bash
script [a6.sh.txt], to uncomment the commented lines, and to store the ftp password in the
ftplogin.txt text file:
user=sona
domain=youroute.net
hosts="us1,ch1,fr1,fr2,fr3"
topsamp=20
topdelay=30
loop=72
upload=2
delay=20
noerror=1

csv2eps=./b7.pl.txt

convert=/usr/local/bin/convert
localdir=/root/folders/080212-portasip-ser-cpu
passfile=/root/files/070930-unappel-ftplogin.txt

#convert=convert
#localdir=.
#passfile=ftplogin.txt

See section 4 for signification of the above shown parameters of the bash script.

2.1. New version

A new version of the bash script is available [a7.sh.txt] since 2008-02-20. It fixes a bug due
to which the new machines were not displayed:
$ diff a6.sh.txt a7.sh.txt

http://www.imagemagick.org/

6c6
< hosts="us1,ch1,fr1,fr2,fr3"

> hosts="us1,ch1,fr1,fr2,fr3,fr4"
89c89
< foreach $h ("us1","ch1","fr1","fr2","fr3")

> foreach $h (split/,/,"'$hosts'")

3. The Perl script converting CSV files into EPS files

The CSV file is a text file containing comma separated values. Below is an example of the content
of a CSV file:
time us1 ch1 fr1 fr2 fr3
1202814592 0 0.037 11.092 31.3815 0.2415
1202815201 0 0.073 13.9775 28.0975 0.213
1202815817 0 0.059 14.9915 27.7935 0.2475
1202816426 0 0.122 11.3435 29.0465 0.468
1202817039 0 0.022 10.858 27.818 0.222
1202817649 0 0.0515 13.203 30.6365 0.268
1202818260 0 0.0345 15.283 28.551 0.57
1202818869 0 0.0145 14.566 29.1645 0.2945
1202819481 0 0.0145 14.6305 28.741 0.488
1202820090 0 0.061 13.536 27.27 0.32
1202820701 0 0.01 12.7695 28.6995 0.319
1202821311 0 0.0415 12.2925 28.831 0.23
1202821922 0 0.0535 11.459 28.4455 0.5395
[csv]

The CSV file itself can be downloaded and viewed with a text editor (such as Notepad). You may
need to convert the file into DOS format (if viewing under Windows) with u2d Cygwin tool.

The EPS abbreviation stands for Encapsulated Post Script. Post Script is a graphical language
(often used for printable documents and many printers support the Postscript language). The EPS
files can be sent to a postscript printer, can be viewed by MS Word, can be converted into PDF
format by Acrobat Distiller, or into PNG, GIF, or JPEG files by the convert tool of Imagemagick
[tools].

The example below shows the graph generated by the Perl script [b7.pl.txt] from the above shown
CSV [csv] file:

http://www.imagemagick.org/script/command-line-tools.php

[eps], [gif]

3.1. Description of the script

The first column of the below table shows the postscript without modifications and the second
column describes the corresponding block of the script:

The Perl Script Comments

#!/usr/bin/perl

$k=1.6;

$width=400;
$height=200;
$xscaleh=140;

The parameter $k is the
magnification coefficient.

The parameters $width
and $height specify the
size of the chart area.

$yscalew=50;
$fsz=10;
$ptsz=2;
$sample_len=20;
$legendw=75;

$grid_color="0.85 0.85 1";
$xscalen=18;
$yscalen=10;
$yscaledecpt=2;

$width*=$k;
$height*=$k;
$xscaleh*=$k;
$yscalew*=$k;
$fsz*=$k;
$ptsz*=$k;
$sample_len*=$k;
$legendw*=$k;

$xscaleh is the height of
the area reserved for the
labels of the X scale.

$yscalew is the width of
the area reserved for the
labels of the Y scale.

$fsz is the size of the
fonts. $ptsz is the size of
the points of curves.

$sample_len is the length
of sample curves in the
legend area (on the
right), and $legendw is
the width of the legend
area.

$xscalen is the number
of vertical gridlines on the
X scale (also the number
of labels of the X scale).

$yscalen is the number
of horizontal lines on the
Y scale (also the number
of labels of the Y scale).

$yscaledecpt is the
number of positions after
the decimal point for the
values of the Y scale.

if(@ARGV != 2)
{
 print "two arguments are required: <csv file name>
<ps file name>\n";
 exit 1;
}

$psfname=$ARGV[1];

$fname=$ARGV[0];

if(! open fh, $fname)
{
 print "error opening file $fname\n";

The script requires two
arguments.
The first argument must
be the input CSV file
name and the second
argument must be the file
name of the output EPS
file.

The lines of the input file
are read into array
@lines.

 exit 1;
}

@lines=<fh>;
close fh;

foreach $_ (@lines)
{
 s/[\r\n]//g;
 @r=split/,/;

The loop for checking the
format of the input file
and for figuring out the
range of values being
displayed.

The line-feed ‘\n’ and-
carriage return ‘\r’
symbols are removed
from the lines. The coma
separated elements of
lines are stored into @r
array.

 if(/^([\d]+)(,([\d.]*))+$/)
 {
 if(!defined($xmax) || $r[0]>=$xmax)
 {
 $xmax=$r[0];
 }
 else
 {
 print "time is not increasing\n";
 exit 2;
 }
 if(!defined($xmin) || $r[0]<$xmin)
 {
 $xmin=$r[0];
 }
 for($i=1;$i<@r;$i++)
 {
 if(defined($r[$i]) && $r[$i] ne "")
 {
 if(!defined($ymax) || $r[$i]>$ymax)
 {
 $ymax=$r[$i];
 }
 if(!defined($ymin) || $r[$i]<$ymin)
 {
 $ymin=$r[$i];
 }
 }
 }

If the line contains data, it
must contain the time
value followed by at least
one comma separated
value.

The values are real
numbers, or can be
empty.

$xmin and $xmax will
store the minimal and
maximal values of the
time scale.

The $ymin and $ymax
values will store the
minimal and maximal
values of the Y scale.

We take care to not
consider the empty
values as zeroes.

 }
 elsif(/^time(,([\w]+))+$/)
 {
 if(!defined(@h))
 {
 @h=@r;
 }
 else
 {
 print "multiple header lines\n";
 exit 2;
 }
 }
 else
 {
 print "file format error\n";
 exit 2;
 }

The title of the first
column of the header line
must be “time”.

The titles of the following
columns can be any non-
empty alphanumerical
string.

} End of the check loop.
if(!defined(@h))
{
 print "no header line\n";
 exit 2;
}

if(!defined($xmin) || !defined($xmax))
{
 print "no value on the X scale\n";
 exit 2;
}

if(!defined($ymin) || !defined($ymax))
{
 print "no value on the Y scale\n";
 exit 2;
}

if($xmin==$xmax)
{
 print "only one value on the X scale\n";
 exit 3;
}

if($ymin==$ymax)
{
 print "only one value on the Y scale\n";
 exit 3;

After the first scanning
loop, the script checks
the results.

The script will not attempt
to create an output EPS
file if any error is
encountered.

If the header line is not
found the script
interrupts.

The script will interrupt
also if no data is found,
i.e. either $xmin, or
$xmax, or $ymin, or
$ymax are still undefined.

The graph will not be
created also if there is
only one value is
available along the X or
Y axes.

}

if(! open ps,">".$psfname)
{
 print "error opening file $psfname\n";
 exit 4;
}
print ps "%!PS-Adobe-3.0 EPSF-3.0\r\n";
printf ps "%%%%BoundingBox: 0 0 %f
%f\r\n",$yscalew+$width+$legendw,$xscaleh+$height+$f
sz;

If control checks of the
input EPS file are passed
successfully, the script
opens the EPS file for
writing (Prefix “>” before
the filename).

The first line contains the
EPS header line
“%!PS…”.

The second line contains
the coordinates of the
bounding frame [more on
the EPS extension of PS]

print ps "/Courier findfont $fsz scalefont
setfont\r\n";
print ps "1 setlinecap\r\n";

Specifying the default
font settings.

Specifying the shape of
the extremities of line (1
is for rounded) [PS
bluebook]

for($i=0;$i<$xscalen;$i++)
{
 $t=$xmin+$i/($xscalen-1)*($xmax-$xmin);
 $x=$yscalew+$i/($xscalen-1)*$width;
 print ps "gsave $grid_color setrgbcolor\r\n";
 print ps "$x $xscaleh $fsz 3 div sub moveto $x
$xscaleh $height add lineto stroke\r\n";
 print ps "grestore\r\n";
 print ps "gsave\r\n";
 print ps "$x $xscaleh translate\r\n";
 print ps "90 rotate\r\n";

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst
) = localtime($t);
 printf ps "(%s-%02d-%02d %02d:%02d:%02d)
dup\r\n",$year+1900,$mon+1,$mday,$hour,$min,$sec;
 print ps "stringwidth pop $fsz 2 div add neg $fsz
1 3 div mul neg moveto\r\n";
 print ps "show\r\n";
 print ps "grestore\r\n";
}

Drawing the vertical
gridlines and the time
labels of the X axis.

The time labels format is
YYYY-MM-DD
HH:MM:SS.

for($i=0;$i<$yscalen;$i++)
{
 $v=$ymin+$i/($yscalen-1)*($ymax-$ymin);

Drawing the horizontal
gridlines and the labels of
the Y axis.

http://www.tailrecursive.org/postscript/eps.html

 $y=$xscaleh+$i/($yscalen-1)*$height;
 print ps "gsave $grid_color setrgbcolor\r\n";
 print ps "$yscalew $fsz 3 div sub $y moveto
$yscalew $width add $y lineto stroke\r\n";
 print ps "grestore\r\n";
 print ps "gsave\r\n";
 print ps "$yscalew $y translate\r\n";
 printf ps "(%.${yscaledecpt}f) dup\r\n",$v;
 print ps "stringwidth pop $fsz 2 div add neg $fsz
1 3 div mul neg moveto\r\n";
 print ps "show\r\n";
 print ps "grestore\r\n";
}
print ps "$yscalew $xscaleh moveto\r\n";
print ps "$width 0 rlineto stroke\r\n";
print ps "$yscalew $xscaleh moveto\r\n";
print ps "0 $height rlineto stroke\r\n";

Drawing the main X and
Y axes.

sub green
{
 local($a)=($_[0]);
 if($a>=0 && $a<=0.5)
 {
 $a*2;
 }
 elsif($a>=0.5 && $a<=1.5)
 {
 1;
 }
 elsif($a>=1.5 && $a<=2)
 {
 1-($a-1.5)*2;
 }
 elsif($a>=2 && $a<=3)
 {
 0;
 }
 else
 {
 -1;
 }
}

sub red
{
 local($a)=($_[0]);
 $a+=1;
 $a=$a>=3?$a-3:$a;

The input CSV file may
contain any number of
columns. The values of
each column must be
represented via a distinct
curve.

The curves are
distinguished by their
colors. We rely on a
method which can
generate a set of distinct
colors for any number of
curves.

This section specifies a
method for generating an
RGB color as a function
of a scalar value from a
range from 0 to 1.

Then, according to the
required number of
curves, we only need to
split the [0,1] range with
equally spaced points.

The RGB colors are
generated according to
the method described in:

 &green($a);
}

sub blue
{
 local($a)=($_[0]);
 $a+=2;
 $a=$a>=3?$a-3:$a;
 &green($a);
}

sub rgb
{
 #according to: http://4z.com/People/emin-
gabrielyan/public/050401-linkviews/
 local($a,$k)=($_[0],0.75);
 $a*=3;
 (&red($a)*$k,&green($a)*$k,&blue($a)*$k);
}

http://4z.com/People/emi
n-
gabrielyan/public/050401
-linkviews/.

for($i=1;$i<=@h-1;$i++)
{
 ($rgb_r,$rgb_g,$rgb_b)=&rgb(($i-1)/(@h-1));
 $rgb_color[$i]="$rgb_r $rgb_g $rgb_b";
}

Creating an array
containing the colors of
currently needed curves
as provided in the CSV
file (using the above
defined &rgb function).

$y=$xscaleh+$height;
for($i=1;$i<=@h-1;$i++)
{
 print ps "gsave $rgb_color[$i] setrgbcolor\r\n";
 print ps "$yscalew $width add 1.0 $sample_len mul
add $y moveto $sample_len 0 rlineto stroke\r\n";
 print ps "$yscalew $width add 1.5 $sample_len mul
add $y $ptsz 2 div 0 360 arc fill\r\n";
 print ps "$yscalew $width add 2.0 $sample_len mul
add $y moveto\r\n";
 print ps "$fsz 2 div $fsz 1 4 div mul neg rmoveto
($h[$i]) show\r\n";
 print ps "grestore\r\n";
 $y-=$fsz;
}

Drawing a legend (on the
right of the chart) with the
samples of curves (of
different colors) and their
titles.

for($i=1;$i<=@h-1;$i++)
{
 print ps "gsave $rgb_color[$i] setrgbcolor\r\n";

The loop for drawing the
curves.

The graphical state is
saved and the color of
the curve is set from the
above initialized table.

http://4z.com/People/emin-gabrielyan/public/050401-linkviews/
http://4z.com/People/emin-gabrielyan/public/050401-linkviews/
http://4z.com/People/emin-gabrielyan/public/050401-linkviews/
http://4z.com/People/emin-gabrielyan/public/050401-linkviews/

 $mvln="moveto";
 foreach $_ (@lines)
 {
 s/[\r\n]//g;
 @r=split/,/;
 if(/^([\d]+)(,([\d.]*))+$/)
 {
 if(defined($r[$i]) && $r[$i]!~/^\s*$/)
 {
 $x=$yscalew+($r[0]-$xmin)/($xmax-
$xmin)*$width;
 $y=$xscaleh+($r[$i]-$ymin)/($ymax-
$ymin)*$height;
 print ps "$x $y $mvln\r\n";
 $mvln="lineto";
 }
 else
 {
 $mvln="moveto";
 }
 }
 }
 print ps "stroke\r\n";

Drawing the
curves.

Scanning the content of
the input file, while
considering only the i-th
column (for the curve
currently being drawn).

The first available point
will invoke the moveto
postscript command
(preceded by the X Y
coordinates of the point).

The following points will
invoke the lineto
postscript command.

If the curve is interrupted
in the middle, then the
first available point after
the interruption must
again invoke a moveto
command.

Interruptions occur, if the
data was not possible to
retrieve from servers. We
do not replace undefined
values by zeroes.

At the end of the moveto
and lineto sequences we
stroke the curve.

 foreach $_ (@lines)
 {
 s/[\r\n]//g;
 @r=split/,/;
 if(/^([\d]+)(,([\d.]*))+$/)
 {
 if(defined($r[$i]) && $r[$i]!~/^\s*$/)
 {
 $x=$yscalew+($r[0]-$xmin)/($xmax-
$xmin)*$width;
 $y=$xscaleh+($r[$i]-$ymin)/($ymax-
$ymin)*$height;

Drawing the marker
points of the
curve.

Points are drawn by
filling a circles of a $ptsz
diameter.

 print ps "$x $y $ptsz 2 div 0 360 arc
fill\r\n";
 }
 }
 }

 print ps "grestore\r\n";
}

The graphical state is
restored and the end of
the loop for drawing the
curves and the points.

print ps "showpage\r\n";
close ps

The last command of the
Postscript page must be
showpage.

4. The bash script monitoring the CPU loads on the remote
computers and generating the CSV files

While running, the bash script generates and keeps updating a CSV file. The CSV file is stored in a
cpu folder (do not forget to create this folder if you run the program on a new computer).

The script connects to all SIP servers simultaneously. While connected it runs on each server the
top (cpu) program such that it displays 20 times, with intervals of 30 seconds, the cpu load of all
ser processes. Each connection lasts a little bit less than 10 minutes. Connection to all servers are
simultaneous, so all connections together also last about 10 minutes.

The values retrieved from each server during one connection session are averaged and one
average CPU load is retrieved per server during 10 minutes. For several ser processes per server
(8 processes usually), the retrieved average value corresponds to the total CPU consumption by
all ser processes of an individual machine.

While the average CPU loads are retrieved from all servers with a periodicity of about 10 minutes,
the graph is updated and is uploaded on the web server with a periodicity of about 20 minutes.

The bash script Comments

#!/bin/bash

user=sona
domain=youroute.net
hosts="us1,ch1,fr1,fr2,fr3"
topsamp=20
topdelay=30
loop=72
upload=2
delay=20
noerror=1

The parameter user contains the ssh
username for the hosts being monitored.

The parameter domain contains the
internet domain name of hosts.

The parameter hosts contains the
comma separated list of hosts being
monitored.

The parameter topsamp contains the
number of times the top program shall
display the CPU usage per one ssh
connection.

The collected results are averaged. In
this example an average of 20 values will
be considered per ssh connection.

The parameter topdelay is the interval
in seconds between displays of the top
program. Therefore the single ssh
connection will last about (20-1)*30=570
seconds.

loop contains the number of times the
remote top program must be called
(simultaneously on all machine).

upload specifies the intervals at which
the graph should be updated and
uploaded to the web server.

The parameter delay is an idle interval
in the main loop (in case of an error in
the body of the loop the program must
not loop consuming the entire cpu
resource).

The duration of the entire bash script can
be computed according the following
formula:

$loop * (($topsampl-1) * $topdelay +
$delay) plus the time needed for
communications: ssh (retrieval) and ftp
(upload) communications.

csv2eps=./b7.pl.txt

convert=/usr/local/bin/convert
localdir=/root/folders/080212-portasip-
ser-cpu
passfile=/root/files/070930-unappel-
ftplogin.txt

csv2eps contains the name of the Perl
script for converting the CSV files into a
graphical format (see section 3).

passfile is the name of the file
containing the ftp password of the web
server.

cd $localdir
csv=cpu/`date +%y%m%d.%H%M%S`-ser-
cpu.csv
echo time,$hosts | tee $csv
eps=`dirname $csv`/`basename $csv
.csv`.eps
gif=`dirname $csv`/`basename $csv
.csv`.gif

Computing the name of a CSV file
(YYMMDD.HHMMSS-ser-cpu.csv).

Creating the header line of the CSV file.

Computing the names of EPS and GIF
files.

ftp_cmd="set ftp:passive-mode no; cd
htdocs/public/080210-ser-cpu; put $gif;
bye"
ftp_usr="unappel,`cat $passfile`"
ftp_dst=www.unappel.ch

ftp_cmd, ftp_usr (username and the
password), and ftp_dst (the server
name) strings will be used by the lftp
tool when uploading the GIF files on the
web server.

i=0
while [$i -lt $loop]
do

Beginning the main loop for retrieving the
average CPU load values.

Each iteration of this loop results into one
entry line in the CSV file.

The CSV entry line contains the average
CPU loads of all hosts.

 (
 for h in `perl -e '@h=split
/,/,"'$hosts'"; print "@h"'`
 do

Here is the loop passing through all
hosts.

The Perl string of the example evaluates
into the list of space separated hosts
“us1 ch1 fr1 fr2 fr3”.

The loop invokes asynchronous ssh
processes. Therefore the connections
are established simultaneously.

Their outputs will be merged and parsed
via a pipe to the next command (following
this for loop and its body).

 perl -e
'{if(rand()<='$noerror'){exit 0}{exit
1}}'
 if [$? -ne 0]
 then
 h="$h-error"
 fi
 login="$user@$h.$domain"

This part can be ignored.

We introduce errors if the value of
$noerror is less than 1.

This can be needed to validate the
comportment of the script when the hosts
are not reachable.

 ssh -q $login "top -b -d$topsamp -
s$topdelay inf | grep '
\(ser\|COMMAND\)$'" | perl -e

At each iteration of the current for loop
we invoke an ssh connection in a
asynchronous mode.

'$h="'$h'";
 while(<>)
 {
 s/^\s+//;
 @cols=split/\s+/;

 if(/ COMMAND$/)
 {
 for($i=0;$i<@cols;$i++)
 {
 if($cols[$i] eq "WCPU")
 {
 $wcpu_col=$i;
 $n++;
 break;
 }
 }
 }
 elsif(/ ser$/)
 {
 if(defined($wcpu_col))
 {
 $_=$cols[$wcpu_col];
 s/%//;
 $sum+=$_;
 }
 }

 }

The connections are invoked
simultaneously and not sequentially.

The piping of the outputs to the next
process groups all outputs. It waits until
the output from each of the processes is
completely received.

The ssh connection does not require
password. For this purpose we use
public/private key authentication method
(more about SSH login without
password).

The top program is called with –b option
for batch mode (without screen control
escape commands).

The option –d is for specifying the
number of displays, and the option –s for
the delay (in seconds) between the
displays.

The grep permits to limit the ssh
transmission (from the remote machine
to the local machine).

Only the lines containing the CPU loads
of the ser processes and the lines
containing the header line of the top
program will be transmitted.

The output of ssh is given to a Perl script
which finds the column number
containing the CPU load values.

Note that the column is different on the
different remote computers and this piece
of script provides the required
compatibility.

The Perl script computes the number of
occurrences of the header line and sums
up the CPU loads.

 if(defined($sum) && defined($n)) When the output of the ssh connection is

http://linuxproblem.org/art_9.html

 {
 printf "%s %s\n",$h,$sum/$n;
 }

over, the Perl script displays the average
load of all ser processes.

 ' &
The ssh to Perl pipeline (one pipeline per
each individual connection) is launched
asynchronously in a background mode.

 done
) | perl -e '

The output of all asynchronous ssh
processes will be merged into a single
flow and will be pipelined into the next
Perl script.

Thus, the next Perl scrip receives the
average CPU loads of all consulted
computers.

 while(<>)
 {
 @a=split/\s+/;
 $wcpu{$a[0]}+=$a[1];
 }
 print time();
 foreach $h
("us1","ch1","fr1","fr2","fr3")
 {
 printf ",%s",$wcpu{$h};
 }
 print "\n";
 ' | tee -a $csv

This Perl script receives the lines
corresponding to each remote computer
and stores the values in a list %wcpu
(indexed by host names).

Then a single line, containing the current
time and the values received from all
computers (correspondingly sorted) is
appended at the end of the CSV file.

 i=`expr $i + 1`
 if [`expr $i % $upload` -eq 0]
 then
 $csv2eps $csv $eps
 if [-f $eps]
 then
 $convert $eps $gif
 lftp -e "$ftp_cmd" -u $ftp_usr
$ftp_dst 2>&1
 else
 echo "File $eps was not created"
 fi
 fi

Before the end of the iteration we check
whether an updated graph must be
uploaded.

If the graph must be uploaded, the CSV
file is converted into an EPS file, which is
further converted into a GIF file, and then
uploaded to the web server using the lftp
tool.

In case of CSV format errors (e.g.
insufficient data values in the input file)
the EPS file will not be created.

If the CSV file is not created, the script
does not attempt to convert into a GIF file
and to upload the GIF file on the web.

 sleep $delay
done End of the main loop.

$csv2eps $csv $eps
if [-f $eps]
then
 $convert $eps $gif
 lftp -e "$ftp_cmd" -u $ftp_usr
$ftp_dst 2>&1
 if [$? -eq 0]
 then
 rm $csv
 rm $eps
 rm $gif
 fi
else
 echo "File $eps was not created"
fi

At the end of the program we convert the
final CSV file into a GIF file and we
upload the final GIF file onto the web
server.

The CSV, EPS, and GIF files are
removed from the local computer.

[a6.sh.txt] version of the printout
[a7.sh.txt]
[a9.sh.txt] version updated on 2008-03-26

5. Version upgrades

In the upgrade from version [a6.sh.txt] to [a7.sh.txt] we removed a back (the list of hosts was
hardcoded):

$ diff a6.sh.txt a7.sh.txt
6c6
< hosts="us1,ch1,fr1,fr2,fr3"

> hosts="us1,ch1,fr1,fr2,fr3,fr4"
89c89
< foreach $h ("us1","ch1","fr1","fr2","fr3")

> foreach $h (split/,/,"'$hosts'")

5.1. [update080326] using keep-alive control for simultaneous ssh
sessions

The upgrade from version [a7.sh.txt] to version [a9.sh.txt] takes care of dead servers. When one of
the servers is dead, the entire script processing is delayed. The progress of all chart points is
delayed for all hosts during the entire time of a suspended connection with the dead host.
Deadlock-free ssh connection relies on keep-alive control messages aiming at detection of dead
servers. The dead server is detected via a control channel without a need of user/application data
exchanges:
$ diff a7.sh.txt a9.sh.txt
6c6

< hosts="us1,ch1,fr1,fr2,fr3,fr4"

> hosts="us1,ch1,fr1,fr2,fr3,fr4,dk1"
47c47
< ssh -q $login "top -b -d$topsamp -s$topdelay inf | grep '
\(ser\|COMMAND\)$'" | perl -e '$h="'$h'";

> ssh -o ServerAliveInterval=5 -q $login "top -b -d$topsamp -
s$topdelay inf | grep ' \(ser\|COMMAND\)$'" | perl -e '$h="'$h'";

References for ssh option ServerAliveInterval:
http://4z.com/public/080326-ssh-keepalive/
http://www.unappel.ch/public/080326-ssh-keepalive/
http://switzernet.com/public/080326-ssh-keepalive/

The two charts below are generated for the same period of time by the old and new versions of the
script. The first chart (on left), generated by old version [a7.sh.txt] demonstrates a case, when due
to a bad (potentially lost) connection with one of the servers the drawing of all curves is delayed.
The second chart (on right), generated by upgraded script [a9.sh.txt], shows a steady progress of
all curves during the same period. The ssh session with affected server can terminate and the load
value will be computed with as much samples as collected until the outage.

http://4z.com/public/080326-ssh-keepalive/
http://www.unappel.ch/public/080326-ssh-keepalive/
http://switzernet.com/public/080326-ssh-keepalive/

In general, when the ssh session is terminated in the middle of connection, the script computes the
average CPU load with the data collected from the beginning of the session, but if the server stays
unavailable until the next connection attempt scheduled at the following sampling period, then the
CPU load curve of the affected server will interrupt.

6. Files and links

A short and efficient Perl tutorial (you do not need to know more for presented scripts):
http://www.comp.leeds.ac.uk/Perl/, [cached]

A more complete Perl documentation: http://perldoc.perl.org/perlintro.html

The bluebook of postscript language: http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF,
[cached]

Description of the EPS headers extending the PS language:
http://www.tailrecursive.org/postscript/eps.html, [cached]

A scheme assigning colors to a range of scalar values: http://4z.com/People/emin-
gabrielyan/public/050401-linkviews/

Description of the public and shared key ssh login process (ssh-keygen -t rsa):
http://linuxproblem.org/art_9.html, [cached]

Imagemagick web site (the version on the Geneva server is installed from sources)
http://www.imagemagick.org/script/install-source.php

This document: [htm], [doc], [pdf]

The bash and Perl scripts: [a9.sh.txt], [b7.pl.txt]

Mirrors: [ch1], [ch2], [us1]

* * *

Copyright © 2008 Switzernet

http://www.comp.leeds.ac.uk/Perl/
http://perldoc.perl.org/perlintro.html
http://www-cdf.fnal.gov/offline/PostScript/BLUEBOOK.PDF
http://www.tailrecursive.org/postscript/eps.html
http://4z.com/People/emin-gabrielyan/public/050401-linkviews/
http://4z.com/People/emin-gabrielyan/public/050401-linkviews/
http://linuxproblem.org/art_9.html
http://www.imagemagick.org/script/install-source.php
http://switzernet.com/public/080212-remote-cpu-monitor/
http://www.unappel.ch/public/080212-remote-cpu-monitor/
http://4z.com/public/080212-remote-cpu-monitor/

	1. Introduction
	2. How to install
	2.1. New version

	3. The Perl script converting CSV files into EPS files
	3.1. Description of the script

	4. The bash script monitoring the CPU loads on the remote computers and generating the CSV files
	5. Version upgrades
	5.1. [update080326] using keep-alive control for simultaneous ssh sessions

	6. Files and links

