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Abstract 
We are addressing the optical speedup of movements 

of layers in moiré patterns. We introduce a set of 
equations for computing curved patterns, where the 
formulas of optical speedup and moiré periods are kept in 
their simplest form. We consider linear movements and 
rotations. In the presented notation, all periods are 
relative to the axis of movements of layers and moiré 
bands. 
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images, optical speedup, moiré speedup, moiré 
magnification, moiré inclination angles, periodic moiré 

1. Introduction 
Moiré patterns appear when superposing two 

transparent layers containing correlated opaque patterns. 
The case when layer patterns comprise straight or curved 
lines is called line moiré. 

This document presents the basics of line moiré 
patterns. We present numerous examples and we focus 
also on the optical speedup of moiré shapes when moving 
layer patterns. Numerous examples are present. Dynamic 
examples demonstrating the movements of layers are 
presented by GIF files (hyperlinks are provided in square 
brackets). 

We develop here the most important formulas for 
computing the periods of superposition patterns, the 
inclination angles and the velocities of optical shapes 
when moving one of the layers. 

In section 2, we demonstrate the phenomenon on the 
examples with horizontal parallel lines, which are further 
extended to cases with inclined and curved lines. In 
section 3 we present circular examples with straight radial 
lines, which are analogously extended. 

2. Simple moiré patterns 

2.1. Superposition of layers with 
periodically repeating parallel lines 

Simple moiré patterns can be observed when 
superposing two transparent layers comprising 
periodically repeating opaque parallel lines as shown in 
Figure 1. The lines of one layer are parallel to the lines of 
the second layer. 

 
Figure 1. Superposition of two layers consisting of 

parallel lines, where the lines of the revealing 
layer are parallel to the lines of the base layer 
[eps], [tif], [png] 

The superposition image does not change if 
transparent layers with their opaque patterns are inverted. 
We denote one of the layers as the base layer and the 
other one as the revealing layer. When considering 
printed samples, we assume that the revealing layer is 
printed on a transparency and is superposed on top of the 
base layer, which can be printed either on a transparency 
or on an opaque paper. The periods of the two layer 
patterns, i.e. the space between the axes of parallel lines, 
are close. We denote the period of the base layer as  
and the period of the revealing layer as . In Figure 1, 
the period of lines of the base layer is equal to 6 units, and 
the period of lines of the revealing layer is equal to 5.5 
units. 

bp

rp

The superposition image of Figure 1 outlines 
periodically repeating dark parallel bands, called moiré 
lines. Spacing between the moiré lines is much larger than 
the periodicity of lines in the layers. 

Light areas of the superposition image correspond to 
the zones where the lines of both layers overlap. The dark 
areas of the superposition image forming the moiré lines 
correspond to the zones where the lines of the two layers 
interleave, hiding the white background. The labels of 
Figure 2 show the passages from light zones with 
overlapping layer lines to dark zones with interleaving 
layer lines. The light and dark zones are periodically 
interchanging. 
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Figure 2. Superposition of two layers consisting of 

horizontal parallel lines [eps], [tif], [png] 

Figure 3 shows a detailed diagram of the 
superposition image between two light zones, where the 
lines of the revealing and base layers overlap 
[Sciammarella62a, p. 584]. 

 
Figure 3.  Computing the period of moiré lines in a 

superposition image as a function of the 
periods of lines of the revealing and base layers 

The period  of moiré lines is the distance from 
one point where the lines of both layers overlap (at the 
bottom of the figure) to the next such point (at the top). 
Let us count the layer lines, starting from the point where 
they overlap. Since in our case , for the same 
number of counted lines, the base layer lines with a long 
period advance faster than the revealing layer lines with a 
short period. At the halfway of the distance , the base 
layer lines are ahead the revealing layer lines by a half a 
period ( ) of the revealing layer lines, due to which 
the lines are interleaving, forming a dark zone. At the full 
distance , the base layer lines are ahead of the 
revealing layer lines by a full period , so the lines of 
the layers again overlap. The base layer lines gain the 
distance  with as many lines ( ) as the number 
of the revealing layer lines ( ) for the same distance 
minus one: 
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From equation (2.1) we obtain the well known 
formula for the period  of the superposition image 
[Amidror00a, p.20]: 
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(2.2) 

The superposition of two layers comprising parallel 
lines forms an optical image comprising parallel moiré 
lines with a magnified period. According to equation 
(2.2), the closer the periods of the two layers, the stronger 
the magnification factor is. 

If the numbers  and  are integers, then 
if at some moiré light zone the lines of both layers 
perfectly overlap, as shown in Figure 3, the layer lines 
will also perfectly overlap also at the centers of each other 
light zone. If  and  are not integers, then 
the centers of white moiré zones do not necessarily match 
with the centers of layer lines. In any case, equation (2.2) 
remains valid. 
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For the case when the revealing layer period is longer 
than the base layer period, the space between moiré lines 
of the superposition pattern is the absolute value of 
formula of (2.2). 

The thicknesses of layer lines affect the overall 
darkness of the superposition image and the thickness of 
the moiré lines, but the period  does not depend on the 
layer lines’ thickness. In our examples the base layer 
lines’ thickness is equal to , and the revealing layer 
lines’ thickness is equal to . 

mp

2/bp
2/rp

2.2. Speedup of movements with moiré 
The moiré bands of Figure 1 will move if we displace 

the revealing layer. When the revealing layer moves 
perpendicularly to layer lines, the moiré bands move 
along the same axis, but several times faster than the 
movement of the revealing layer. 

The three images of Figure 4 show the superposition 
image for different positions of the revealing layer. In the 
second image (b) of Figure 4, compared to the first image 
(a), the revealing layer is shifted up by one third of the 
revealing layer period ( ). In the third image (c), 
compared to the first image (a), the revealing layer is 
shifted up by two third of the revealing layer period 
(

3/rp

)3/2⋅rp . The images show that the moiré lines of the 
superposition image move up at a speed, much faster than 
the speed of movement of the revealing layer. 
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Figure 4. Superposition of two layers with parallel 

horizontal lines, where the revealing layer 
moves vertically at a slow speed [eps (a)], [png 
(a)], [eps (b) ], [png (b)], [eps (c)], [png (c)] 

When the revealing layer is shifted up 
perpendicularly to the layer lines by one full period  
of its pattern, the superposition optical image must be the 
same as the initial one. It means that the moiré lines 
traverse a distance equal to the period of the superposition 
image  while the revealing layer traverses the distance 
equal to its period . Assuming that the base layer is 
immobile ( ), the following equation holds for the 
ratio of the optical image’s speed to the revealing layer’s 
speed: 
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According to equation (2.2) we have: 
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In case the period of the revealing layer is longer than 
the period of the base layer, the optical image moves in 
the opposite direction. The negative value of the ratio 
computed according to equation (2.4) signifies the 
movement in the reverse direction. 

The GIF animation of the superposition image 
corresponding to a slow movement of the revealing layer 
is provided [ps], [gif], [tif]. The GIF file repeatedly 
animates a perpendicular movement of the revealing layer 
across a distance equal to . rp

2.3. Superposition of layers with inclined 
lines 

In this section we develop equations for patterns with 
inclined lines. Since most of all we are interested in 
optical speedup, instead of using the well known 
equations, we represent the case of inclined patterns such 
that the equations (2.2), (2.3), and (2.4) remain valid in 

their current simple form. The values of periods , , 
and  for the examples of Figure 4 correspond to the 
distances between the lines along the vertical axis 
corresponding to the axis of movements. When the layer 
lines are horizontal (or perpendicular to the movement 
axis) the periods (p) are equal to the distances (denoted as 
T) between the lines (as in Figure 1, Figure 3, and Figure 
4). If the lines are inclined the periods (p) along the 
vertical axis does not correspond anymore to the distances 
(T) between the lines. According to our notations, the 
periods p do not represent the distances T between the 
lines, but the distances between the lines along the axis of 
movements. By adopting the new notation, equations 
(2.2), (2.3), and (2.4) are valid all the time. Equations for 
inclination angles for such notation of periods (p) are 
presented in this section. For rotational movements p 
values represent the periods along circumference, i.e. the 
angular periods. 

rp bp

mp

2.3.1. Computing moiré lines’ inclination as 
function of the inclination of layers’ lines 

The superposition of two layers with identically 
inclined lines forms moiré lines inclined at the same 
angle. Figure 5 is obtained from Figure 1 with a vertical 
shearing. In Figure 5 the layer lines and the moiré lines 
are inclined by 10 degrees. Inclination is not a rotation. 
During the inclination the distance between the layer lines 
along the vertical axis (p) is conserved, but the true 
distance T between the lines (along an axis perpendicular 
to these lines) changes. The diagram of Figure 8 shows 
the difference between the vertical periods  and , 
and the distances  and . 

bp rp

bT rT

 
Figure 5. Superposition of layers consisting of inclined 

parallel lines where the lines of the base and 
revealing layers are inclined at the same angle 
[eps], [png] 

The inclination degree of layer lines may change 
along the horizontal axis forming curves. The 
superposition of two layers with identical inclination 
pattern forms moiré curves with the same inclination 
pattern. In Figure 6 the inclination degree of layer lines 
gradually changes according the following sequence of 
degrees (+30, –30, +30, –30, +30), meaning that the curve 
is divided along the horizontal axis into four equal 
intervals and in each such interval the curve’s inclination 
degree linearly changes from one degree to the next 
according to the sequence of five degrees. Layer periods 

 and  represent the distances between the curves bp rp
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along the vertical axis. In Figure 5 and Figure 6,  is 
equal to 6 units and  is 5.5. units. Figure 6 can be 
obtained from Figure 1 by interpolating the image along 
the horizontal axis into vertical bands and by applying a 
corresponding vertical shearing and shifting to each of 
these bands. Equation (2.2) is valid for computing the 
spacing  between the moiré curves along the vertical 
axis and equation (2.4) for computing the optical speedup 
ratio when the revealing layer moves along the vertical 
axis. 

bp

rp

mp

 
Figure 6. Two layers consisting of curves with identical 

inclination patterns, and the superposition 
image of these layers [eps], [png] 

More interesting is the case when the inclination 
degrees of layer lines are not the same for the base and 
revealing layers. Figure 7 shows four superposition 
images where the inclination degree of base layer lines is 
the same for all images (10 degrees), but the inclination of 
the revealing layer lines is different for images (a), (b), 
(c), and (d) and is equal to 7, 9, 11, and 13 degrees 
correspondingly. The periods of layers along the vertical 
axis   and  (6 and 5.5 units correspondingly) are the 
same for all images. Correspondingly, the period  
computed with equation (2.2) is also the same for all 
images. 

bp rp

mp

 
Figure 7. Superposition of layers consisting of inclined 

parallel lines, where the base layer lines’ 
inclination is 10 degrees and the revealing 
layer lines’ inclination is 7, 9, 11, and 13 
degrees [eps (a)], [png (a)], [eps (b)], [png (b)], 
[eps (c)], [png (c)], [eps (d)], [png (d)] 

We provide a GIF animation of the superposition 
image when the revealing layer’s inclination oscillates 
between 5 and 15 degrees [ps], [gif], [tif]. 

Figure 8 helps to compute the inclination degree of 
moiré optical lines as a function of the inclination of the 
revealing and the base layer lines. We draw the layer lines 
schematically without showing their true thicknesses. The 
bold lines of the diagram inclined by bα  degrees are the 
base layer lines. The bold lines inclined by rα  degrees 
are the revealing layer lines. The base layer lines are 
vertically spaced by a distance equal to , and the 
revealing layer lines are vertically spaced by a distance 
equal to . The distances  between the base layer 
lines and the distance  between the revealing layer lines 
are not used for the development of the next equations. 
The intersections of the lines of the base and the revealing 
layers (marked in the figure by two arrows) lie on a 
central axis of a light moiré band between dark moiré 
lines. The dashed line of Figure 8 corresponds to the axis 
of the light moiré band between two moiré lines. The 
inclination degree of moiré lines is therefore the 
inclination 

bp

rp bT

rT

mα  of the dashed line. 
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Figure 8.  Computing the inclination angle of moiré lines 

as a function of inclination angles of the base 
layer and revealing layer lines 

From Figure 8 we deduce the following two 
equations: 
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(2.5) 

From these equations we deduce the equation for 
computing the inclination of moiré lines as a function of 
the inclinations of the base layer and the revealing layer 
lines: 
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(2.6) 

For the base layer inclination fixed to 30 degree, with 
a base layer period equal to 6 units, and with a revealing 
layer period equal to 5.5 units, the bold curve of Figure 9 
represents the moiré line inclination degree as a function 
of the revealing layer line inclination. The two other 
curves correspond to cases, when the base layer 
inclination is equal to 20 and 40 degrees correspondingly. 
The circle marks correspond to the points where both 
layers’ lines inclinations are equal, and the moiré lines 
inclination also become the same. 
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Figure 9. Moiré lines inclination as a function of the 

revealing layer lines inclination for the base 
layer lines inclination equal to 30 degrees [xls] 

2.3.2. Deducing the known formulas from our 
equations 

The periods , , and  used in the literature are 
computed as follows (see Figure 8): 

bT rT mT
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From here, using equation (2.6) we deduce the well 
known formula for the angle of moiré lines [Amidror00a]: 
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Recall from trigonometry the following simple 
formulas: 
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From equations (2.8) and (2.9) we have: 
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From equations (2.2) and (2.7) we have: 
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From equations (2.10) and (2.11) we deduce the 
second well known formula for the period  of moiré 
lines: 
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Recall from trigonometry that: 

2
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(2.13) 

In the particular case when , taking in account 
equation (2.13), equation (2.12) is further reduced into 
well known formula: 
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Still for the case when , we can temporarily 
assume that all angles are relative to the base layer lines 
and rewrite equation (2.8) as follows: 
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Recall from trigonometry that: 
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Therefore from equations (2.15) and (2.16): 
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(2.17) 
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Now for the case when the revealing layer lines do 
not represent the angle zero: 

2
90 br

bm
αααα −

+°+=  (2.18) 

We obtain the well known formula [Amidror00a]: 
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Equations (2.8) and (2.12) are the general case 
formulas known in the literature, and equations (2.14) and 
(2.19) are the formulas for rotation of identical patterns 
with parallel lines (i.e. the case when rb TT = ) 
[Amidror00a], [Nishijima64a], [Oster63a], [Morse61a]. 

Assuming in the well known equation (2.8) that 
0=bα , Figure 10 shows the charts of the moiré lines’ 

degree as a function of the revealing layer’s rotation 
degree for different values of . br TT /
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Figure 10. Moiré lines inclination as a function of the 

rotation degree of the revealing layer [xls] 

Only for the case when  (the bold curve) the 
rotation of moiré lines is linear with respect to the rotation 
of the revealing layer. Comparisons of Figure 10 and 
Figure 9 show the significant difference between shearing 
(i.e. inclination of lines) and rotation of the revealing 
layer pattern. 
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2.3.3. The revealing lines inclination as a 
function of the superposition image’s lines 
inclination 

From equation (2.6) we can deduce the equation for 
computing the revealing layer line inclination rα  for a 
given base layer line inclination bα , and a desired moiré 
line inclination mα : 
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The increment of the tangent of revealing lines’ angle 
( )tan()tan( br αα − ) relatively to the tangent of the 
base layer lines’ angle can be expressed, as follows: 
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According to equation (2.4),  is the inverse 
of the optical acceleration factor, and therefore equation 
(2.21) can be rewritten as follows: 
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Equation (2.22) shows that relative to the tangent of 
the base layer lines’ angle, the increment of the tangent of 
the revealing layer lines’ angle needs to be smaller than 
the increment of the tangent of the moiré lines’ angle, by 
the same factor as the optical speedup. 

For any given base layer line inclination, equation 
(2.20) permits us to obtain a desired moiré line inclination 
by properly choosing the revealing layer inclination. In 
Figure 6 we showed an example where the curves of 
layers follow an identical inclination pattern forming a 
superposition image with the same inclination pattern. 
The inclination degrees of the layers’ and moiré lines 
change along the horizontal axis according the following 
sequence of alternating degree values (+30, –30, +30, –
30, +30). In Figure 11 we obtained the same superposition 
pattern as in Figure 6, but the base layer consists of 
straight lines inclined by –10 degrees. The revealing 
pattern of Figure 11 is computed by interpolating the 
curves into connected straight lines, where for each 
position along the horizontal axis, the revealing line’s 
inclination angle is computed as a function of bα  and mα , 
according to equation (2.20). Figure 11 demonstrates 
what is already expressed by equation (2.22): the 
difference between the inclination patterns of the 
revealing layer and the base layer are several times 
smaller than the difference between the inclination 
patterns of moiré lines and the base layer lines. 

 
Figure 11. The base layer with inclined straight lines, the 

revealing layer computed so as to form the 
desired superposition image [eps], [png] 

Another example forming the same superposition 
patterns as in Figure 6 and Figure 11 is shown in Figure 
12. Note that in Figure 12 the desired inclination pattern 
(+30, –30, +30, –30, +30) is obtained using a base layer 
with an inverted inclination pattern (–30, +30, –30, +30, –
30). 
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Figure 12. A superposition image, where the base layer 

and moiré curves are mirrored relatively to the 
horizontal axis [eps], [png] 

We provide a GIF animation where we show a 
superposition image with a constant inclination pattern of 
moiré lines (+30, –30, +30, –30, +30) for modifying pairs 
of base and revealing layers [ps], [tif], [gif]. The base 
layer inclination pattern gradually changes and the 
revealing layer inclination pattern correspondingly adapts 
such that the superposition image’s inclination pattern 
remains the same. 

3. Superposition of periodic 
circular patterns 

3.1. Superposition of circular periodic 
patterns with radial lines 

Similarly to layer and moiré patterns comprising 
parallel lines (see Figure 1, Figure 2, and Figure 3), 
concentric superposition of dense periodic layer patterns 
comprising radial lines forms magnified periodic moiré 
patterns also with radial lines. 

Figure 13 is the counterpart of Figure 1, where the 
horizontal axis is replaced by the radius and the vertical 
axis by the angle. Full circumferences of layer patterns 
are equally divided by integer numbers of radial lines. 
The number of radial lines of the base layer is denoted as 

 and the number of radial lines of the revealing layer is 
denoted as . 

bn

rn

 
Figure 13. Superposition of two layers with regularly 

spaced radial segments (a portion of the 
revealing layer is cut out to show a part of the 
base layer in the background) [eps], [png], [ps], 
[tif], [gif] 

The periods  and  denote the angles between 
the central radial axes of adjacent lines. Therefore: 

bp rp

b
b n

p °
=

360
, 
 r

r n
p °

=
360

 (3.1) 

According to equations (3.1), equation (2.2) can be 
rewritten as follows: 

br
m nn

p
−
°

=
360

 
(3.2) 

Therefore the number of moiré radial lines  
corresponds to the difference between the numbers of 
layer lines: 

mn

brm nnn −=  (3.3) 

If in the layer patterns, the full circumferences are 
divided by integer numbers of layer lines, the 
circumference of the superposition image is also divided 
by an integer number of more lines. 

Radial lines in Figure 13 have constant angular 
thickness, giving them the forms of segments, thick at 
their outer ends and thin at their inner ends. The thickness 
of radial lines affects the overall darkness of the 
superposition image and the width of moiré bands, but 
there is no impact on other factors, such as period of 
superposition pattern (i.e. values of  and ). In our 
examples the angular thicknesses of layer lines are equal 
to the layer’s half-period, i.e. the thickness of the base 
layer lines is equal to  and the thickness of the 
revealing layer lines is . 

mp mn

2/bp
2/rp

The optical speedup factor of equation (2.4) can be 
rewritten by replacing the periods  and by their 
expressions from equations (3.1): 

rp bp
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br

r

r

m

nn
n

v
v

−
=

 
(3.4) 

The values  and  represent the angular speeds. 
The negative speedup signifies a rotation of the 
superposition image in a direction inverse to the rotation 
of the revealing layer. Considering (3.3), the absolute 
value of the optical speedup factor is: 

rv mv

m

r

r

m

n
n

v
v

=
 

(3.5) 

In Figure 13, the number of radial lines of the 
revealing layer is equal to 180, and the number of radial 
lines of the base layer is 174. Therefore, according to 
equations (3.4) and (3.3), the optical speedup is equal to 
30, confirmed by the two images (a) and (b) of Figure 14, 
and the number of moiré lines is equal to 6, confirmed by 
the image of Figure 13. 

 
Figure 14. Rotation of the revealing layer by 1 degree in 

the clockwise direction rotates the optical 
image by 30 degrees in the same direction [eps 
(a)], [png (a)], [eps (b)], [png (b)] 

In the GIF animation of the superposition image of 
Figure 13 the revealing layer slowly rotates in the 
clockwise direction. 

3.2. Superposition of circular patterns 
with radial curves 

In circular periodic patterns curved radial lines can be 
constructed using the same reference sequences of 
inclination degrees as used in section 2.3 for curves of 
Figure 6. The inclination angle at any point of the radial 
curve corresponds to the angle between the curve and the 
axis of the radius passing through the current point. Thus 
inclination angle 0 corresponds to straight radial lines as 
shown in Figure 13. With the present notion of inclination 
angles for bα , rα , and mα , equations (2.6) and (2.20) are 
applicable for circular patterns without modifications. 

Curves can be constructed incrementally with a 
constant radial increment equal to r∆ . Figure 15 shows a 
segment of a curve, marked by a thick line, which has an 
inclination angle equal to α . 

 
Figure 15. Constructing a curve in a polar coordinate 

system with a desired inclination 

While constructing the curve, the current angular 
increment β∆  must be computed so as to respect the 
inclination angle α : 

)tan(180)tan(arctan α
π

αβ ⋅∆⋅
⋅
°

≈⎟
⎠
⎞

⎜
⎝
⎛

∆+
⋅∆

=∆ r
rrr

r

 
(3.6) 

Figure 16 shows a superposition of layers with 
curved radial lines. The inclination of curves of both 
layers follows an identical pattern corresponding to the 
following sequence of degrees (+30, –30, +30, –30, +30). 
Layer curves are iteratively constructed with increment 
pairs ),( β∆∆r  computed according to equation (3.6). 
Since the inclination patterns of both layers of Figure 16 
are identical, the moiré curves also follow the same 
pattern. 

 
Figure 16. Superposition of layers in a polar coordinate 

system with identical inclination patterns of 
curves corresponding to (+30, –30, +30, –30, 
+30); a portion of the revealing layer is cut 
away exposing the base layer in the 
background [eps], [png], multi-page [tif], [gif] 

Similarly to examples of Figure 6, Figure 11, and 
Figure 12, where the same moiré pattern is obtained by 
superposing different pairs of layer patterns, the circular 
moiré pattern of Figure 16 can be analogously obtained 
by superposing other pairs of circular layer patterns. 
Taking into account equations (3.1), equations (2.6) and 
(2.20) can be rewritten as follows: 

br

bbrr
m nn

nn
−

⋅−⋅
=

ααα tantantan
 

(3.7) 

 

m
r

b
b

r

b
r n

n
n
n ααα tan1tantan ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⋅=

 
(3.8) 

Thanks to equation (3.8), other pairs of layer patterns 
can be created (see Figure 17) which produce the same 
superposition image as in Figure 16. In the first image (a) 
of Figure 17, the base layer lines are straight. In the 
second image (b), the base layer lines inclination pattern 
is reversed with respect to the moiré lines. 

β∆

r∆

α )tan(α⋅∆r

r
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Figure 17. Superposition images with identical inclination 

pattern (+45, –45, +45, –45, +45) of moiré 
curves, where in one case the base layer 
comprise straight radial segments, and in the 
second case the base layer comprise curves 
which are the mirrored counterparts of the 
resulting moiré curves [eps (a)], [png (a)], [eps 
(b)], [png (b)] 

We provide an animation, where the moiré curves of 
the superposition image are always the same, but the 
inclination pattern of the base layer curves gradually 
alternates between the following two mirror patterns 
(+45, –45, +45, –45, +45), and (–45, +45, –45, +45, –45) 
[eps], [tif], [gif]. For each instance of the animation, the 
revealing layer lines are computed according to equation 
(3.8) in order to constantly maintain the same moiré 
pattern. 

Equations (3.4) and (3.3) remain valid for patterns 
with curved radial lines. In Figure 16 there are 180 curves 
in the revealing layer and 171 curves in the base layer. 
Therefore optical speedup factor according to equation 
(3.4) is equal to 20, and the number of moiré curves 
according to equation (3.3) is equal to 9, as seen in the 
superposition image of Figure 16. 

4. Conclusions 
We redeveloped the most important formulas for 

computing the periods, inclination angles of moiré 
patterns, and the velocities of optical shapes. 

Instead of using the well known equations, we 
represent the case of inclined patterns such that equations 
(2.2), (2.3), and (2.4) for linear patterns and their 
counterparts (3.3), (3.5), and (3.4) for circular patters, 
remain valid in their simple forms. In our equations, the p 
values represent the periods along the axis of the 
movement of the revealing layer. 

In section 2.3.2 we compared our formulas with the 
formulas known in the literature. 
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