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The upper limit of a network’s capacity is its liquid throughput. The liquid throughput 
corresponds to the flow of a liquid in an equivalent network of pipes. In coarse-grained 
networks, the aggregate throughput of an arbitrarily scheduled collective communication may 
be several times lower than the maximal potential throughput of the network. In wormhole 
and wavelength division optical networks, there is a significant loss of performance due to 
congestions between simultaneous transfers sharing a common communication resource. We 
propose to schedule the transfers of a traffic according to a schedule yielding the liquid 
throughput. Such a schedule, called liquid schedule, relies on the knowledge of the 
underlying network topology and ensures an optimal utilization of all bottleneck links. To 
build a liquid schedule, we partition the traffic into time frames comprising mutually non-
congesting transfers keeping all bottleneck links busy during all time frames. The search for 
mutually non-congesting transfers utilizing all bottleneck links is of exponential complexity. 
We present an efficient algorithm which non-redundantly traverses the search space. We 
efficiently reduce the search space without affecting the solution space. The liquid schedules 
for small problems (up to hundred nodes) can be found in a fraction of seconds. 

1. Introduction 

1.1.Parallel transmissions in circuit-switched networks 

It’s been more than three decades that circuit-switched networks are being successfully 
replaced by their packet-switched counterparts. In early 1970’s this trend started by replacing data 
modems with connections to the X.25 network. Today, the entire telephony is being packetized. It 
is commonly admitted that with fine-grained packet-switching technology, network resources are 
utilized more efficiently, flows are more fluid and resilient to congestions, network management 
is easier and the networks can flexibly scale to large sizes. 

Nevertheless, several other networking approaches still based on coarse-grained circuit-
switching have been emerging. These approaches offer low latencies, which is not attainable with 
packet switching technology, but they are also arising due to technological limitations (in optical 
domain). 

Examples of such networks are wormhole and cut-through switching (e.g. MYRINET, 
InfiniBand) and optical Wavelength Division Multiplexing (WDM). Both, in wormhole and 
optical switching, the number of network hops separating the end nodes has nearly no impact on 
the communication latency (in contrast to packet switching). As for optical networks, due to the 
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lack of optical memory, packet switching in optical networks does today not exist at all (at least 
commercially). 

All coarse-grained circuit-switching networks suffer from a common problem: inter-
blocking of transfers and jamming of large indivisible messages occupying intersecting fractions 
of network resources. Several parallel multi-hop transmissions cannot share the same link 
resource simultaneously. In contrast to the fluidity and resiliency of packet-switching, in coarse-
grained circuit-switching networks hard and complex interlocking contentions arise when the 
network topology grows and the load increases. 

In WDM optical networks, a single fiber can carry several wavelengths (about 80 in 
WDM, 160 in DWDM and about 1000 in research [Kartalopoulos00]). However the contentions 
are still present, because the wavelengths are typically conserved along the whole communication 
path between the end nodes (no switching from one wavelength to another occurs in the middle of 
the network). The new wavelengths are simply increasing the network capacity. In subsection 2.2 
we give a brief introduction to the WDM wavelength routing technology. In wormhole switching, 
when the head of the message is blocked at an intermediate switch (due to contention), the 
transmission stays strung over the network, potentially blocking other messages. The wormhole 
routing technology is briefly described in subsection 2.1. 

1.2.Hardware solutions 

In optical and wormhole switching the problem of contentions can be solved partially or 
fully at the hardware level. 

For example the optical switches of the network may be equipped with the capability to 
change the incoming wavelengths (not only to switch across the ports, i.e. to control the direction 
of the light, but also to change the wavelength). Wavelength interchange (changing of colors) 
requires expensive optical-electric (O/E) and electro-optical (E/O) conversions. Without O/E/O 
conversions, when the signal is constantly maintained in the optical domain, cost-effective optical 
networks can be built by relying only on switching by microscopic mirrors, using inexpensive 
Micro Electro-Mechanical Systems (MEMS). In addition, O/E/O conversions necessarily induce 
additional delays. 

Regarding wormhole routing, the switches typically need only to buffer the tiny piece of 
the message (flit) that is sent between the switches. However, the switches can be equipped with 
memories large enough to store the entire message (whichever is the estimation of the message 
size in the network). Thus, when the head of the message is blocked, the switch lets the tail 
continue, accumulating the whole message into a single switch. This hardware extension changes 
the name of the wormhole routing into cut-through switching. Storing of the messages solves the 
contention problem only partially but requires a substantial increase of the switch’s memory, up 
to multiples of the largest message size (depending on the number of ports). Virtual cut-through 
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switching is yet another hardware extension, where the link is divided (similarly to WDM) into a 
certain number of virtual links sharing the capacity of the physical link. 

The hardware solutions of contention-avoidance in coarse-grained switching require 
costly modifications of hardware (e.g. O/E/O conversion in optical switching or substantial 
memory in wormhole switches) and often only provide partial solutions. The hardware solutions 
not only induce additional cost, but reduce the benefits of important properties of the coarse-
grained networks, such as the low latency (e.g. by storing entire messages in cut-through 
switches). 

1.3.Liquid scheduling - an application level solution 

In wormhole routing, for example, by keeping the architecture simple, switches with a 
large number of physical ports can be implemented in single chips at very low cost. Liquid 
scheduling is an application level method for achieving the network’s best overall throughput. 
The scheduling is performed at the edge nodes and requires no specific hardware solutions. 
Synchronization and coordination of edge nodes is required. 

Numerous applications rely on coarse-grained circuit-switched networks and require an 
efficient use of network resources for collective communications. Such applications comprise 
parallel acquisition and distribution of multiple video streams [Chan01], [Sitaram00], switching 
of simultaneous voice communication sessions [H323], [EWSD04], [SIP], and high energy 
physics, where particle collision events need to be transmitted from a large number of detectors 
and filters to clusters of processing nodes [CERN04]. 

Liquid scheduling can be used in Optical Burst Switching (OBS) by the edge IP routers 
for efficient utilization of the capacities of an interconnecting optical cloud (all-optical network 
providing interconnection for the edge routers). 

1.4.Overview of liquid scheduling 

The aggregate throughput of a collective communication pattern (traffic of transmissions 
between pairs of end nodes) depends on the underlying network topology and the routing. The 
amount of data that has to pass across the most loaded links of the network, called bottleneck 
links, gives their utilization time. The total size of a traffic divided by the utilization time of one 
bottleneck link gives an estimation of the liquid throughput, which corresponds to the flow 
capacity of a non-compressible fluid in a network of pipes [Melamed00]. Both in wormhole 
switching networks and WDM optical networks, due to possible link or wavelength allocation 
conflicts, not any combination of transfer requests may be carried out simultaneously. The 
objective is to minimize the number of timeslots and/or wavelengths required to carry out a given 
set of transfer requests. Each transfer shall be allocated to one (and only one) time frame, such 
that no pair of transfers allocated to the same time frame uses a common resource (link, 
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wavelength). The liquid scheduling problem is introduced and mathematically defined in sections 
3 and 4. 

The liquid scheduling problem cannot be solved in polynomial time. Solving the problem 
by Mixed Integer Linear Programming (MILP) [CPLEX02], [Fourer03] requires very long 
computation time (see Appendix B). Solving the problem by applying a heuristic graph coloring 
algorithm provides in short time suboptimal solutions. The throughputs corresponding to the 
heuristic solutions of the graph coloring problem are often 10% to 20% lower than the liquid 
throughput [Gabrielyan03] (see Appendix A). In the present contribution we propose an exact 
method for computing liquid schedules, which is fast enough for real time scheduling of traffics 
on small size networks comprising up to hundred nodes. 

Section 2 is a brief overview of the architectures of the optical and wormhole switching 
networks. Sections 3 and 4 contain definitions. Sections 5, 6 and 7 introduce the liquid schedule 
construction algorithm. In section 8 we introduce several hundreds of traffic patterns across a real 
network and we present their overall communication throughputs when carried out according 
both, liquid schedules and topology-unaware schedules. This chapter is concluded by section 9. 

2. Applicable networks 
This section briefly introduces the basic architectures of two coarse-grained switching 

concepts: wormhole switching (subsection 2.1) and lightpath routing (subsection 2.2). The 
advantages of applying liquid scheduling are discussed for both types of networks. 

2.1.Wormhole routing 

Wormhole routing is used in many High Performance Computing (HPC) networks. In 
wormhole routing, the links lying on the path of a message are kept occupied during the 
transmission of that message. Unlike packet switching (or store-and-forward switching) where 
each network packet is present at an intermediate router [Ayad97], wormhole switching [Liu01], 
[Dvorak05] transmits a message as a “worm” propagating itself across intermediate switches. The 
message “worm” is a continuous stream of bits which are making their way through successive 
switches. In a wormhole switching network [Duato99], [Shin96], [Rexford96], [Colajanni99], 
[Dvorak05] a message entering into the network is being broken up into small parts of equal size 
called flits (standing from flow-control digits). These flits are streamed across the network. All 
the flits of a packet follow the same path. The head flit contains the routing header for the entire 
message. As soon as a switch on the path of a message receives the head flit, it can trigger the 
incoming flow to the corresponding outgoing link. If the message encounters a busy outgoing 
link, the wormhole switch stalls the message in the network along the already established path 
until the link becomes available. Occupied channels are not released. A channel is released only 
when the last tail flit of the message has been transmitted. Thus each link laying on the path of the 
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message is kept occupied during the whole transmission time of a message. In virtual cut-through 
(VCT) networks, if the message encounters a busy outgoing link, the entire message is buffered 
in the router and already allocated portions of the message path are released. In VCT switches 
have enough memory to store as many messages of the maximal size as number of ports. Simple 
wormhole switch architecture which is only pipelining the messages and requires not more than a 
very small buffer, enables a cost effective implementation of large scale wormhole switches on a 
single chip [Yocum97]. The ability of VCT switches to buffer large messages increases their cost 
substantially. 

Compared with store and forward switches, wormhole switching considerably decreases 
the latency of message transmission across multiple routers. Wormhole switching makes the 
latency insensitive to the distance between the end nodes. Most contemporary research and high-
performance commercial multi-computers use some form of wormhole or cut-through networks, 
e.g. Myrinet [Boden95], fat tree interconnections for clusters [Petrini01], [Petrini03], [Quadrics], 
InfiniBand [InfiniBand], [Steen05], and Tnet [Horst95], [Brauss99B]. 

Due to blocked message paths, wormhole switching quickly saturates as load increases. 
Aggregate throughput can be considerably lower than the liquid throughput offered by the 
network. The rate of network congestions significantly varies depending in which order the same 
set of message transfers is carried out. Liquid scheduling enables partitioning of the transfers so 
as to avoid transmission of congesting messages at the same time. 

2.2.Optical networks 

In optical networks, data is transferred by lightpaths. Lightpaths are end to end optical 
connections from a source node to a destination node. In Wavelength Division Multiplexing 
(WDM) optical networks, a lightpath is typically established over a single wavelength (color) 
along the whole path. Different lightpaths in a WDM wavelength-routing network can use the 
same wavelength as long as they do not share any common link. Figure 1 shows an example of an 
optical wavelength-routing network. Switches of the optical network are called Optical Cross 
Connects (OXC). An OXC switches wavelengths from one port to another, usually without 
changing the color [Ramaswami97], [Stern99]. The Optical Line Terminal (OLT) multiplexes 
multiple wavelengths into a single fiber and de-multiplexes a set of wavelengths from a single 
fiber into separate fibers. Often the OLT units are integrated with OXC. 
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Figure 1.  Wavelength routing in optical layer 

End nodes (or edge nodes) of an optical network (also called optical cloud) are IP routers, 
SONET terminals or ATM switches. They are plugged to OXC switches (as shown in Figure 1). 
In a simple design the end node can be also inserted into a fiber (statically) via an Optical 
Add/Drop Multiplexer (OADM). The purpose of the optical cloud is to provide lightpaths 
between the terminal edge nodes, for example between IP routers (as shown in Figure 1). The 
lightpaths between the end nodes can be established either permanently, or provided dynamically 
on demand. 

Relatively inexpensive OXC switches can be implemented by an array of microscopic 
mirrors, build with Micro Electro-Mechanical Systems (MEMS). These switches only re-direct 
the incoming wavelengths to appropriate outgoing ports, without converting the color. They are 
called Wavelength-Selective Cross-Connect (WSXC). Changing of the wavelength is possible 
through Optical/Electro/Optical (O/E/O) conversions. Optical switches providing wavelength 
conversion features are called Wavelength-Interchanging Cross-Connects (WIXC). WIXC 
switches do both space switching and wavelength conversion. 

When using WIXC switches, the lightpaths may be converted from one wavelength to 
another along their route. However from the optical network design point of view, it is essential 
to keep transmissions in the optical domain as long as possible, i.e. to be able to provide the 
required services using only inexpensive WSXC switches. 

Wavelength continuity (the fact that the basic optical transmission channel remains on a 
fixed wavelength from end to end) is the main constraint affecting the scalability of networks 
built with WSCX switches only. 
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For example assuming only WSXC switches in Figure 1, two connections from IP router 

A to B and from C to D must either be established on two different wavelengths 1λ  and 2λ , or 

must be scheduled in different timeslots. 

Given that any lightpath must be assigned the same wavelength on all the links it 
traverses and that two lightpaths traversing a common link must be assigned different 
wavelengths, the wavelength assignment problem requires minimizing of the number of 
wavelengths needed for establishment of the required end to end connections. In this domain, the 
wavelength assignment problem is commonly solved by solving the corresponding congestion 
graph coloring problem [Bermond96], [Caragiannis02]. The vertices of the graph represent the 
lightpaths and two vertices are connected if the corresponding lightpaths are sharing a common 
link. The graph coloring problem requires coloring of all vertices using a minimal number of 
colors such that two connected vertices always have different colors. Graph coloring is an NP-
complete problem. Its solutions are generally based on heuristic methods. 

Liquid scheduling is an efficient method for assigning transmissions a minimal number of 
lightpaths or timeframes. If a liquid schedule exists, the solution of the liquid scheduling 
algorithm corresponds to the optimal solution of the graph coloring algorithm. Our algorithm 
does not associate the set of transfers with a graph. It does not only consider the congestion 
between pairs of transfers (congestion graph) but also considers the set of links occupied by each 
transfer. This permits to build liquid schedules relatively fast for networks comprising up to 
hundred nodes. The corresponding congestion graphs comprise thousands of vertices. The 
heuristic graph coloring algorithms often propose solutions requiring more timeframes than the 
number of timeframes allocated by our liquid scheduling algorithm. The comparison of the liquid 
scheduling algorithm with a heuristic graph coloring method is given in Appendix A. 

Application of liquid schedules in the optical domain assumes a collaboration of the edge 
nodes and therefore an appropriate signaling layer. Optical Burst Switching (OBS) is an example 
where the collaboration of the edge nodes is assumed and the application of a liquid schedules 
may significantly improve the overall throughput of the optical cloud [Qiao99], [Turner99], 
[Turner02]. In a scenario for a continuous incoming IP traffic, the continuously filled buffers of 
the edge nodes are repeatedly emptied by applying liquid scheduling. For the buffered data, the 
liquid schedule finds the minimal number of partitions comprising non-congesting lightpaths. The 
same wavelength is allocated to all transfers of a partition. The number of wavelengths available 
in the network may not suffice for all partitions found by the liquid schedule. In such a case, 
when all transfers cannot be carried out within a single round (timeslot), new rounds (with a new 
set of wavelengths) are allocated until all transfers are carried out. Irrespectively of the number of 
wavelengths available in the network, liquid scheduling minimizes the total number of required 
rounds. 

Local strategies for avoiding congestions rely on an admission control mechanism 
[Jagannathan02], [Mandjes02] or on feed-back and flow control based mechanisms regulating the 
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sending nodes’ data rate [Maach04], [Chiu89], [Loh96]. These mechanisms permit to avoid 
congestions by rejecting the extra traffic. Local decisions based strategies are utilizing only a 
fraction of the network’s overall capacities. The global liquid scheduling strategy ensures that the 
network’s potential capacities are used efficiently. 

3. The liquid scheduling problem 
In our model, we neglect network latencies, we consider a constant message (or packet) 

size, an identical link throughput for all links and assume a static routing scheme. 

Consider a simple network example consisting of ten end nodes , , two 

wormhole cut-through switches ,  and twelve unidirectional links , , ,  all 

having identical throughputs (see Figure 2). Assume that the nodes  are only transmitting 

and the nodes  are only receiving. The routing is straight-forward, e.g. a message from  to 

 traverse links ,  and , a message from  to  uses only links  and , etc. 

51 tt L 51 rrL

as bs 51 tt ll L 51 rr ll L abl bal

51 tt L

51 rrL 4t

3r 4tl bal 3rl 1t 2r 1tl 2rl

 

2tl 3tl

1tl

1rl

2rl 3rl 5rl4rl

4tl 5tl

bal

abl

as bs
1t

2t 3t 4t 5t

1r

2r 3r 4r 5r

Figure 2.  A simple network sample 

For demonstration purposes we represent the transfers of the network of Figure 2, 
symbolically via small pictograms highlighting the links used by the transfer. For example the 

transfer from  to  is symbolically represented as , the transfer from  to  as . 

We may also represent a set of two or more simultaneous transfers by a pictogram highlighting all 

occupied links. For example a simultaneous transmission of the two previous transfers (from  

to  and from  to ) is represented as . 

4t 3r 1t 2r

4t

3r 1t 2r

We are assuming that all messages have identical sizes [Naghshineh93]. Let each sending 
node have messages to be transmitted to each receiving node. There are therefore 25 transfers to 
carry out. These corresponding pictograms for these 25 transfers are shown in  
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Figure 3.  The pictograms representing the 25 transfers from all sending 

nodes to all receiving nodes of the network of Figure 2 

Accordingly, each of the ten links ,  must carry 5 transfers, but the two links 

,  must each carry 6 transfers. Therefore, for the 25 transfers to carry out, the links ,  

are the network bottlenecks and have the longest active time. If the duration of the whole 
communication is as long as the active time of the bottleneck links, we say that the collective 
communication reaches its liquid throughput. In that case the bottleneck links are obviously kept 
busy all the time along the duration of the communication traffic. Assume in this example a 
single link throughput of 1Gbps. The liquid throughput offered by the network is 

. 

51 tt L 51 rrL

abl bal abl bal

GbpsGbps 17.41)6/25( =⋅

The liquid throughput of a traffic X is the ratio )(/)(# XX Λ  multiplied by the single 

link throughput (identical for all links), where  is the total number of transfers and )(# X )(XΛ  

is the number of transfers carried out by one bottleneck link (the messages have identical sizes). 

Now let us see if the order in which the transfers are carried out in this network has an 
impact on the overall communication throughput. A straight forward schedule allowing to carry 
out these 25 transfers is the round-robin schedule. At first, each transmitting node sends the 
message to the receiving node staying in front of it, then to the receiving node staying at the next 
position, etc. Such a round robin schedule consists of 5 phases. 

The transfers of the first , second  and the fifth  phases of the 

round-robin schedule may be carried out simultaneously, but the third phase , , 

, ,  and the forth phase , , , ,  contain 

congesting transfers. For example, the two transfers of the third phase:  and , cannot 

be carried out at the same time since they are trying to simultaneously use link  (see Figure 2). 

Similarly, two other transfers of the third phase ,  are also in congestion, since they 

are simultaneously competing for the same link .  The forth phase of the round-robin schedule 

has two pairs of congesting transfers as well. Each of these phases cannot be carried out in less 
than two time frames and therefore the whole schedule lasts 7 time frames and not 5 (the number 

abl

bal

 10



of phases in the round-robin schedule). Five timeframes could have been sufficient if there were 

additional capacities (links) between the switches  and . The throughput of the collective 

communication carried out according to the round-robin schedule is  messages per 
time frame, or ( , which is below the liquid throughput of 4.17Gbps. 

as bs

57.37/25 =

GbpsGbps 57.31)7/25 =⋅

L

The 25 transfers can be scheduled within a fewer number of timeframes. The following 

schedule , , , , ,  carries out the 25 transmissions 

in 6 timeframes. Each timeframe consists of 3 to 5 non-congesting transfers. The whole schedule 
is yielding the liquid throughput of 4.17Gbps. 

In the following sections we present algorithms permitting the construction of liquid 
schedules for arbitrary traffic patterns on arbitrary network topologies. 

4. Definitions 
The method we propose allows us to efficiently build liquid schedules for non-trivial 

network topologies. Thanks to liquid schedules we may considerably increase the collective data 
exchange throughputs, compared with traditional topology unaware schedules such as round-
robin or random schedules. 

The present section introduces the definitions that will be further used for describing the 
liquid schedule construction method. 

A single “point-to-point” transfer is represented by the set of communication links 
forming the network path between one transmitting and one receiving node according to the given 
routing. Note that we will be limiting ourselves to data exchanges consisting of identical message 
sizes. 

We therefore define in our mathematical model a transfer as a set of all links laying on 
the path between one sending and one receiving node. A traffic is a set of transfers (i.e. a 
collective data exchange). 

According to the definition of traffic, Figure 4 shows the traffic pattern of Figure 3 
(corresponding to a collective data exchange carried out on the network of Figure 2) in the new 
set-represented notation. The traffic of Figure 4 represents a scenario, where each transmitting 

node (the nodes t at the top of Figure 2) sends one message to each receiving node (the 

nodes  at the bottom of Figure 2). Any other collective exchange comprising transfers 

between possibly overlapping sets of sending and receiving nodes (a node obviously can receive 
and transmit) is a valid traffic according to our definition. 

51 t

51 rrL
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Figure 4.  Example of a traffic comprising 25 transfers carried out over 

the network shown in Figure 2 

A link l is utilized by a transfer x if xl∈ . A link l is utilized by a traffic X if l is utilized 
by a transfer of X. Two transfers are in congestion if they share a common link, i.e. if their 
intersection is not empty. 

A simultaneity of a traffic X is a subset of X consisting of mutually non-congesting 
transfers. Intersection of any two members of simultaneity is always empty. A transfer is in 
congestion with a simultaneity if the transfer is in congestion with at least one member of the 
simultaneity. A simultaneity of a traffic is full if all transfers in the complement of the 
simultaneity in the traffic are in congestion with that simultaneity. A simultaneity of a traffic 
obviously can be carried out within one time frame (the time to carry out a single transfer). 

The load  ),( Xlλ  of a link l in a traffic X is the number of transfers in X using link l. 

( )}{#),( xlXxXl ∈∈=λ  (1)

The duration  of a traffic X is the maximal value of the load among all links 

involved in the traffic. 

)(XΛ

),()( max Xl

xl

X

Xx

λ

⎭⎬
⎫

⎩⎨
⎧ ∈

=Λ

∈
U

 
(2)

The links having maximal load values, i.e. when )(),( XXl Λ=λ , are called bottlenecks. 

In the example of the traffic of Figure 4, all bottleneck links are marked in bold. The liquid 
throughput of a traffic X is the ratio )(/)(# XX Λ  multiplied by the single link throughput, 

where  is the number of transfers in the traffic X. )(# X

linkliquid t
X
Xt ⋅

Λ
=

)(
)(#

 
(3)

We define a simultaneity of X as a team of X if it uses all bottlenecks of X. A liquid 
schedule must comprise only teams since all bottleneck links must be kept busy all the time. A 
team of X is full if it is a full simultaneity of X. Intuitively, there is a greater chance to 
successfully assemble a liquid schedule that covers all transfers of the initial traffic, if one 
considers during the construction only full teams instead of considering also possible non-full 
teams (for strict formulations see subsection 7.4). 
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Let  be the set of all full simultaneities of X. Let )(Xℜ )(Xℑ′  and  be 

respectively the sets of all teams and the set of all full teams of X. By definition, , 

, the intersection of all teams with all full simultaneities is the set of all full 

teams: 

)(Xℑ

)()( XX ℜ⊂ℑ

)()( XX ℑ′⊂ℑ

)()()( XXX ℜℑ′=ℑ I  (4)

In order to form liquid schedules, we try to schedule transfers in such a way that all 
bottleneck links are always kept busy. Therefore we search for a liquid schedule by trying to 
assemble non-overlapping teams carrying out all transfers of the given traffic, i.e. we partition the 
traffic into teams. To cover the whole solution space we need to generate all possible teams of a 
given traffic. This is an exponentially complex problem. It is therefore important that the team 
traversing technique be non-redundant and efficient, i.e. each configuration is evaluated once and 
only once, without repetitions. 

5. Obtaining full simultaneities 
To obtain all full teams, we first optimize the retrieval of all simultaneities and then use 

that algorithm to retrieve all full teams. 

Recall that in a traffic X, any mutually non-congesting combination of transfers is a 
simultaneity. A full simultaneity is a combination of non-congesting transfers taken from X, such 
that its complement in X contains only transfers congesting with that simultaneity. 

We can categorize full simultaneities according to the presence or absence of a given 
transfer x. A full simultaneity is x-positive if it contains transfer x. If it does not contain transfer x, 
it is x-negative. Thus the entire set of all full simultaneities )(Xℜ  is partitioned into two non-

overlapping halves: an x-positive and x-negative subsets of )(Xℜ . For example, if y is another 

transfer, the set of x-positive full simultaneities may be further partitioned into y-positive and y-
negative subsets. Iterative partitioning and sub-partitioning permits us to recursively traverse the 
whole set of all full simultaneities , one by one, without repetitions. )(Xℜ

The rest of this section describes in details the algorithm for sequentially traversing all 
possible distinct full simultaneities. 

5.1.Using categories to cover subsets of full simultaneities 

Let us define a category of full simultaneities of X as an ordered triplet (includer, depot, 
excluder), where the includer is a simultaneity of X (not necessarily full), the excluder contains 
some transfers of X non-congesting with the includer and the depot contains all the remaining 
transfers non-congesting with the includer. 
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We define categories in order to represent collections of full simultaneities from the set of 
all full simultaneities . The includer and excluder of a category are used as constraints for 

determining the corresponding full simultaneities. 

)(Xℜ

We therefore say that a full simultaneity is covered by a category R, if the full 
simultaneity contains all the transfers of the category’s includer and does not contain any transfer 
of the category’s excluder. Consequently, any full simultaneity covered by a category is the 
category’s includer together with some transfers taken from the category’s depot. The collection 
of all full simultaneities of X covered by a category R is defined as the coverage of R. We denote 
the coverage of R as )(RΦ . By definition, )()( XR ℜ⊂Φ . 

Transfers of a category’s includer form a simultaneity (not full). By adding different 
variations of transfers from the depot, we may obtain all possible full simultaneities covered by 
the category. 

The category  is a prim-category. Prim-category covers all full simultaneities 

of X : 

),,( ∅∅ X

)(),,( XX ℜ=∅∅Φ  (5)

Since the includer and excluder of the prim-category are empty, the prim-category 
represents no restrictions on full simultaneities. Therefore any full simultaneity is covered by 
prim-category (or in other words, all full simultaneities contain the empty includer of the prim-
category and do not contain a transfer of the excluder, because it is empty). 

5.2.Fission of categories into sub-categories 

By taking an arbitrary transfer x from the depot of a category R, we can partition the 
coverage of R into x-positive and x-negative subsets. The respective x-positive and x-negative 
subsets of the coverage of R are coverages of two categories derived from R: a positive 
subcategory and a negative subcategory of R. 

The positive subcategory  is formed from the category R by adding transfer x to its 

includer, and by removing from its depot and excluder all transfers congesting with x. Since 

transfers congesting with x are naturally excluded from a full simultaneity covered by , we 

may safely remove them from the excluder (and avoid therefore redundancy in the exclusion 

constraint). The negative subcategory  is formed from the category R by simply moving the 

transfer x from its depot to its excluder. The replacement of a category R by its two sub categories 

 and  is defined as a fission of the category. 

xR+

xR+

xR−

xR+ xR−

By the definition of fission, the two sub-categories resulting from the fission are also 
valid categories, according to the definition of category. 

 14



Figure 5 and Figure 6 show a fission of a category into positive and negative sub 
categories. 

⎟⎟
⎠

⎞
⎜⎜
⎝
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=
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x
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},{},,,{}{ 332211

 
Figure 5.  An initial category before fission, where symbol Ξ , represents 

any transfer that is in congestion with x  and symbol Θ  
represents any transfer which is simultaneous with x . 

Figure 5 shows an example of an initial category R and Figure 6 shows the resulting two 
sub categories obtained from it by a fission relatively to a transfer x taken from the depot. The 

transfers  are congesting with transfer x, and the transfers 31 ΞΞ L 31 ΘΘ L  are simultaneous 

with x. 
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Figure 6.  Fission of the category of Figure 5 into its positive and negative 

sub categories. 

The coverage of R is partitioned by the coverages of its sub categories  and , i.e. 

the coverage of a category is the union of coverages of its sub categories (equation (6)), and the 
coverages of the sub categories have no common transfers (equation (7)). 

xR+ xR−

)()()( RRR xx Φ=Φ∪Φ −+  (6)

and 

∅=Φ∩Φ −+ )()( xx RR  (7)

5.3.Traversing all full simultaneities by repeated fission of 
categories 

A singular category is a category that covers only one full simultaneity. That full 
simultaneity is equal to the includer of the singular category. The depot and excluder of a singular 
category are empty. 

We apply the binary fission to the prim-category (equation (5)) and split it into two 
categories. Then, we apply the fission to each of these categories. Repeated fission increases the 
number of categories and narrows the coverage of each category. Eventually, the fission will lead 
to singular categories only, i.e. categories whose coverage consists of a single full simultaneity. 
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Since at each stage we have been partitioning the set of full simultaneities, at the final stage we 
know that each full simultaneity is covered by one and only one singular category. 

The algorithm recursively carries out the fission of categories and yields all full 
simultaneities without repetitions. 

5.4.Optimisation - identifying blank categories 

A further optimization is performed. Take a category. A full simultaneity must contain no 
transfer from that category’s excluder in order to be covered by that category. In addition, since 
the full simultaneity is full, it is in congestion with all transfers that it does not contain. Obviously 
any full simultaneity covered by some category must congest with each member of that 
category’s excluder. Therefore, transfers congesting with the transfers of the excluder must be 
available in the depot of the category (the category’s excluder, according to the fission algorithm, 
keeps no transfer congesting with the includer). If the excluder contains at least one transfer, for 
which the depot has no congesting transfer, then we say that this category is blank. The includer 
of a blank category, cannot be further extended by the transfers of the depot to a simultaneity 
which is full (and congests with every remaining transfer of the excluder). The coverage of a 
blank category is therefore empty and there is no need to pursue its fission. 

5.5.Retrieving full teams - identifying idle categories 

Let us now instead of retrieving all full simultaneities retrieve all full teams, i.e. those full 
simultaneities, which ensure the utilization of all bottleneck links. 

A category within X is idle if its includer and its depot together don’t use all bottlenecks 
of X. This means that we can not grow the current simultaneity (i.e. the includer of the category) 
into a full simultaneity, which will use all bottlenecks. The coverage of an idle category does 
therefore not contain a full simultaneity, which is a team. Idle categories allow us to prune the 
search tree at early stages and to pursue only branches leading to full teams. 

Carrying out successive fissions, starting from the prim-category and continuously 
identifying and removing all the blank and idle categories ultimately leads to all full teams. 

6. Speeding up the search for full teams 
This section presents an additional method for speeding up the search for all full teams 

 of an arbitrary traffic X. )(Xℑ
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6.1.Skeleton of a traffic 

Let us consider from the original traffic X only those transfers that use bottlenecks of X 
and call this set of transfers the skeleton of X. We denote the skeleton of X as )(Xς . Obviously, 

XX ⊂)(ς .  

According to equations (1) and (2), equation (8) specifies the skeleton of X so as to 
comprise only the transfers using links whose load is equal to the duration of the traffic: 

{ })(),(max)( XXlXxX
xl

Λ=∈=
∈

λς
 

(8)

Figure 7 shows the relative sizes of skeletons compared with the sizes of their 
corresponding traffics. We consider 362 different traffic patterns across the K-ring network of the 
Swiss-T1 cluster supercomputer comprising 32 nodes (see Figure 14 and Figure 15 in subsection 
8.1). In average, the skeleton size is 31.5% of its traffic size. 

The skeleton content of traffic
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Figure 7.  Proportion of the number of transfers within a skeleton, 

compared with the number of transfers of the corresponding 
traffic 

6.2.Optimization - building full teams based on full teams of the 
skeleton 

When considering the skeleton of a traffic X as another traffic, the bottlenecks of the 
skeleton of a traffic are the same as the bottlenecks of the traffic. Consequently, a team of a 
skeleton is also a team of the original traffic. 

We may first obtain all full teams of the traffic’s skeleton by iteratively applying the 
fission algorithm on the traffic’s skeleton and by eliminating the idle categories. Then, a full team 
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of the original traffic is obtained by adding a combination of non-congesting transfers to a team 
of the traffic’s skeleton. 

We therefore obtain the set of a traffic’s full teams )(Xℑ  by carrying out the steps 

outlined in Figure 8. 

 

1. Obtain the set of the skeleton’s full teams ))(( Xςℑ  
by applying the fission algorithm on the traffic’s 
skeleton. 

2. Create for each skeleton’s full team a category by 
initializing: 
2.1. The includer with the transfers of the 

skeleton’s full team; 
2.3. The excluder as empty; 
2.2. The depot with all transfers of  non-

congesting with the includer. 
X

3. Apply the fission to each category, discarding the 
check for idle categories, since the includer is 
already a team, i.e. it uses all bottlenecks. 

Figure 8.  Optimized algorithm for retrieving all full teams of a traffic 

By first applying the fission to the skeleton and then expanding the skeleton’s full teams 
to the traffic’s full teams, we considerably reduce the processing time. 

6.3.Evaluating the reduction of the search space 

Let us evaluate the reduction in search space achieved due to the search space reduction 
methods proposed in section 5 and in this section. We consider 23 different all-to-all traffic 
patterns across the network of the Swiss-T1 cluster supercomputer (see section 8). The size of the 
algorithm’s search space is the number of categories that are being iteratively traversed by the 
algorithm until all full teams are discovered. 

Figure 9 shows the search space reduction for the presented four algorithms. The first one 
is the naïve algorithm that would build full teams only according to the coverage partitioning 
strategy (subsection 5.3) without considering the other optimisations. We assume that the size of 
the search space of the naïve algorithm is 100% and we use it as a reference for the other three 
algorithms. The naïve algorithm is sufficiently “smart” to avoid repetitions while exploring the 
full simultaneities. The second algorithm, that additionally comprises identification of blank 
categories (see subsection 5.4), permits, according to Figure 9, to reduce the search space to an 
average of 28%. The third algorithm identifies idle categories and enables at an early stage to skip 
evaluating all categories not leading to teams (see subsection 5.5). This third algorithm encloses 
all optimisations presented in section 5 and reduces the search space to an average of 20%. 
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Figure 9.  Search space reduction obtained by idle+skeleton+blank 

optimization steps 

Finally the skeleton algorithm presented in this section, which according to Figure 8 is 
carried out in two phases, reduces the search space to an average of 10.6%. Full teams are 
therefore retrieved in average 9.43 times faster than in naïve algorithm of subsection 5.3, thanks 
to the additional three optimisation techniques, presented subsections 5.4, 5.5 and 6.2 
respectively. 

7. Construction of liquid schedules 
In sections 5 and 6 we introduced efficient algorithms for traversing full teams of a 

traffic. Relying on the full team generation algorithms, this section presents methods for 
constructing liquid schedules for arbitrary traffic patterns on arbitrary network topologies. 

7.1.Definition of liquid schedule 

Let us introduce the definition of a schedule. By recalling that a partition of X is a 
disjoint collection of non-empty subsets of X whose union is X [Halmos74], a schedule α  of a 
traffic X is a collection of simultaneities of X partitioning the traffic X. An elements of a schedule 
α  is called time frame. The length )(# α  of a schedule α  is the number of time frames in α . A 

schedule of a traffic is optimal if the traffic does not have any shorter schedule. If the length of a 
schedule is equal to the duration of the traffic (the duration of a traffic X is the load of its 
bottlenecks), then the schedule is liquid. Thus a schedule α  of a traffic X is liquid if equation (9) 
holds. See also equation (2) defining the duration of a traffic X. 
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)()(# XΛ=α  (9)

Figure 10 shows a liquid schedule for the collective traffic shown in Figure 4, which in 
turn represents an all-to-all data exchange (see Figure 3) across the network shown in Figure 2. 
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Figure 10.  Time frames of a liquid schedule of the collective traffic shown 
in Figure 4 

One can easily control that the timeframes of Figure 10 correspond to the following 

sequence , , , , ,  represented in form of the 

pictograms introduced in section 3. Recall that each pictogram in the sequence represents several 
transmissions that can be carried out simultaneously. For example the sequence’s second 

pictogram , visualizes four simultaneous transfers:  to ,  to ,  to  and  to 

, wherein are the source nodes and  are the destination nodes of the network of 

Figure 2. These four simultaneous transfers  correspond to the second time frame of 

Figure 10: { }. 

1t 5r 2t 1r 4t 2r 5t

4r 51 tt L 51 rrL

},{},,,{},,{},,,{ 45241251 rtrtrtrt llllllll baab ll

If a schedule is liquid, then each of its time frames must use all bottlenecks. Inversely, if 
all time frames of a schedule use all bottlenecks, the schedule is liquid. 

The necessary and sufficient condition for the liquidity of a schedule is that all 
bottlenecks be used by each time frame of the schedule. Since a simultaneity of X is defined as a 
team of X, if it uses all bottlenecks of X, a necessary and sufficient condition for the liquidity of a 
schedule α  on X is that each time frame of α  be a team of X. 

A liquid schedule is optimal, but the inverse is not always true, meaning that a traffic may 
not have a liquid schedule. An example of traffic having no liquid schedule is shown in Figure 
12. This traffic is to be carried across the network shown in Figure 11.  There are three bottleneck 

links in the network { . Since there is no combination of non-congesting transfers that },, cabcab lll
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can simultaneously use all three bottleneck links , this traffic contains no team and 

therefore has no liquid schedule. 

},,{ cabcab lll
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Figure 11.  There exists a traffic of three transmissions across this network 
that has no team and therefore no liquid schedule 
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Figure 12.  A traffic consisting of thee transmissions to be carried across 

the network shown in Figure 11 

The rest of this section presents the liquid scheduling construction algorithm (subsection 
7.2) and two optimisations (subsections 7.3 and 7.4 respectively). 

In Appendix B, we show how to formulate the problem of searching for a liquid schedule 
with Mixed Integer Linear Programming (MILP), [CPLEX02], [Fourer03]. Appendix B presents 
a comparison of performances of the liquid schedule search approach presented here with that of 
MILP. It shows that the computation time of the MILP method is prohibitive compared with the 
speed of our algorithm. 

7.2.Liquid schedule basic construction algorithm 

In this subsection we describe the basic algorithm for constructing a liquid schedule. The 
basic algorithm simply consist of recursive attempts to assemble a liquid schedule out of the 
teams of the original traffic, until a valid liquid schedule incorporating all transfers is successfully 
constructed. In the following subsections (7.3 and 7.4), relying on the basic algorithm, we show 
how to apply further optimizations. 

Our strategy for finding a liquid schedule relies on partitioning the traffic into a set of 
teams forming the sequence of time frames. Associate to the traffic X all its possible teams 

 (found by the algorithm presented in section 6) which could be selected as the 

schedule’s first time frame. The following: 

nAAA L,, 21

L,, 21 AXAX −−  is the variety of possible 

subtraffics remaining after the choice of the first time frame. Each of the possible subtraffics  

remaining after the selection of the first time frame has its own set of possibilities for the second 
iX
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time frame , where },,,{)( 3,2,1, Liiii AAAX =ℵ )( subXℵ  is a choice function. The choice of the 

second team for the second time frame yields a further reduced subtraffic (see Figure 13). 
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Figure 13.  Liquid schedule construction tree:  denotes a reduced 

subtraffic at the layer 
niiiX L21

1+n  of the tree and  denotes a 

candidate for the time frame 
121 +nniiiiA L

1+n ; the operator ℵ  applied to a 
subtraffic  yields the set of all possible candidates for a 
time frame 

subX

Dead ends are possible if there is no choice for the next time frame, i.e. no team of the 
original traffic may be formed from the transfers of the reduced traffic. A dead end situation may 
occur, for example, when the remaining subtraffic appears to be like the one shown in Figure 11 
and Figure 12. Once a dead occurs, backtracking takes place. 

The construction recursively advances and backtracks until a valid liquid schedule is 
formed. A valid liquid schedule is obtained, when the transfers remaining in the reduced traffic 
form one single team for the last time frame of the liquid schedule. 

We rely on the construction tree of Figure 13 and assume that at any stage the choice 

 for the next time frame is among the set of the original trafic’s teams . Thus the 

choice function is represented by the following equation: 

)( subXℵ )(Xℑ′

})({)( subsub XAXAX ⊂ℑ′∈=ℵ  (10)

In the next subsections we improve equation (10) by considering newly emerging 
bottlenecks at the successive time frames. 
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7.3.Search space reduction by considering newly emerging 
bottlenecks 

We observe in Figure 10 that when we step from one time frame to the next, additional 

new bottleneck links emerge. For example from time frame 3 on, links  and  appear as new 

bottlenecks. 
t3l r3l

In the construction strategy presented in the previous subsection (7.2), according to 
equation (10) we consider as a possible time frame any team of the original traffic X that can be 
built from the transfers of the reduced subtraffic. A schedule is liquid if and only if (IFF) each 
time frame is not only a team of the original traffic but is also a team of the reduced subtraffic 
(see Appendix C for a formal proof). If α  is a liquid schedule on X and A is a time frame of α , 
then }{A−α  is a liquid schedule on AX − . 

Thus a liquid schedule may not contain a time frame which is a team of the original 
traffic but is not a team of a subtraffic obtained by removing some of the previous time frames. 
Therefore, at each iteration, we can limit our choice on the collection of only those teams of the 
original traffic which are also teams of the current reduced subtraffic. Since the reduced subtraffic 
contains additional bottleneck links, there are less teams in the reduced subtraffic than teams 
remaining from the original traffic. 

Therefore, in the liquid schedule construction diagram presented in Figure 13, regarding 

the choice function  we can replace equation (10) by equation (11): )( subXℵ

)()( subsub XX ℑ′=ℵ  (11)

By considering in each time frame all occurring bottlenecks, with the new equation (11) 
we considerably speed up the construction. 

7.4.Liquid schedule construction optimization by considering only 
full teams 

In Appendix D we have shown that if a liquid schedule exists and if it can be constructed 
by the choice of teams, then a liquid schedule can be also constructed by limiting the choice only 
to full teams (see also [Gabrielyan03] and [Gabrielyan04A]). 

Therefore in the construction algorithm represented by the diagram of Figure 13, the 

function  for the choice of the teams, may be further narrowed from the set of all teams, 

equation (11) to the set of full teams only: 

)( subXℵ

)()( subsub XX ℑ=ℵ  (12)

When replacing the choice function )( subXℵ  equation from (10) to (11) and then from 

(11) to (12) we make sure that the new equations have no impact on the solvability of the 
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problem. The liquid schedule construction is speeded up, thanks to the reduction in choice, 
summarized by expressions (13) and (14) below: 

)()(})({ subsubsub XXXAXA ℑ⊂ℑ′⊂⊂ℑ′∈  (13)

and therefore also: 

))((#))((#}))(({# subsubsub XXXAXA ℑ≤ℑ′≤⊂ℑ′∈  (14)

8. Experimental verification 
In this section we present the results of application of liquid schedules to data 

communications carried out across a real network. In subsection 8.1 we present the network on 
which the experiments were carried out. We select several hundred of traffic patterns across the 
considered network. Measurements of aggregate communication throughputs, presented in 
subsection 8.2, enable us to validate the efficiency of applying liquid schedules in real networks. 

8.1.Swiss-Tx cluster supercomputer and 362 test traffic patterns 

The experiments are carried out across the interconnection network of the Swiss-T1 
cluster supercomputer (see Figure 14). The network of Swiss-T1 forms a K-ring [Kuonen99B] 
and is built on TNET switches. The routing between pairs of switches is static. The throughputs 
of all links are identical and equal to 86MB/s. The cluster consists of 32 nodes, each one 
comprising 2 processors [Kuonen99A], [Gruber01], [Gruber02], [Gruber05]. The cluster thus 
comprises a total of 64 computing processors. Each processor has its own individual connection 
to the network. The network enables transmissions of large messages at low latencies. Wormhole 
switching is employed for this purpose. 
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Figure 14.  Architecture of the Swiss-T1 cluster supercomputer 
interconnected by a high performance wormhole switch fabric 

Communication between a pair of any two switches requires at most one intermediate 
switch. The routing is summarized in Figure 15. Transmissions from switch i to switch j are 
routed through the switch with the number located at the position  of the table. Symbol “↔” 

indicates that the two switches are connected by a direct link. 

),( ji

R
 
1 
2 
3 
4 
5 
6 
7 
8 

Figure 15.  The routin
Figure 14 

 

outing table 
1 2 3 4 5 6 7 8 

 ↔ 2 ↔ 4 ↔ 8 ↔

↔  ↔ 7 ↔ 3 ↔ 5 
2 ↔  ↔ 4 ↔ 8 ↔

↔ 7 ↔  ↔ 7 ↔ 3 
4 ↔ 4 ↔  ↔ 6 ↔

↔ 3 ↔ 7 ↔  ↔ 1 
8 ↔ 8 ↔ 6 ↔  ↔

↔ 5 ↔ 3 ↔ 1 ↔  
 
g table of the Swiss-Tx supercomputer shown in 
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We perform our experiments on a number of different data intensive traffic patterns 
across the network of the Swiss-T1 cluster. We limit ourselves by only those traffic patterns, 
where within each node one of the processors is only transmitting and the other one is only 
receiving. For any given allocation of nodes we have an equal number of sending and receiving 
processors and we assume a traffic pattern where each sending processor transmits a distinct 
message (of the same size) to each receiving processor. Thus, according to our assumptions, if 

there are n allocated nodes (i.e. pairs of processors), then there are  transmissions to be carried 
out. 

2n

The Swiss-T1 cluster supercomputer comprises 32 nodes, 8 switches and 4 nodes per 
switch.  We have therefore 5 possibilities of allocating nodes to each switch (from 0 to 4 nodes). 
This yields  different node allocation patterns. To limit our choice to really different 
patterns of underlying topologies, we have computed the liquid throughputs for each of the 
390625 topologies (taking into account the static routing). Because of various symmetries within 
the network, many of these topologies yield an identical liquid throughput and only 362 
topologies yielding different liquid throughput values were obtained. 

39062558 =

Figure 16 shows these 362 traffic patterns (topologies), each one being characterized by 
the number of contributing nodes and by its liquid throughput. Depending on how a given number 
of nodes are allocated in the cluster, the corresponding underlying network changes its topology 
considerably. Therefore for any given number of nodes, Figure 16 shows that the liquid 
throughput varies considerably. The management system for Computing in Distributed 
Networked Environment (CODINE) and the Load Sharing Facility (LSF) are the job allocation 
and the scheduling consoles used in Swiss-T1 [Byun00], [Hassaine02]. Taking into account the 
data of Figure 16 the CODINE and LSF job allocation systems of Swiss-T1 are experimentally 
tuned for communication intensive programs (of high priority). In these experiments the 
allocation strategy is simple and the fairness among several communication intensive jobs is not 
considered. 
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Figure 16.  For a given number contributing nodes all possible allocation of 

nodes yielding different liquid throughputs 

These 362 topologies may be also placed along one axis, sorted first by the number of 
nodes and then according to their liquid throughput, as shown in Figure 17. 
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Figure 17.  The 362 topologies of Figure 16 yielding different liquid 

throughput values placed along one axis, sorted first by the 
number of contributing nodes and then by their liquid 
throughputs 

8.2.Real traffic throughout measurements 

The 362 traffic patterns of Figure 16 and Figure 17 were scheduled both by our liquid 
scheduling algorithms and according to a topology-unaware round-robin schedule (or randomly). 
Overall throughput results for each method are measured and presented for comparison. In each 
chart, the theoretical liquid throughput values of Figure 17 are given for comparison with the 
measured values. 
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Figure 18 shows the overall communication throughput of 362 traffic patterns carried out 
by a topology-unaware round-robin schedule. The size of messages, i.e. the amount of data 
transferred from each transmitting processor to each receiving processor, is equal to 2MB. For 
each traffic pattern, 20 measurements were made and the chart shows the median of their 
throughputs (the black dots). According to the chart, the round-robin schedule yields a throughput 
which is far below the liquid throughput of the network. Tests with various other topology-
unaware methods (such as transmission in random order or in FIFO order) yield to throughputs 
not which are not better than the one of the round-robin schedule. 

Round-Robin Schedule
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Figure 18.  Theoretical liquid throughput and measured round-robin 

schedule throughput for 362 network sub topologies. 

Then, we carried out the same 362 traffic patterns but scheduled according to the liquid 
schedules found by our algorithms. The overall throughput results are shown in Figure 19. The 
size of the messages (processor to processor transfers) is of 5MB (even larger than for the 
measurements of Figure 18). Each black dot represents the median of 7 measurements. The chart 
shows, that the measured aggregate throughputs (black dots) are very close to the theoretically 
expected values of the liquid throughput (gray curve). 
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Liquid Schedule
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Figure 19.  Predicted liquid throughput and measured throughput 

according to the computed liquid schedule 

Comparison of the chart of Figure 18 with that of Figure 19 demonstrates that for many 
traffic patterns, liquid scheduling allows to increase the aggregate throughput by a factor of two 
compared with topology-unaware round-robin scheduling. The gain is especially significant for 
large topologies and heavy traffics. 

Thanks to the full team space reduction algorithms (sections 5 and 6) and liquid schedule 
construction optimizations (section 7), the computation time of a liquid schedule for more than 
97% of the considered topologies takes no more than 1/10 of a second on a single PC. 

9. Conclusions 
In circuit-switching coarse-grained congestion prone networks (e.g. optical lightpath 

routing and wormhole switching), significant throughput losses occur due to attempts to 
simultaneously carry out transfers sharing common communication resources. The 
communications must be scheduled such that congesting transmissions are not carried our 
simultaneously. We proposed a liquid scheduling algorithm, which properly schedules the 
transmissions within the time as short as the utilization time of a bottleneck link. A liquid 
schedule yields therefore an aggregate throughput equal to the network’s theoretical upper limit, 
i.e. its liquid throughput. To construct a liquid schedule, we must chose time frames utilizing all 
bottleneck links and incorporating as many transfers as possible. 

These saturated subsets of non-congesting transfers using all bottleneck links are called 
full teams and are needed for the construction of a liquid schedule. An efficient construction of 
liquid schedules relies on the fast retrieval of full teams. We obtained a significant speed up in the 
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construction algorithm by carrying out optimizations in the retrieval of full teams and in their 
further assembling into a schedule. The liquid schedule construction algorithm and its 
optimizations are briefly outlined below. 

 

1. Full teams are enumerated by recursively partitioning the 

solution space using inclusion and exclusion constraints: 

1.1. The blank optimization identifies empty partitions at 

early stages of the search tree 

1.2. The idle optimization identifies partitions containing no 

full teams at early stages of the search tree 

1.3. The skeleton optimization speeds up the retrieval of full 

teams, first by considering only the transfers necessary 

to keep all bottleneck links busy and then by adding up 

other non-congesting transfers 

2. We construct liquid schedules by partitioning the traffic into 

teams: 

2.1. The construction of the liquid schedule is accelerated by 

limiting the choice at each time frame to the teams, 

which equally use also the newly emerging bottleneck 

links (i.e. teams of the reduced traffic) 

2.2. By additionally limiting the choice only to full teams of 

the reduced traffic we further speeds up the construction 
of the liquid schedule 

Figure 20.  Liquid schedule construction and the relevant optimizations 

Measurements on the traffic carried out on various sub-topologies of the Swiss-T1 cluster 
supercomputer have shown that for most of the sub-topologies we are able to increase the overall 
communication throughput by a factor between 1.5 and 2 (see Figure 21). 
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Figure 21.  The overall throughputs of hundreds of different traffic 

patterns carried out according a liquid schedule and according 
a topology unaware schedule, comparison with a theoretical 
upper limit 

In congestion prone coarse-grain transmission networks, liquid scheduling considerably 
improves the overall throughput by ensuring optimal utilization of transmission resources (e.g. 
the bottleneck communication links, wavelengths and time frames). By avoiding contentions, 
liquid schedules minimize the overall transmission time of large communication patterns 
containing many congesting transfers. 

Appendix A. Congestion graph coloring heuristic 
approach 

The search for a liquid schedule requires the partitioning of the traffic into sets of 
mutually non-congesting transfers. This problem can be also represented as the problem of the 
conflict graph coloring [Beauquier97]. Vertices of the conflict (or congestion) graph represent the 
transfers. Edges between vertices represent congestions between the transfers. 

Figure 22 shows a congestion graph that corresponds to the all-to-all traffic pattern across 
the network of Figure 2, which consists of 25 transfers. These transfers are shown in Figure 3 in 
form of pictograms and in Figure 4 in form of sets of communication links. The vertices of the 
congestion graph are labeled with two indexes , such that vertex  represents the 

transfer from the sending node i to the receiving node j. Vertex , for example represents the 

transfer from node  to node , denoted as  in Figure 3 and as {  in Figure 4. 

),( ji ),( ji
)1,4(

4t 1r },, 14 rt ll bal
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Figure 22.  Congestion graph corresponding to the traffic pattern of Figure 
3 across the network of Figure 2: the vertices of the graph 
represent the 25 transfers, the edges represent congestions 
between the transfers 

An edge between two vertices occurs due to one or more links shared between two 
corresponding transfers. Therefore each edge of the congestion graph can be labeled by the 
link(s) causing the congestion. In Figure 22 we marked in bold the edges occurred due to the 

bottleneck links  and  (see the concerned network diagram in Figure 2). The 15 bold edges 

between any two of the following vertices (1,4), (1,5), (2,4), (2,5), (3,4), (3,5) represent the 

congestions due to the bottleneck link . The other 15 bold edges between the vertices (4,1), 

(4,2), (4,3), (5,1), (5,2), (5,3) represent the congestions due to the bottleneck link . 

abl bal

abl

bal

According to the graph coloring problem, the vertices of the graph must be colored such 
that no two vertices have the same color if they are connected. The objective of the graph 
coloring problem is to properly color the graph using a minimal number of colors. The graph 
coloring is an NP-complete problem, but various heuristic algorithms exist. 

Once the graph is properly colored, vertices having the same color can represent a time 
frame of the liquid schedule, since the corresponding transfers can be carried out simultaneously 
without congestions. Whenever a liquid schedule exists, an optimal solution of the graph coloring 
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problem corresponds to a liquid schedule and the chromatic number of the graph’s optimal 
coloring is therefore the length of the liquid schedule. A heuristic graph coloring algorithm 
however may find solutions requiring several more colors, reducing therefore the throughput of 
the corresponding schedule. 

Congestion graphs corresponding to traffic patterns carried out across the network of 
Swiss-T1 cluster supercomputer have relatively low density of edges (see Figure 23). For 
example, an all-to-all data exchange on the Swiss T1 cluster with 32 transmitting and 32 
receiving processors results in a graph with 10243232 =×  vertices and 48704 edges (the 

corresponding complete graph  has 523776 edges that is eleven times more). 1024K
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Figure 23.  Number of edges in the 362 congestion graphs corresponding to 

the traffic patterns of Figure 16 and Figure 17 

We compared our method of finding a liquid schedule with the results obtained by 
applying a fast greedy graph coloring algorithm Dsatur [Brelaz79], [Culberson97], which carries 
out the steps shown in Figure 24. 
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1. Arrange the vertices by decreasing order of 
degrees. 

2. Color a vertex of maximal degree with color 1. 

3. Choose a vertex with a maximal saturation degree 
(defined as the number of different colors to which 
it is adjacent). If there is an equality, priority 
is given to the vertex having the maximal degree in 
the uncolored sub-graph. 

4. Color the chosen vertex with the least possible 
(lowest numbered) color. 

5. If all the vertices are colored, stop. Otherwise, 
return to step 3. 

Figure 24.  Dsatur graph coloring heuristic algorithm  

Although the greedy algorithm is fast, often it induces additional colors. Figure 25 shows 
the loss of performance for 362 traffic patterns of Figure 16 and Figure 17 across the network of 
Swiss-T1 cluster supercomputer (see Figure 14 and Figure 15).  The throughput loss of the greedy 
algorithm is compared with the liquid schedule algorithm. The losses occur due to the additional 
unnecessary colors induced by the greedy graph coloring algorithm. 
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Figure 25.  Loss in throughput induced by schedules computed with the 

Dsatur heuristic algorithm 

For 74% of the topologies there is no loss of performance. For 18% of the topologies, the 
performance loss is below 10% and for 8% of the topologies, the loss of performance is between 
10% and 19%. 
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The computation time of the greedy algorithm is polynomial and compares therefore 
favorably with the algorithm searching for the liquid schedule. However, for large data 
exchanges, the cost of the liquid scheduling algorithm, not exceeding most of the time 1/10 of a 
second (see Appendix B), is negligible compared with the gain in communication time yielding 
from liquid schedules. 

The liquid scheduling algorithm can be regarded as an efficient congestion graph coloring 
algorithm. However, liquid scheduling algorithm cannot be however applied to the general 
problem of graph coloring, since the liquid scheduling algorithm relies on the fact that the 
transfers (the vertices of the abstracted graph), are in fact sets consisting of communication links. 
For example the algorithm for searching the full teams of a traffic, relies on the search of the full 
teams of the traffic’s skeleton (see subsection 6.2), which in turn relies on transfers using the 
bottleneck links. 

Appendix B. Comparison of liquid scheduling 
algorithm with Mixed Integer Linear Programming 

The problem of liquid scheduling can be formulated and solved with Mixed Integer 
Linear Programming (MILP), see [CPLEX02], [Fourer03]. The problem of minimizing of the 
number of timeframes (and/or wavelengths) can be represented as an MILP objective. 

We represent the network as a directed graph ))(),((( GEGVG = . The routing is 

represented by a parameter , indexed above by the source and destination nodes ( , 

) and below by the network link 

ds
eR , )(GVs∈

)(GVd ∈ )(GEe∈ . This parameter indicates if the 

transmission (flit stream flow for wormhole switching or lightpaths for optical networks) from the 
source s to the destination d traverses the link e. It is set to 1 if the transmission  uses the 

link e and to 0 otherwise. 

),( ds

1,0, =ds
eR  (15)

Given is also the traffic pattern X comprising pairs of communication nodes . The 

transmissions  of the traffic pattern are allocated to timeframes  according 

to the variable . The variable  is 1 if the transmission 

),( ds
Xds ∈),( }1{ Tt K∈

ds
tA , ds

tA , Xds ∈),(  is allocated to the 

timeframe t and is 0 otherwise. 

1,0, =ds
tA  (16)

The objective is to allocate the transfers such that the number T is minimized. We may 
formulate this as follows: 

Minimize: T 

subject to: 
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}1{),(10
),(

,, TtGEeRA
Xds

ds
e

ds
t K∈∀∈∀≤⋅≤ ∑

∈  
(17)

and 

∑
=

∈∀=
T

t

ds
t XdsA

1

, ),(1
 

(18)

Relation (17) represents the simultaneity constraint: number of transfers in a timeframe 
using a given network link can be either 0 or 1. Equation (18) represents the partitioning 
constraint. The traffic X is partitioned into time frames of a schedule, therefore each transfer 

of the traffic must be assigned to one and only one time slot. ),( ds

The present problem is hard to solve with MILP. For the 362 test bed topologies 
introduced in subsection 8.1 (see Figure 16 and Figure 17), we compared Mixed Integer Linear 
Programming (MILP) method with liquid scheduling algorithm. The computation speed of MILP 
is far below that of our liquid scheduling algorithm (Figure 26). Our algorithm is on average 
about 4000 times faster than MILP. 
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Figure 26.  Running times for computing liquid schedules by MILP Cplex 

method and by liquid schedule construction algorithm 

Appendix C. Assembling a liquid schedule: 
Considering teams of the reduced traffic instead of 
the teams of the original traffic 

The basic algorithm for construction of liquid schedules (see subsection 7.2) assumes that 
a liquid schedule can be assembled by considering various combinations of teams of the original 
traffic. For example if a certain combination of teams of X is already selected (from the set 

 of all teams of X) and there still remains a subtraffic  of not yet carried out 

(scheduled) transfers, then, according to the basic algorithm, the following teams of the original 

)(Xℑ′ subX
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traffic })({ subXAXA ⊂ℑ′∈  must be considered in the choice of the next timeframe. See 

subsection 7.2, equation (10) and Figure 13. 

The two theorems prove that we can restrict our choice of possibilities when selecting 
successive time frames without affecting the solvability. 

Theorem 1 shows that by removing a time frame (i.e. a team) from a liquid schedule, we 
form a new liquid schedule on the remaining traffic. The remaining traffic may have additional 

bottlenecks. For example, in Figure 10, from time frame 3 on, links  and  appear as 

additional bottlenecks, from time frame 5 on, the links  and  also appear as additional 

bottlenecks (making the total number of bottlenecks equal to 6). 

t3l r3l

t4l r5l

Additionally emerged bottlenecks allow us to limit our choice of a timeframe from a 
large set of teams of the original traffic to a smaller set of teams of the reduced traffic. According 
to theorem 2, this does not affect the solvability. The statement appears logically clear (in terms 
of the remaining transmissions to be carried out). The exercise of giving a formal proof is 
provided for the sake of keeping the mathematical model complete. 

THEOREM 1. Let α  be a liquid schedule on X and A be a time frame of α . Then 
}{A−α  is a liquid schedule on AX − . 

PROOF. By definition schedule is liquid if its length is equal to the duration of the traffic 
(equation (9) of subsection 7.1). Clearly A is a team of X. Remove the team A from X so as to 
form a new traffic AX − . The duration of the new traffic AX −  is the load of the bottlenecks 
in AX − . 

The load of bottlenecks of X in X is the highest and therefore is more than the load of all 
other links at least by 1. By removing a team of X the load of all bottleneck links is reduced by 1. 
Therefore, a link which is bottleneck in X is still a bottleneck in AX − . Thus the bottlenecks of 

AX −  include the bottlenecks of X. 

The load of a bottleneck of X is decreased by one in the new traffic AX −  and therefore 
the duration of AX −  is the duration of X decreased by one, i.e. 1)()( −Λ=−Λ XAX . The 

schedule α  without the element A is a schedule for AX −  by definition of a schedule given in 
subsection 7.1 (a schedule is a collection of simultaneities partitioning the traffic). Obviously 

1)(#}){(# −=− αα A . Therefore the new schedule }{A−α  has as many time frames as the 

duration of the new traffic AX −  is. Hence }{A−α  is a liquid schedule on AX − .  ■ 

In other words, if the traffic has a liquid schedule, then a schedule reduced by one team is 
a liquid schedule on the reduced traffic. The repeated application of Theorem 1 implies that any 
non-empty subset of a liquid schedule is a liquid schedule on the correspondingly reduced traffic. 

THEOREM 2. If, by traversing each team A of a traffic X none of the sub-traffics AX −  
has a liquid schedule, then the traffic X does not have a liquid schedule either. 
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PROOF. Let us suppose that X has a liquid schedule α . Then a time frame A of α  shall 
be a team of X. Further, according to Theorem 1, the schedule }{A−α  shall be a liquid schedule 

for AX − . Therefore for at least one team A of X the sub-traffic AX −  has a liquid schedule. 
This proves the theorem by contraposition.  ■ 

Theorem 2 implies that if X has a liquid schedule, at least one team A of X will be found, 
such that the sub-traffic AX −  has a liquid schedule β . Obviously }{A∪β  will be a liquid 

schedule for X. 

Instead of considering for the set of possible time frames all teams of the original traffic 

included in the current sub-traffic , i.e. subX })({ subXAXA ⊂ℑ′∈ , we propose to consider for 

the set of possible time frames (at the current node of the construction tree) all teams of the 

current sub-traffic, i.e. . )( subXℑ′

By induction, theorem 2 implies that If a solution for X (i.e. a liquid schedule on X) 
exists, then this algorithm will necessarily find it. 

Since the teams of the current sub-traffic  together with the bottlenecks of the 

original traffic X must also use the additional bottlenecks of , the number of teams of the 

current subtraffic  is smaller or equal to the number of teams of the original traffic 

whose transfers belong to the current subtraffic: 

subX

subX

)( subXℑ′

}))(({#))((# subsub XAXAX ⊂ℑ′∈≤ℑ′  (19)

Therefore less possible teams need to be considered when building the schedule. The 
solution space is not affected, since theorem 2 is valid at any level of the search tree. 

The construction algorithm traverses the tree in depth-wise order (Figure 13). A solution 
is found when the current node (sub-traffic) forms a single team. The path from the root to that 
leaf node forms the set of teams yielding the liquid schedule. The example of a liquid schedule of 
Figure 10 shows that each timeframe incorporates additionally also the bottlenecks (marked in 
bold) of the remaining reduced traffic. Therefore each timeframe is also a team of the reduced 
traffic. A node, in the construction tree, is a dead end if the corresponding sub-traffic does not 
have a team (see for example Figure 11 and Figure 12). In that case the algorithm backtracks and 
evaluates other choices. Evaluation of all choices ultimately leads to a solution if it exists. 

Appendix D. Assembling a liquid schedule: 
Considering full teams of the reduced traffic instead 
of all its teams 

Assuming the liquid schedule construction algorithm of subsection 7.3, we can build a 
liquid schedule by further limiting the choice of teams of the reduced subtraffic to its full teams. 
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Let us modify a given liquid schedule so as to convert one of its teams into a full team. 
Let a traffic X have a liquid schedule α . Let A be a time frame of α . If A is not a full team of X, 
then, by moving the necessary transfers from other time frames of α , we can convert the team A 
into a full team. Evidently, by doing so, the properties of liquidity (partitioning, simultaneousness 
and length) of α  are not affected. Therefore if X has a solution then it has also a solution when 
any one of its selected time frames is full. 

Therefore if a liquid schedule is possible to built, then it can be built by a choice of a full 

team A of the current reduced traffic . Therefore the choice of the teams in the construction 

tree of Figure 13 may be narrowed from the set of all teams to the set of full teams only, i.e. 

. The optimization of subsection 7.4 relies on this (see equations (12), (13) 

and (14)). An efficient algorithm for retrieving the set of all full teams 

subX

)()( subsub XX ℑ=ℵ

)( subXℑ  is presented in 

Figure 8. 

Figure 10 shows a liquid schedule constructed with full teams. For any given timeframe, 
all transfers of all successive timeframes are congesting with that timeframe. 
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