
SIP proxy with a user location database and
authentication of registration and call setup requests

Emin Gabrielyan

2007-04-24
Switzernet Sàrl

The demonstrations presented in this document are based on OpenSER proxy server
running with MySQL database. We discuss a reboot safe configuration saving user
locations in a database instead of keeping this information in memory. We examine
authentication of the registration process and of the call setup process.

SIP proxy with a user location database and authentication of registration and

call setup requests.. 1
1. The experimental configuration ... 1
2. OpenSER installation details .. 2
3. Saving locations of User Agents in the database... 4
4. Authentication with origin server (registrar) for registration and for

receiving incoming calls .. 6
4.1. Challenge-response access authentication mechanism..6
4.2. Experimenting with OpenSER and logging the authentication messages7

4.2.1. Creating user records in the OpenSER database for authentication7
4.2.2. Passing the replies of the SIP server through the SIP server itself (for

examining their contents) ...9
4.2.3. OpenSER configuration script for authentication of registration requests10
4.2.4. Request-challenge-response authentication messages of the registration

process..11
4.2.5. Checking the “To” header field supplied by user against the previously

validated Digest credentials ...15
5. Authentication for processing outgoing calls .. 17

5.1. Unsuccessful proxy authentication..20
6. Consuming the credentials.. 22
7. Final configuration file without debug re-transmissions ... 24
8. Glossary .. 25
9. Relevant links... 25

9.1. Local files ..26

1. The experimental configuration

We use an OpenSER proxy server located at IP address 192.168.1.15 and two Budge
Tone-100 SIP phones located at IP addresses 192.168.1.10 and at 192.168.1.11
respectively. We run OpenSER with MySQL database system on a Debian

GNU/Linux. We use version 1.2.0 of OpenSER allowing manipulations with user
defined pseudo variables.

2. OpenSER installation details

You can skip this section, if your OpenSER version 1.2.0 already properly operates
with MySQL database.

In order to install the latest version (1.2.0) of OpenSER with mysql, it is required to
download the source codes and compile the sip server. For this purpose several pre-
required packages need to be installed. Use Synaptic Package Manager to install the
following pre-required packages: subversion (svn client), gcc (gcc compiler), flex,
bison, libmysqlclient15-dev. The synaptic package manager can be called from the
Applications menu of the Gnome desktop environment of Debian:
Applications
 Debian
 Apps
 System
 Synaptic Package Manager

The Synaptic interface looks as follows:

[png]

User the [Search] icon to list all related components of the packages you need to
install (i.e. use search for each of the following packages: subversion, gcc, flex, bison,
and libmysqlclient15-dev). Within each list of displayed components, mark for
installation the required package name (mark only the package you need, the
dependent packages will be added automatically) and click on the [Apply] icon.

Follow the instructions of “Install and Maintain OpenSER from SVN” starting from
section 2 (since all pre-required packages are already installed with Synaptic Package
Manager) up to section 7 (the configuration files we will discussed directly in this

http://www.openser.org/mos/view/News/NewsItem/OpenSER-v1.2.0-Released/
http://www.openser.org/mos/view/News/NewsItem/OpenSER-v1.2.0-Released/

document). In section 7 of “Install and Maintain OpenSER from SVN” you should
create the MySQL database:
/usr/local/sbin/openser_mysql.sh create

The openser_mysql.sh script will ask for the password of the root user of mysql (not
the same as the root user of your Unix system):
SER02:/usr/local/src/openser-1.2.0/sip-server# openser_mysql.sh create
MySQL password for root:
Enter password:
Enter password:
creating database openser ...
Core OpenSER tables succesfully created.
Install presence related tables ?(y/n):y
creating presence tables into openser ...
Presence tables succesfully created.
Install extra tables - imc,cpl,siptrace,domainpolicy ?(y/n):y
creating extra tables into openser ...
Extra tables succesfully created.
Install SERWEB related tables ?(y/n):y
Domain (realm) for the default user 'admin':

creating serweb tables into openser ...
SERWEB tables succesfully created.

!!!
! !
! WARNING !
! !
! There was a default admin user created: !
! username: admin@
! password: openserrw
! !
! Please change this password or remove this user !
! from the subscriber and admin_privileges table. !
! !
!!!
SER02:/usr/local/src/openser-1.2.0/sip-server#
SER02:/usr/local/src/openser-1.2.0/sip-server#

You can check the tables created by openser_mysql.sh script:
SER02:/home/emin/Desktop/branch/a2#
SER02:/home/emin/Desktop/branch/a2# mysql
mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| openser |
+--------------------+
3 rows in set (0.00 sec)

mysql> use openser;
mysql> show tables;
+-----------------------+
| Tables_in_openser |
+-----------------------+
| acc |
| active_sessions |
| active_watchers |
| address |
| admin_privileges |
| aliases |
| cpl |
| dbaliases |
| domain |

| domainpolicy |
| grp |
| gw |
| gw_grp |
| imc_members |
| imc_rooms |
| lcr |
| location |
| missed_calls |
| pdt |
| pending |
| phonebook |
| presentity |
| pua |
| re_grp |
| server_monitoring |
| server_monitoring_agg |
| silo |
| sip_trace |
| speed_dial |
| subscriber |
| trusted |
| uri |
| usr_preferences |
| usr_preferences_types |
| version |
| watchers |
| xcap_xml |
+-----------------------+
37 rows in set (0.00 sec)

mysql> quit

In case of error you can delete the OpenSER database and reinstall it again:
SER02:/usr/local/src/openser-1.2.0/sip-server#
SER02:/usr/local/src/openser-1.2.0/sip-server# openser_mysql.sh drop
MySQL password for root:
SER02:/usr/local/src/openser-1.2.0/sip-server# openser_mysql.sh create

3. Saving locations of User Agents in the database

If user location information is kept in the memory, User Agents will be unable to
receive calls after the proxy server is rebooted. The User Agents will be able to
receive calls only after they register themselves again (usually after expiration of a
certain time from the moment of their previous registration or upon a reboot of UA).

When user locations are saved in database, the system is reboot safe, since the proxy
server, once rebooted, can access the location information stored in the database.

We run the OpenSER server in a debug mode as a terminal process. We xlog()
function for logging the processing details on the screen. We need mysql module to
store user locations in a database. By setting the usrloc’s parameter db_mode to 2 we
tell OpenSER to use mysql for storing contact information (and not the memory).
debug=3
children=4
fork=no
log_stderror=yes
listen=192.168.1.15
port=5060

mpath="/usr/local/lib/openser/modules/"
loadmodule "mysql.so"
loadmodule "sl.so"
loadmodule "tm.so"
loadmodule "rr.so"
loadmodule "maxfwd.so"
loadmodule "usrloc.so"
loadmodule "registrar.so"
loadmodule "textops.so"
loadmodule "mi_fifo.so"
loadmodule "xlog.so"

modparam("mi_fifo", "fifo_name", "/tmp/openser_fifo")
modparam("usrloc", "db_mode", 2)
modparam("rr", "enable_full_lr", 1)

[configuration file]

In our configuration file we display all messages received by the proxy server. The
requests are printed with a green background and the replies with a cyan background:
route
{
 t_on_reply("1");
 xlog("L_NOTICE","$rm\n$CbgmbCxx\n");
 ...
}

onreply_route[1]
{
 xlog("L_NOTICE","$rs ($rr) concerning $rm\n$CbcmbCxx\n");
}

Pseudo-variables ($Cxy) for setting colors are described in “OpenSER Pseudo-
variables for Version 1.2.x”.

When usrloc’s parameter db_mode is set to 0, the registration information is kept only
in memory:
modparam("usrloc", "db_mode", 0)

If the proxy server is rebooted the location of the callee phones is lost and an INVITE
request cannot be served. In such a scenario, the lookup("location") function fails.
if (!lookup("location")) {
 xlog("L_NOTICE","$CrxUser is not found$Cxx\n");
 sl_send_reply("404", "Not Found");
 exit;
};

The printout of the OpenSER server is logged in a file [htm], [txt], [doc].

When db_mode parameter is set to 2, user locations are saved on the disk.
modparam("usrloc", "db_mode", 2)

When invoking save("location") while receiving a REGISTER request, the contact
information will be recorded in the openser database table called "location".
if (uri==myself) {
 if (method=="REGISTER") {
 save("location");
 exit;
 };
 ...
}

The information stored in the location table can be viewed through the mysql
interface:
SER02:/home/emin/Desktop/branch/a3# mysql

http://openser.org/dokuwiki/doku.php/pseudovariables:1.2.x
http://openser.org/dokuwiki/doku.php/pseudovariables:1.2.x

mysql> use openser;
mysql> select username,contact,user_agent from location;
+----------+---------------------+----------------------------+
| username | contact | user_agent |
+----------+---------------------+----------------------------+
| 11 | sip:11@192.168.1.11 | Grandstream BT110 1.0.8.33 |
| 10 | sip:10@192.168.1.10 | Grandstream BT110 1.0.8.33 |
+----------+---------------------+----------------------------+
2 rows in set (0.00 sec)

mysql> quit

Using the select SQL statement, we see in the location table two records for registered
Budge Tone-100 telephones with phone numbers 10 and 11.

A scenario, where the proxy server is able to process a phone call immediately after a
reboot, is logged [htm], [txt], [doc].

Basic SQL statements can be found in a short SQL tutorial.

4. Authentication with origin server (registrar) for
registration and for receiving incoming calls

In this section we focus on authentication of User Agent wishing to register itself at
SIP server. At this stage we authenticate only the registration process.
Unauthenticated user will not be able to register and therefore will not be able to
receive calls (since there will be no entry in the location table). However such a User
Agent will be still able to make calls, since currently we do not require authentication
for processing outgoing calls. In all discussed examples authorization and
authentication are handled in SIP on a request-by-request basis [rfc3261, p.17],
[rfc3261].

4.1. Challenge-response access authentication
mechanism

The SIP authentication mechanism is the same as that of HTTP which supports two
authentication schemes: Basic and Digest [rfc2617]. With the Basic method the
username and password are passed over network as clear text [rfc2617, p.1], [rfc2617,
p.6]. The Digest Access Authentication scheme is based on encryption [rfc2617, p.1],
[rfc2617, p.2], [rfc2617, p.6]. Usually the Digest scheme is used in SIP.

The Digest scheme is based on a challenge-response mechanism. According to the
Digest scheme, the server challenges the user using a server generated nonce value.
A valid response of the user is a checksum of the server’s nonce value concatenated
with the username and the password. In this way, the password is never sent in the
clear [rfc2617, p.6-7]. The nonce value is a data string generated by the server each
time a challenge is sent. This string is a base64 or hexadecimal data [rfc2617, p.9].
The response is a string of 32 hex digits. Since the response is a checksum of the

password and the nonce value sent by the server, the user can prove that the correct
password is known without a need to send the password itself [rfc2617, p.11]. The
checksum is computed by the MD5 algorithm.

When the server challenges the original request of the user it ignores the original
request and waits for a new request with a valid response. The server challenges the
user by sending a reply to the original request requiring an authentication. The user
must re-send its request again, with a header field containing the required
authorization [rfc2617, p.3], [rfc2617, p.6-7].

One of the parameters of the challenge message is the nonce string. Another
parameter is the realm string. It is a string for identification of the server. Usually the
realm is simply the name of the server. Realm can contain also a name of a virtual
server in case the same server operates different databases for different types of users.
When the user receives the realm string, it knows which username and password to
use (many users may have several pairs of usernames and passwords for working with
different servers) [rfc2617, p.4], [rfc2617. p.5], [rfc2617, p.8].

Depending on the type of the SIP request, the challenge message sent by the server
and the correspondingly retransmitted SIP request sent by the user may belong to one
of the two types: authentication with origin server and authentication with proxy.

Authentication of registration requests belongs to the type of authentication with the
origin server. Authentication of call setup requests belongs to the type of
authentication with proxy and will be discussed in section 5. In this section we discuss
authentication of registration requests.

The SIP server wishing to authenticate the user upon registration (i.e. the SIP server
acts as registrar or as an origin server), uses the 401 (Unauthorized) response
message in order to challenge the authorization of a user agent. This response includes
a WWW-Authenticate header field containing at least one challenge applicable to
the requested resource (typically Digest) and the server’s realm [rfc2617, p.3].

A user agent that wishes to authenticate itself with an origin server, after receiving a
401 (Unauthorized) reply, includes an Authorization header field in the request and
re-sends the request to the server [rfc2617, p.4].

4.2. Experimenting with OpenSER and logging the
authentication messages

4.2.1. Creating user records in the OpenSER database
for authentication

In our current scenario we have two SIP phones with phone numbers 10 and 11. The
SIP phones are located at static IP addresses 192.168.1.10 and 192.168.1.11
respectively. In order to tell the SIP server about these two phones we must creates
two records in the subscriber table of the openser database:

mysql> use openser;
Database changed
mysql> describe subscriber;
+-------------------+------------------+------+-----+
| Field | Type | Null | Key |
+-------------------+------------------+------+-----+
id	int(10) unsigned	NO	PRI
username	varchar(64)	NO	MUL
domain	varchar(128)	NO	
password	varchar(25)	NO	
first_name	varchar(25)	NO	
last_name	varchar(45)	NO	
email_address	varchar(50)	NO	
datetime_created	datetime	NO	
ha1	varchar(128)	NO	
ha1b	varchar(128)	NO	
timezone	varchar(128)	YES	
rpid	varchar(128)	YES	
phplib_id	varchar(32)	NO	UNI
phone	varchar(15)	NO	
datetime_modified	datetime	NO	
confirmation	varchar(64)	NO	
flag	char(1)	NO	
sendnotification	varchar(50)	NO	
greeting	varchar(50)	NO	
allow_find	char(1)	NO	
+-------------------+------------------+------+-----+
20 rows in set (0.00 sec)
mysql>

Records can be inserted into a table by using the insert into SQL statement (see the
SQL insert into tutorial page)
mysql> insert into subscriber (username,password) VALUES ('10','abc10');
Query OK, 1 row affected (0.00 sec)
mysql> select id,username,password from subscriber;
+----+----------+-----------+
| id | username | password |
+----+----------+-----------+
| 1 | admin | openserrw |
| 2 | 10 | abc10 |
+----+----------+-----------+
2 rows in set (0.00 sec)

The phplib_id field of the table is marked to be unique. Therefore for each record we
must assign a unique value to this field. An old value of a record can be changed by
update SQL statement. We replace the old empty value with a string.
mysql> update subscriber set phplib_id='070418-1235-aa' where id='2';
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> select id,username,password,phplib_id from subscriber;
+----+----------+-----------+----------------------------------+
| id | username | password | phplib_id |
+----+----------+-----------+----------------------------------+
| 1 | admin | openserrw | cd78c85cf1641e8e71375e1f7984207f |
| 2 | 10 | abc10 | 070418-1235-aa |
+----+----------+-----------+----------------------------------+
2 rows in set (0.00 sec)

We can add the second subscriber, with another value for phplib_id (the value for our
example is a concatenation string of the date and time in the following format
YYMMDD-HHMM-aa):
mysql> insert into subscriber (username,password,phplib_id) values
('11','abc11','070418-1256-aa');
Query OK, 1 row affected (0.00 sec)

mysql> select id,username,password,phplib_id from subscriber;
+----+----------+-----------+----------------------------------+
| id | username | password | phplib_id |
+----+----------+-----------+----------------------------------+
1	admin	openserrw	cd78c85cf1641e8e71375e1f7984207f
2	10	abc10	070418-1235-aa
3	11	abc11	070418-1256-aa
+----+----------+-----------+----------------------------------+
3 rows in set (0.01 sec)

We configure our phone 10 with an Authenticate Password equal to “abc10” and
phone 11 we deliberately configure with a wrong password.

4.2.2. Passing the replies of the SIP server through the
SIP server itself (for examining their contents)

We are currently ready to use an OpenSER configuration file for authentication of
registration requests. When OpenSER processes the requests in stateful mode (e.g.
calls are relayed using t_relay() function instead of forward() function) the SIP script
is able to catch the replies and associate them with the corresponding requests. It
works in case when the replies are generated by a third party, for example by another
UA and they pass through the proxy server. In case when the replies are generated by
the server itself (this is precisely the case with the replies to REGISTER requests), the
SIP script cannot catch and display such replies.

For examining the exchange of challenge-response messages we need to see the
replies of our own SIP server. It will be possible if the server sends the replies back to
itself and only then to the correct destination (i.e. to the UA which transmitted the
request). In SIP, the replies always follow the path of request in the reverse direction.
It is ensured by a stack of “Via” header fields collected within the request message
while it travels to its destination. The stack keeps the track of the path by storing the
IP addresses of all intermediary nodes. The stack is further copied in reply messages
and the “Via” fields are removed at each intermediary node when the reply travels
back. The top most “Via” field instruct each intermediary node (a proxy server) where
is the next hop of the message. Therefore it is sufficient to loop the arrival path of
requests in order to have a looped return path of replies. There is only one iteration of
looping through our server (i.e. the first arrival of the message is sent to the proxy
itself, and the message is processed and is forwarded further at its second arrival).

In the following fragment of our configuration file in case we deal with REGISTER
request and if it is the first arrival of this request, we transmit it to ourselves without
processing.
 if(method=="REGISTER")
 {
 if(!search("P-hint: [Ss]elf-[Ll]ooped"))
 {
 append_hf("P-hint: Self-Looped\r\n");
 t_relay("192.168.1.15"); # the IP address of this proxy
 exit;
 }
 }

We display the content of REGISTER messages only for their second arrival (i.e.
each REGISTER message will be displayed only once):
 # Only the second arrival of REGISTER will be displayed.

 xlog("L_NOTICE","$rm\n$CbgmbCxx\n");

Thanks to the looping of all register messages, we will be able to see once all replies
of our own proxy server to REGISTER requests.

4.2.3. OpenSER configuration script for authentication
of registration requests

Our current configuration file now does not grant registrations and does not save
locations of User Agents without controlling their usernames and passwords. If the
request arrives the first time, the server will not process it, but will send a challenge
message: a 401 (Unauthorized) reply. This is done with www_challenge("","0")
function:
 if (uri==myself) {
 if (method=="REGISTER") {
 if (!www_authorize("", "subscriber")) {
 xlog("L_NOTICE","Unable to verify the credentials\n");
 www_challenge("", "0");
 exit;
 };
 save("location");
 exit;
 }
 ...
 }

When the second request is received, the www_authorize("","subscriber") function
checks if the new REGISTER request contains the response parameter, if it
corresponds to the previously sent challenge (i.e. to the nonce parameter transmitted
in the previous 401 (Unauthorized) challenge), and if the response corresponds to the
correct password of the user stored in the subscriber table of the openser database.

The first argument of both functions (which is an empty string for both functions of
the example) is the realm parameter. If an empty string "" is used then the server will
generate the realm string from the request. In case of REGISTER requests “To”
header field domain will be used, because this header field represents a user being
registered. The server will use the domain part of the “To” header field as its realm
parameter.

Location of the user will be stored in location table of the database only if
www_authorize("","subscriber") function returns true.

Therefore, according to the current configuration, without being registered the SIP
proxy will not save the location information and therefore the SIP phone will not be
able to receive incoming calls via the SIP proxy server.

Note that since in our configuration file, the outgoing calls are processed without
authentication, the user will be able to make outgoing calls even if its registration
fails. For making an outgoing call without registration, the phone must only internally
“Allow outgoing call without Registration” (see the phone’s configuration).

4.2.4. Request-challenge-response authentication
messages of the registration process

Recall that we configured phone 10 with a correct password and phone 11 with an
incorrect password. Our configuration script is designed so as to display messages
arriving from User Agents as well as responses of the proxy server itself. The
printouts of the SIP server are logged [htm], [txt], [doc].

The first register message of SIP phone 10 does not contain authorization header field
(some insignificant header fields are removed from the examples; consult the full
printout to view the complete messages):
0(26142) REGISTER
REGISTER sip:192.168.1.15 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.15;branch=z9hG4bK55d.4261f4d1.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bK1cfcbbd452dd007a
From: <sip:10@192.168.1.15>;tag=20321951e0685e4d
To: <sip:10@192.168.1.15>
Contact: <sip:10@192.168.1.10>
Call-ID: 33706713ea3b83fd@192.168.1.10
CSeq: 100 REGISTER
Expires: 150
User-Agent: Grandstream BT110 1.0.8.33
Max-Forwards: 68
Content-Length: 0
P-hint: Self-Looped

The proxy does therefore not process the register request and sends a challenge with a
401 (Unauthorized) reply:
0(26142) 401 (Unauthorized) concerning REGISTER
SIP/2.0 401 Unauthorized
Via: SIP/2.0/UDP 192.168.1.15;branch=z9hG4bK55d.4261f4d1.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bK1cfcbbd452dd007a
From: <sip:10@192.168.1.15>;tag=20321951e0685e4d
To: <sip:10@192.168.1.15>;tag=4f4b3fc66ce1848604aacd9b43692540.ca9b
Call-ID: 33706713ea3b83fd@192.168.1.10
CSeq: 100 REGISTER
WWW-Authenticate: Digest realm="192.168.1.15",
nonce="462791f06aa9b37a34fd11b1adc58c5a9df7c95b"
Server: OpenSER (1.2.0-notls (i386/linux))
Content-Length: 0

A 401 (Unauthorized) response message is used by an origin server to challenge the
authorization of a user agent. For REGISTER requests, the SIP server is considered as
an origin server. When processing a call, the SIP server is considered as a proxy
server and Proxy Authentication Required response is sent instead of 401
(Unauthorized) reply (see section 5). The 401 (Unauthorized) message of the origin
server contains WWW-Authenticate header field [rfc2617, p.3].

As a response to the challenge of the origin server, the UA retransmits the initial
request, but this time with an Authorization header field with parameters
corresponding to those of WWW-Authenticate header field of the server’s challenge
[rfc2617, p.4]:
0(26142) REGISTER
REGISTER sip:192.168.1.15 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.15;branch=z9hG4bK65d.33f1abb2.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bKa468c8b72fe7a3a7
From: <sip:10@192.168.1.15>;tag=20321951e0685e4d
To: <sip:10@192.168.1.15>

Contact: <sip:10@192.168.1.10>
Authorization: Digest username="10", realm="192.168.1.15", algorithm=MD5,
uri="sip:192.168.1.15", nonce="462791f06aa9b37a34fd11b1adc58c5a9df7c95b",
response="be9e8d46b8dcd522f22301e1f2b3287c"
Call-ID: 33706713ea3b83fd@192.168.1.10
CSeq: 101 REGISTER
Expires: 150
User-Agent: Grandstream BT110 1.0.8.33
Max-Forwards: 68
Content-Length: 0
P-hint: Self-Looped

Both messages, the WWW-Authenticate header field of the server’s challenge and the
Authorization header field of user’s re-transmitted request (i.e. the response to the
challenge), contain the authentication scheme “Digest” and the same realm parameter
“192.168.1.15” identifying the registrar SIP server. According to “Digest”
authentication scheme, in the WWW-Authenticate header field the server provided a
nonce parameter (generated on the fly for every challenge), and the user provided a
response parameter which is the MD5 checksum of a string which contains server’s
nonce and the user password. In such a way the user proves that it knows the correct
password without a need to transmit the password itself.

The server creates the same MD5 checksum locally and compares the checksum
computed locally with that of received from the user (in the response parameter of
Authorization header field). If the server side computed checksum matches with the
user side computed checksum, the server replies 200 (OK) and processes the
REGISTER request of the user (i.e. saves its location in the database):
0(26142) 200 (OK) concerning REGISTER
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.15;branch=z9hG4bK65d.33f1abb2.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bKa468c8b72fe7a3a7
From: <sip:10@192.168.1.15>;tag=20321951e0685e4d
To: <sip:10@192.168.1.15>;tag=4f4b3fc66ce1848604aacd9b43692540.6cb7
Call-ID: 33706713ea3b83fd@192.168.1.10
CSeq: 101 REGISTER
Contact: <sip:10@192.168.1.10>;expires=150
Server: OpenSER (1.2.0-notls (i386/linux))
Content-Length: 0

Note that all requests contain two “Via” header fields. The first one is added by the
User agent before the departure of the request:
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bKa468c8b72fe7a3a7

The second one (the top most “Via” header field) is added by the proxy server after
the first arrival of the request to the server:
Via: SIP/2.0/UDP 192.168.1.15;branch=z9hG4bK65d.33f1abb2.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bKa468c8b72fe7a3a7

The message is displayed upon the second arrival of the request to the server (with the
server’s first “Via” stamp).

The replies of the server contain the same stack of “Via” fields:
Via: SIP/2.0/UDP 192.168.1.15;branch=z9hG4bK65d.33f1abb2.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bKa468c8b72fe7a3a7

It ensures that the message will follow the request’s arrival path in the reverse
direction. It means that the reply will be first routed to 192.168.1.15 (so to the proxy
itself), then at that hop (i.e. in the proxy), the top most “Via” header field will be
removed and the request will be routed to the IP address indicated by the next “Via”

header field: 192.168.1.10 (i.e. to the final destination). We see the reply message
upon its arrival to the proxy, when the header field of the proxy is not yet removed.

Note also that the first exchange of REGISTER and 401 (Unauthorized) constitutes
one transaction (see the branch number):
REGISTER sip:192.168.1.15 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bK1cfcbbd452dd007a
SIP/2.0 401 Unauthorized
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bK1cfcbbd452dd007a

The second exchange of REGISTER and 200 (OK) constitutes a different transaction
(a different branch number):
REGISTER sip:192.168.1.15 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bKa468c8b72fe7a3a7
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bKa468c8b72fe7a3a7

The Call-ID (dedicated for identification of dialogs) is the same in all messages
throughout the authentication process:
REGISTER sip:192.168.1.15 SIP/2.0
Call-ID: 33706713ea3b83fd@192.168.1.10
SIP/2.0 401 Unauthorized
Call-ID: 33706713ea3b83fd@192.168.1.10
REGISTER sip:192.168.1.15 SIP/2.0
Call-ID: 33706713ea3b83fd@192.168.1.10
SIP/2.0 200 OK
Call-ID: 33706713ea3b83fd@192.168.1.10

The diagram of the two transactions of the authentication dialog between UA
192.168.1.10 and registrar origin server 192.168.1.15 is shown below:

Concerning the second phone 11, it is configured with a wrong password. It will
therefore re-transmit the request with wrong responses. The server will send again

401 (Unauthorized)
WWW-Authenticate: nonce

REGISTER
Authorization: response

192.168.1.10 192.168.1.15
Phone: 10 Registrar server

200 (OK)

REGISTER

401 (Unauthorized) messages to the user. The UA abandons its registration attempts
after two failed Authorization responses (see the full log for the contents of the
messages):

192.168.1.11

Since the authentication of phone 11 is failed, its contact information will not be
stored in the location table:
mysql> use openser;
mysql> select id,username,contact,user_agent from location;
+----+----------+---------------------+----------------------------+
| id | username | contact | user_agent |
+----+----------+---------------------+----------------------------+
| 12 | 10 | sip:10@192.168.1.10 | Grandstream BT110 1.0.8.33 |
+----+----------+---------------------+----------------------------+
1 row in set (0.00 sec)

Since location table contains no record about user 11, it will be not possible to reach
user 11 via our proxy server:
if (!lookup("location")) {
 xlog("L_NOTICE","$CrxUser is not found$Cxx\n");
 sl_send_reply("404", "Not Found");
 exit;

401 (Unauthorized)
WWW-Authenticate: nonce

REGISTER
Authorization: wrong response

Phone: 11
192.168.1.15

Registrar server

REGISTER

401 (Unauthorized)
WWW-Authenticate: nonce

REGISTER
Authorization: wrong response

401 (Unauthorized)
WWW-Authenticate: nonce

};

When user 10 tries to call user 11, the query of the location table fails and 404 (Not
Found) is replied to user 10:
0(26142) INVITE
INVITE sip:11@192.168.1.15 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bKf31f5ae59154c1ea
From: <sip:10@192.168.1.15>;tag=a3594da4a9837d35
To: <sip:11@192.168.1.15>
0(26142) User is not found

For the full content of messages see the complete log [htm], [txt], [doc].

Note that our current configuration script does not require authentication when
processing calls. Authentication is actually required only for registration. It means
that though the phone 11 is unregistered it is still able to process a call. See the
complete log [htm], [txt], [doc] of the current scenario, containing the SIP messages
demonstrating a successfully established call from phone 11 to phone 10. It is only
required that the SIP phone itself permit the user to make calls without being
registered:

[htm], [bmp]

4.2.5. Checking the “To” header field supplied by user
against the previously validated Digest
credentials

An additional security check is added in the configuration file described in
Authentication and MySQL section of SER Getting Started document (OpenSER is a
spin-off of the SER project). We slightly modified the configuration file of the SER
tutorial in order to make it compatible with the OpenSER server. After checking
user’s credentials (by invoking www_authorize("","subscriber") function) the server
performs a checking of the “To” header field by invoking a check_to() function.

route
{
 ...
 if (method=="REGISTER") {
 route(2);
 exit;
 }

http://openser.org/
http://www.iptel.org/ser/

 ...
}

route[2]
{
 sl_send_reply("100","Trying to Register");
 if(!www_authorize("","subscriber")) {
 www_challenge("","0");
 exit;
 }
 if(!check_to()) {
 sl_send_reply("401","Unauthorized");
 exit;
 }
 ...
 if(!save("location")) {
 sl_reply_error();
 }
}

[configuration file]

A risk exists that a valid user account that has been successfully registered may be
used by an unauthorized user. An unauthorized user may intercept the Authorization
header field of a valid user and use the so obtained correct response parameter for
authorization of its own register request.

REGISTER sip:192.168.1.15 SIP/2.0
To: <sip:10@192.168.1.15>
Contact: <sip:10@192.168.1.10>
Authorization: Digest username="10", realm="192.168.1.15", algorithm=MD5,
uri="sip:192.168.1.15", nonce="462791f06aa9b37a34fd11b1adc58c5a9df7c95b",
response="be9e8d46b8dcd522f22301e1f2b3287c"

In register requests the “To” header field represents the user being registered (not the
“From” header field). If www_authorize("","subscriber") function ensures in the
validity of the response parameter the save("location") should save in the location
table the coordinates of the user specified in the “To” header field (the actual location
being provided in “Contact” header field). A malicious user agent may insert in its
register request a good Authorization response parameter intercepted from a valid
register request, by providing at the same time in the “To” header field its own
username. The www_authorize("","subscriber") function will accept the response and
the save("location") which considers only the “To” field would successfully register
the malicious user.

According to RFC2617, the response value is an MD5 checksum of string containing
not only the nonce and password parameters (as referred most of the time), but also of
the username, the method, and the requested URI [rfc2617, p.6-7]. The check_to()
function checks in particular if the username provided in the “To” header field of the
request message corresponds to the username encoded in the response parameter.

By calling check_to() prior to honoring the REGISTER message we make sure that an
imposter cannot use a third-party valid response to register its username in the server.
If the server fails validating the supplied “To” header against the previously validated
digest credentials, then we reject the REGISTER message and return an error:
 if(!check_to()) {
 sl_send_reply("401","Unauthorized");
 exit;

 }

5. Authentication for processing outgoing calls

In a secured SIP router, authentication happens during two different times. The first
place is the area that handles REGISTER messages because we do not want
anonymous users to have the ability to register with our SIP proxy. This type of
authentication is already discussed in section 4. The second area we must secure is the
handler that processes INVITE messages because we do not want unauthenticated
users to make telephone calls. If we allowed this then we would have what is called
an open relay and if the SIP proxy is connected to a PSTN gateway we are then
responsible for excessive toll charges.

The call setup authentication process is not exactly the same as the registration
authentication (with registrar, namely the origin server). For origin server
authentication, the server challenges with the header field WWW-Authenticate and
the user responses with the header field Authorization. For call setup, the proxy
server challenges with a different header field Proxy-Authenticate, and the user
responses with the header field Proxy-Authorization [rfc2617, p.4].

Challenge message codes are also different. The SIP server sends its WWW-
Authenticate challenge for registration requests in a 401 (Unauthorized) reply, but
the Proxy-Authenticate challenge for call setup requests is sent in a 407 (Proxy
Authentication Required) reply [rfc2617, p.3].

As in case of registration requests discussed in section 4, we need to see the replies of
our own proxy also to INVITE requests. Our configuration file should now look for
the INVITE requests, and if they are not yet looped (if it is the first arrival of invite),
we must loop them once to the proxy itself without processing:
 if(method=="INVITE")
 {
 if(!search("^P-hint: [Ss]elf-[Ll]ooped"))
 {
 append_hf("P-hint: Self-Looped\r\n");
 t_relay("192.168.1.15"); # IP address of this proxy server
 exit;
 }
 }

Invite request will be processed only after the second arrival. In particular, the logging
of INVITE request occurs after the self-looping (so the INVITE requests will be
displayed once) and the Record-Route header is also added after the self-looping (i.e.
only once). Record-Route header fields (added by record_route() function) cause
modifications in “The path of SIP signalling messages” during the entire SIP dialog.
If we add Record-Route headers twice, all messages of the SIP dialog (i.e. during the
phone call) would also pass through the proxy server twice (in particular the ACK,
and BYE requests). Concerning the messages of the INVITE transaction, they will
follow the path of the INVITE request in any case (irrespectively to the record_route()
function which modifies the path of all successive transactions of the phone call). It
means that the replies to INVITE request will follow the same path in the reverse

http://4z.com/people/emin-gabrielyan/public/070412-SIP-record-route/

direction. The reply generated by the proxy itself will arrive to proxy server once (and
we will be able to see it). The reply generated by a third party (i.e. by the callee UA),
will arrive to proxy twice.

Similarly to the registration scenario, the first attempt of the user agent is rejected and
a challenge is sent as a reply to the rejected request. A UA receives a 407 (Proxy
Authentication Required) reply to its first INVITE attempt. The UA sends an ACK
and retransmits its invite, this time with a Proxy-Authorization header field which
contains the response parameter corresponding to the nonce parameter retrieved from
proxy’s 407 (Proxy Authentication Required) message. The response is the MD5
checksum of the concatenation of the password and the nonce string (with some other
known parameters, such as username). The password is not transmitted over the
network but the MD5 checksum proves that the UA knows the correct password. The
rest of the transaction follows the usual scenario. In our case all replies of the request
will pass through proxy twice until the end of the INVITE transaction (200 OK). The
yellow bars of the following diagram reflect the events of arrival of messages to the
proxy server:

INVITE

407 (Proxy Authentication Required)
Proxy-Authenticate: nonce

INVITE
Proxy-Authorization: response

ACK

100 (Trying)

180 (Ringing)

200 (OK)

ACK

BYE

192.168.1.10 192.168.1.15 192.168.1.11
Phone: 10 SIP server Phone: 11

100 (Giving a try)
INVITE

180 (Ringing)

200 (OK)

ACK

BYE

200 (OK)
200 (OK)

The logs of the first failed INVITE attempt and the beginning of the following
INVITE transaction are briefly shown below:
0(8132) INVITE (Sun Apr 22 18:46:09 2007)
INVITE sip:11@192.168.1.15 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.15;branch=z9hG4bKc696.fa286516.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bKff1baf3cb8b845a2
From: <sip:10@192.168.1.15>;tag=219e32bf2a2ec6f1
To: <sip:11@192.168.1.15>
Contact: <sip:10@192.168.1.10>
Call-ID: 3357af1c8ac608cb@192.168.1.10
 0(8132) 407 (Proxy Authentication Required) concerning INVITE
SIP/2.0 407 Proxy Authentication Required
Via: SIP/2.0/UDP 192.168.1.15;branch=z9hG4bKc696.fa286516.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bKff1baf3cb8b845a2
From: <sip:10@192.168.1.15>;tag=219e32bf2a2ec6f1
To: <sip:11@192.168.1.15>;tag=4f4b3fc66ce1848604aacd9b43692540.0955
Call-ID: 3357af1c8ac608cb@192.168.1.10
Proxy-Authenticate: Digest realm="192.168.1.15",
nonce="462b927d2ab8368b1771ed4268c47ca585413f95"
 0(8132) ACK (Sun Apr 22 18:46:09 2007)
ACK sip:11@192.168.1.15 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bKff1baf3cb8b845a2
From: <sip:10@192.168.1.15>;tag=219e32bf2a2ec6f1
To: <sip:11@192.168.1.15>;tag=4f4b3fc66ce1848604aacd9b43692540.0955
Contact: <sip:10@192.168.1.10>
Call-ID: 3357af1c8ac608cb@192.168.1.10
 0(8132) INVITE (Sun Apr 22 18:46:09 2007)
INVITE sip:11@192.168.1.15 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.15;branch=z9hG4bKd696.6412566.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bK97d3b9d4b3648ecf
From: <sip:10@192.168.1.15>;tag=219e32bf2a2ec6f1
To: <sip:11@192.168.1.15>
Contact: <sip:10@19 168.1.2. 10>
Proxy-Authorization: Digest username="10", realm="192.168.1.15",
algorithm=MD5, uri="sip:11@192.168.1.15",
nonce="462b927d2ab8368b1771ed4268c47ca585413f95",
response="90761772224a8a43df0f31b7437181f3"
Call-ID: 3357af1c8ac608cb@192.168.1.10
 0(8132) 100 (Giving a try) concerning INVITE
SIP/2.0 100 Giving a try
Via: SIP/2.0/UDP 192.168.1.15;branch=z9hG4bKd696.6412566.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bK97d3b9d4b3648ecf
From: <sip:10@192.168.1.15>;tag=219e32bf2a2ec6f1
To: <sip:11@192.168.1.15>
Call-ID: 3357af1c8ac608cb@192.168.1.10
 0(8132) 100 (Trying) concerning INVITE
SIP/2.0 100 Trying
Via: SIP/2.0/UDP 192.168.1.15;branch=z9hG4bKd696.7412566.0
Via: SIP/2.0/UDP 192.168.1.15;branch=z9hG4bKd696.6412566.0
Via: SIP/2.0/UDP 192.168.1.10;branch=z9hG4bK97d3b9d4b3648ecf
From: <sip:10@192.168.1.15>;tag=219e32bf2a2ec6f1
To: <sip:11@192.168.1.15>
Call-ID: 3357af1c8ac608cb@192.168.1.10

The full messages are in the complete printout [htm], [txt], [doc].

The authentication script of the INVITE messages is similar to that of REGISTER
messages:
route
{
 ...
 if (method=="INVITE") {
 route(3);
 exit;
 }
 ...

}

route[3]
{
 if proxy_authorize("","subscriber")) { (!
 proxy_challenge("","0");
 exit;
 }
 if (!check_from()) {
 sl_send_reply("403","Forbidden, Use From=ID");
 exit;
 }
 ...
 lookup("aliases");
 if(uri!=myself) {
 route(1);
 exit;
 }
 if(!lookup("location")) {
 sl_send_reply("404","User Not Found");
 exit;
 }
 route(1);
}

[configuration file]

The proxy_authorize("","subscriber") function verifies credentials according to
RFC2617. If the credentials are verified successfully then the function will return
“true”. If the function was unable to verify the credentials then it will fail and the
script calls proxy_challenge("","0") which will challenge the user. The first parameter
of proxy_authorize("","subscriber") function is the realm (usually the domain or
hostname of the server). Realm is a string that the user agent should present to the
user so he can decide what username and password to use [rfc2617, p.4], [rfc2617,
p.8]. If an empty string "" is used then the server will generate it from the request.
“From” header field domain will be used as realm. The second parameter of
proxy_authorize("","subscriber") function is the table to be used to lookup usernames
and passwords.

The proxy_challenge("","0") function challenges the user agent. It will generate
Proxy-Authenticate header field containing a digest challenge. It will put this header
field into the 407 (Proxy Authentication Required) reply generated from the request
by the server. Upon reception of such a reply the user agent should compute
credentials and retry the request. The first parameter is realm. When an empty ""
string is passed, the server uses as realm the domain appearing in the “From” header
field of the request.

The check_from() function checks “From” username against the digest credentials to
make sure that the INVITE request is not using hijacked credentials of another valid
request.

5.1. Unsuccessful proxy authentication

When the UA does not know the correct password and therefore sends a wrong
response, the SIP proxy server replies to such re-transmitted request of UA with the

same 407 (Proxy Authentication Required) message. For examining such a scenario
we use the same configuration file. The INVITE messages at their first arrival to the
proxy server are re-transmitted to the proxy itself. As a consequence, the replies to
INVITE also inherit the same looped path (and we can see the replies of our own
proxy):

The successive challenges of the SIP server contain the same Proxy-Authenticate
parameters. The UA with a wrong password abandons its attempts after two
unsuccessful responses (i.e. after three requests):

INVITE sip:10@192.168.1.15 SIP/2.0
From: <sip:11@192.168.1.15>;tag=e97fb7b7290040c2
Call-ID: f51f014d589e1ca7@192.168.1.11
SIP/2.0 407 Proxy Authentication Required
Call-ID: f51f014d589e1ca7@192.168.1.11
Proxy-Authenticate: Digest realm="192.168.1.15",
nonce="462c7effba07312005e1116c8236295cad5c0c84"
ACK sip:10@192.168.1.15 SIP/2.0
Call-ID: f51f014d589e1ca7@192.168.1.11
INVITE sip:10@192.168.1.15 SIP/2.0
From: <sip:11@192.168.1.15>;tag=e97fb7b7290040c2
Proxy-Authorization: Digest username="11", realm="192.168.1.15",
algorithm=MD5, uri="sip:10@192.168.1.15",
nonce="462c7effba07312005e1116c8236295cad5c0c84",
response="ee74d173c7c03094af9aeb4ab5acaf6f"
Call-ID: f51f014d589e1ca7@192.168.1.11

INVITE

407 (Proxy Authentication Required)
Proxy-Authenticate: nonce

INVITE
Proxy-Authorization: wrong response

ACK

192.168.1.11 192.168.1.15
Phone: 11 SIP server

407 (Proxy Authentication Required)
Proxy-Authenticate: nonce

ACK

INVITE
Proxy-Authorization: wrong response

407 (Proxy Authentication Required)
Proxy-Authenticate: nonce

ACK

SIP/2.0 407 Proxy Authentication Required
Call-ID: f51f014d589e1ca7@192.168.1.11
Proxy-Authenticate: Digest realm="192.168.1.15",
nonce="462c7effba07312005e1116c8236295cad5c0c84"
ACK sip:10@192.168.1.15 SIP/2.0
Call-ID: f51f014d589e1ca7@192.168.1.11
INVITE sip:10@192.168.1.15 SIP/2.0
From: <sip:11@192.168.1.15>;tag=e97fb7b7290040c2
Proxy-Authorization: Digest username="11", realm="192.168.1.15",
algorithm=MD5, uri="sip:10@192.168.1.15",
nonce="462c7effba07312005e1116c8236295cad5c0c84",
response="ee74d173c7c03094af9aeb4ab5acaf6f"
Call-ID: f51f014d589e1ca7@192.168.1.11
SIP/2.0 407 Proxy Authentication Required
Call-ID: f51f014d589e1ca7@192.168.1.11
Proxy-Authenticate: Digest realm="192.168.1.15",
nonce="462c7effba07312005e1116c8236295cad5c0c84"
ACK sip:10@192.168.1.15 SIP/2.0
Call-ID: f51f014d589e1ca7@192.168.1.11

The full list of messages of this scenario is available in the OpenSER printout [htm],
[txt], [doc].

6. Consuming the credentials

In the configuration script block handling the invite request we call the
consume_credentials() function before processing the INVITE request:
route[3]
{
 if(!proxy_authorize("","subscriber")) {
 proxy_challenge("","0");
 exit;
 } else if (!check_from()) {
 sl_send_reply("403","Use From=ID");
 exit;
 }
 consume_credentials();
 lookup("aliases");
 if(uri!=myself) {
 route(1);
 exit;
 }
 if(!lookup("location")) {
 sl_send_reply("404","User Not Found");
 exit;
 }
 route(1);
}

[configuration file]

The consume_credentials() function removes the credentials from the message being
processed by the server. That means that when re-transmitting the message to the next
hop, the message will not contain anymore the credentials used by the server. The
proxy should not reveal the information about the credentials of the user and the
message will be also a little bit shorter.

To demonstrate the effect of the consume_credentials() function we use a
configuration file, which, after authentication of an INVITE request, sends the

message to the proxy server itself in order to display the message upon its arrival and
examine whether the credentials were removed or not.

The configuration file displays only the contents of INVITE request. Therefore during
a call setup we should see three INVITE requests: the first one sent by UA without
credentials, the second one sent by UA with credentials (after the challenge of the
proxy), and the third one sent by proxy to itself after successful authentication. The
third INVITE request corresponds to the one, which is sent to the destination UA or to
the next-hop proxy. When the consume_credentials() function is commented the third
INVITE request (sent out by proxy after successful authentication) still contains the
Proxy-Authorization header field of the originating UA:
0(4649) INVITE from 192.168.1.10
INVITE sip:11@192.168.1.15 SIP/2.0
From: <sip:10@192.168.1.15>;tag=c9eb088d452d8629
To: <sip:11@192.168.1.15>
Call-ID: bcf44bf2657e2d7c@192.168.1.10
 0(4649) Processing by INVITE handler ...
 0(4649) INVITE from 192.168.1.10
INVITE sip:11@192.168.1.15 SIP/2.0
From: <sip:10@192.168.1.15>;tag=c9eb088d452d8629
To: <sip:11@192.168.1.15>
Proxy-Authorization: Digest username="10", realm="192.168.1.15",
algorithm=MD5, uri="sip:11@192.168.1.15",
nonce="462c9b46ef5a432a0e580d90bbe1485d35803d4f",
response="f3e283276058a016cd96cf33e8c9e8bb"
Call-ID: bcf44bf2657e2d7c@192.168.1.10
 0(4649) Processing by INVITE handler ...
 0(4649) Sending out first to myself for examining the content
 0(4649) INVITE from 192.168.1.15
INVITE sip:11@192.168.1.11 SIP/2.0
From: <sip:10@192.168.1.15>;tag=c9eb088d452d8629
To .1.15> : <sip:11@192.168
Proxy-Authorization: Digest username="10", realm="192.168.1.15",
algorithm=MD5, uri="sip:11@192.168.1.15",
nonce="462c9b46ef5a432a0e580d90bbe1485d35803d4f",
response="f3e283276058a016cd96cf33e8c9e8bb"
Call-ID: bcf44bf2657e2d7c@192.168.1.10
 0(4649) Self-Looped INVITE is received
 0(4649) The credentials are being forwarded to the next hop:
 0(4649) Digest username="10", realm="192.168.1.15", algorithm=MD5,
uri="sip:11@192.168.1.15", nonce="462c9b46ef5a432a0e580d90bbe1485d35803d4f",
response="f3e283276058a016cd96cf33e8c9e8bb"

All messages of the dialog are in the full printout [htm], [txt], [doc].

When the consume_credentials() function is called after the successful authentication,
the third INVITE request of the printout (which is the one sent out by the proxy after
the successful authentication), does not contain anymore the Proxy-Authorization
header field of the originating UA:
0(4827) INVITE from 192.168.1.10
INVITE sip:11@192.168.1.15 SIP/2.0
From: <sip:10@192.168.1.15>;tag=1c43b02579e58415
To: <sip:11@192.168.1.15>
Call-ID: 40dc3876fa6602d7@192.168.1.10
 0(4827) Processing by INVITE handler ...
 0(4827) INVITE from 192.168.1.10
INVITE sip:11@192.168.1.15 SIP/2.0
From: <sip:10@192.168.1.15>;tag=1c43b02579e58415
To: <sip:11@192.168.1.15>
Proxy-Authorization: Digest username="10", realm="192.168.1.15",
algorithm=MD5, uri="sip:11@192.168.1.15",
nonce="462c9cc7efab60dc0884aa5506b1ab7598e67b48",
response="61ddee4ae8bca6ff75a056e083e6b7dd"

Call-ID: 40dc3876fa6602d7@192.168.1.10
 0(4827) Processing by INVITE handler ...
 0(4827) Sending out first to myself for examining the content
 0(4827) INVITE from 192.168.1.15
INVITE sip:11@192.168.1.11 SIP/2.0
From: <sip:10@192.168.1.15>;tag=1c43b02579e58415
To: <sip:11@192.168.1.15>
Call-ID: 40dc3876fa6602d7@192.168.1.10
 0(4827) Self-Looped INVITE is received
 0(4827) No credentials of the originating user are found

All messages of the dialog using the consume_credentials() function are available in a
full printout of the server [htm], [txt], [doc].

7. Final configuration file without debug re-
transmissions

The final configuration file authenticating both, the registration and call setup
attempts, may look as follows:
route
{
 ...
 xlog("L_NOTICE","$rm from $si at $Tf\n");
 if(method!="REGISTER") record_route();
 if(loose_route()) route(1);
 if(uri!=myself) route(1);
 if(method=="ACK") route(1);
 else if (method=="INVITE") route(3);
 else if (method=="REGISTER") route(2);
 ...
}

route[1]
{
 if(!t_relay()) sl_reply_error();
 exit;
}

route[2]
{
 sl_send_reply("100","Trying to Register");
 if(!www_authorize("","subscriber")) {
 www_challenge("","0");
 exit;
 }
 if(!check_to()) {
 sl_send_reply("401","Unauthorized");
 exit;
 }
 consume_credentials();
 if(!save("location")) {
 sl_reply_error();
 }
 exit;
}

route[3]
{
 if(!proxy_authorize("","subscriber")) {
 proxy_challenge("","0");
 exit;

 }
 if (!check_from()) {
 sl_send_reply("403","Forbidden");
 exit;
 }
 consume_credentials();
 lookup("aliases");
 if(uri!=myself) {
 route(1);
 }
 if(!lookup("location")) {
 sl_send_reply("404","User Not Found");
 exit;
 }
 route(1);
}

In our example of the configuration file we still use xlog("L_NOTICE","...") function
calls to monitor the SIP messages. The printout of a call setup scenario with this
configuration is logged [htm], [txt], [doc]. You can remove all
xlog("L_NOTICE","...") function calls from the script for running OpenSER in the
background mode.

8. Glossary

BNF Backus Normal Form or Backus-Naur Form

Base64 Positional notation using a base of 64

HTTP Hyper Text Transfer Protocol

MD5 Message Digest version 5

OpenSER a spin-off of SER project

RFC Request for Comment

SER SIP Express Router

SIP Session Initiation Protocol

SQL Structured Query Language

UA User Agent

UDP User Datagram Protocol

URI Universal Resource Identifier

9. Relevant links

Examining the STUN settings of a SIP phone

Creating and sending INVITE and CANCEL SIP text messages

http://www.switzernet.com/people/emin-gabrielyan/070402-stun/
http://www.switzernet.com/people/emin-gabrielyan/070403-sip-invite-cancel/

Direct calls between two SIP phones without passing through a SIP proxy

SIP messages, transactions, and dialogs (understanding SIP exchanges by
experimentation)

The path of SIP signaling messages (understanding Via, Record-Route, and Route
headers)

SIP transaction flags in OpenSER

Looping SIP messages in an OpenSER proxy (viewing messages transmitted by
server)

SIP proxy with a user location database and authentication of registration and call
setup requests

9.1. Local files

This document is available in web and printable formats [htm], [doc], [pdf]. This web
page is available for a download [zip].

http://www.switzernet.com/people/emin-gabrielyan/070405-budge-tone-without-sip-server/
http://switzernet.com/people/emin-gabrielyan/070410-SIP-transactions/
http://switzernet.com/people/emin-gabrielyan/070410-SIP-transactions/
http://switzernet.com/people/emin-gabrielyan/070412-SIP-record-route/
http://switzernet.com/people/emin-gabrielyan/070412-SIP-record-route/
http://switzernet.com/people/emin-gabrielyan/070413-openser-transactions/
http://switzernet.com/people/emin-gabrielyan/070416-openser-loops/
http://switzernet.com/people/emin-gabrielyan/070416-openser-loops/
http://switzernet.com/people/emin-gabrielyan/070424-sip-authentication/
http://switzernet.com/people/emin-gabrielyan/070424-sip-authentication/

	The experimental configuration
	OpenSER installation details
	Saving locations of User Agents in the database
	Authentication with origin server (registrar) for registrati
	Challenge-response access authentication mechanism
	Experimenting with OpenSER and logging the authentication me
	Creating user records in the OpenSER database for authentica
	Passing the replies of the SIP server through the SIP server
	OpenSER configuration script for authentication of registrat
	Request-challenge-response authentication messages of the re
	Checking the “To” header field supplied by user against the

	Authentication for processing outgoing calls
	Unsuccessful proxy authentication

	Consuming the credentials
	Final configuration file without debug re-transmissions
	Glossary
	Relevant links
	Local files

