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Abstract

This paper studies distributed scheduling of parallel I/O
data transfers on systems that provide data replication. In
our previous work, we proposed a centralized algorithm
for solving this problem in systems where data transfer in-
formation is centrally available. This algorithm finds the
optimal scheduling by constructing augmenting paths in
the data transfer bipartite graph, requiring O(nm log n +
n2 log

3
2 n) time, with n nodes and m edges in the bipar-

tite graph.
In this paper, we investigate this scheduling prob-

lem in distributed systems where data transfer informa-
tion may not be centrally available. We propose a dis-
tributed scheduling algorithm, Highest Degree Lowest
Workload First (HDLWF), which approximates the aug-
menting path algorithm in distributed environments.
HDLWF is based on a distributed, two-step scheme that de-
termines appropriate execution order of data requests
through a small number of rounds of bidding between
clients and I/O servers. Our experimental results indi-
cate that HDLWF yields schedules close to the centralized
optimal solution, and in some cases within 3% of the opti-
mal solution.

1. Introduction

While the speed, memory size, and disk capacity of
parallel computers continue to grow rapidly, the rate at
which disk drives read and write data is improving at a
much slower pace. As a result, the performance of care-
fully tuned parallel programs can slow down dramatically
when they read or write files. Parallel I/O techniques can
help solve this problem by creating multiple data paths be-
tween memory and disks. Over the past few years, signifi-
cant research efforts have been devoted to devising method-
ologies for enabling parallel I/O, ranging from low-level
solutions (such as disk striping [22] and disk-directed I/O

[15]), through operating system support (parallel file sys-
tems [17, 11, 20, 12, 3, 4] and compiler/library support
([23, 24, 26, 2, 19]), to high-level algorithmic design for
out-of-core parallel computation ([27]).

The performance of parallel I/O is dominated by how
fast data can be transfered between processing nodes and
disks. The data transfer time can be reduced in several ways.
For instance, we may reduce the transfer time by choos-
ing proper placement of I/O servers in the network to re-
duce the amount of remote data transfers [6], by prefetch-
ing or caching disk data to overlap computation with I/O
operations, or by prescheduling I/O requests to eliminate
contention on the resources (also referred to as parallel I/O
scheduling). In this paper, we will focus on parallel I/O
scheduling.

Data replication is commonly used for computation-
intensive or data-intensive applications on distributed sys-
tems, both for reliability and performance reasons. It is typ-
ical for an application to take a long period of time to com-
plete its execution. Failure of any disk will cause loss of
data and thus faults in program execution. Data replication
is necessary to ensure availability of data. Furthermore, data
replication is also frequently used for better performance of
distributed systems. For example, many web servers, mul-
timedia servers and scientific databases use mirrored sites
with replicated data to avoid hot spots in data transfers so as
to increase performance. To obtain better parallel I/O per-
formance, a scheduling algorithm should take data replica-
tion into consideration. However, data replication increases
the complexity of scheduling, because in addition to decid-
ing the execution order of data transfers, we also need to de-
cide which copy of each data to be used.

In our previous work [16] we proposed a fast algorithm
that finds optimal schedule for parallel I/O on systems that
provide multiple copies of data. The algorithm first finds
an optimal selection of data copy for all the data transfer re-
quests by constructing augmenting paths in the data transfer
bipartite graph. The selected set of data transfers with spe-
cific data copy represent an “optimal data transfer pattern”.
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The algorithm then determines the execution order of the
requests in the optimal data transfer pattern by edge color-
ing. We shown that our augmenting path algorithm finds an
optimal data transfers pattern in O(nm log n + n2 log

3
2 n)

time, with n nodes and m edges in the bipartite graph. Our
augmenting-path approach is a centralized one, assuming
global information about parallel I/O requests are centrally
available. This is usually not the case in distributed systems,
however, due to lack of shared memory or communication
support between processing nodes in a distributed system.

In this paper, we propose and evaluate a distributed al-
gorithm to preschedule I/O requests in the presence of data
replication. Our algorithm is based on a distributed, two-
step scheme that determines appropriate execution order of
data requests through a small number of rounds of bidding
between clients and servers. Our experimental results indi-
cate that our distributed algorithm yields schedules close to
the centralized optimal solution, in some cases within 3%
of the optimal.

The rest of the paper is organized as follows. Section 2
describes our model of parallel I/O and the scheduling prob-
lem. Section 3 presents our distributed algorithm, HDLWF,
that approximates the augmenting path algorithm in dis-
tributed environments. Section 4 reports our experimental
results. Section 5 reviews related works, and Section 6 gives
some concluding remarks.

2. Parallel I/O Scheduling

We make the following assumptions for the specific I/O
scheduling problem we will consider in this paper:

• data transfers can be of arbitrary length but take place
in units of fixed-size blocks and preemption is permit-
ted at block boundaries.

• the transfers may occur in any order,

• each client has a queue of data transfer requests each
destined for a specified server,

• a client or a server can handle at most one data transfer
at any given time, and

• each client can communicate with each I/O server via
a direct link.

Given a batch of pending I/O data transfers, our goal is
to decide a schedule for performing these transfers whose
total length is minimum.

2.1. Edge Coloring for I/O Scheduling

The scheduling problem can be modeled by a bipartite
graph in which the vertices on the left represent clients (de-
noted by Ci) and those on the right represent servers (de-
noted by Sj). An edge is placed between Ci and Sj if a data

in Sj is requested by the client Ci. There is no time depen-
dence among the requests.
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Figure 1. An example of data request pattern
and two possible I/O schedules.

Figure 1(a) illustrates a system with three clients and two
servers. Client C2 has two requests and C1 and C3 each has
one request so that there are totally four data transfers, rep-
resented by four edges R1, R2, R3 and R4. A conflict exists
at client C2, which is the client of both R2 and R3. Simi-
larly, a conflict exists at server I1 and I2 respectively. Fig-
ure 1(b) shows a possible schedule for this bipartite graph.
R1 and R4 are both scheduled to start simultaneously at
the beginning. This is legal because R1 and R4 share nei-
ther client nor server. R2 cannot start until R1 finishes since
they both share server I1. Similarly, R3 can only start af-
ter R2 finishes because they share the same client C2. This
schedule results in a total time of 3 time steps (Figure 1(b)).
A better schedule can be obtained by scheduling R1 and R3

first and then R2 and R4, as shown in Figure 1(c), in which
the total time is reduced to 2 time steps.

It is known that scheduling data transfers can be viewed
as an edge coloring problem, where data transfers sched-
uled in the same time slot form matching in the bipartite
graph. It is shown that d colors are necessary and sufficient
to edge color a bipartite graph with maximum degree d [14].
Efficient algorithms to obtain optimal edge coloring can be
found in [5, 13, 14, 18]. Some of these results show that
when the parallel I/O request pattern is known to the algo-
rithm, it can improve parallel I/O performance by 30% to
40% [13, 14].

2.2. Scheduling in the Presence of Data Replica-
tion

For ease of presentation, we use a tripartite graph to in-
corporate the factor of data replication into the basic bipar-
tite graph. In a tripartite graph G = (V, E), the vertex set
V consists of three subsets C, D, IO, where C represents
the set of client nodes, the set D is the set of data, and the
set IO is the set of server nodes. Clients access data, which
are duplicated at various server nodes. The edge set E con-
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sists of two subsets R and S. An edge in R connects a client
c to a data d, which means that client c requests for data d.
An edge in S connects a data d to a server i, which indi-
cates that server i stores a copy of data d. Since the same
data can be duplicated in many servers, a data d may be
connected to more than one server via edges in S. Figure 2
illustrates a tripartite graph with three clients, four data re-
quests, and three servers.
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Figure 2. A tripartite graph with 3 clients, 4
data requests, and 3 servers

In Figure 2(a), data request R1 can be satisfied by either
data copy S1 in server I1 or copy S2 in server I2. Figure
2(b) and 2(c) show the two schedules when S1 and S2 are
selected respectively. If S2 is selected, then requests R1, R2

and R4 have to be processed sequentially in three stages be-
cause they joint at server I2 (Figure 2(b)). By choosing S1

instead, requests R1 and R2 can be scheduled at the same
time slot, followed by R3 and R4 at the next time slot (Fig-
ure 2(c)).

Since the data are duplicated on different servers, we
must assign a server for each data where it can be found
by its requesting client. Formally we define this mapping as
a function m from D to IO so that m(d) = io indicates
that data d will be provided by server i. After this assign-
ment is completed, the tripartite graph is reduced to a bipar-
tite graph G′(G, m) = (D∪ IO, M), where an edge (d, io)
is in M if and only if m(d) = io.

After the mapping function m is determined, the tripar-
tite graph is reduced to a bipartite graph, which in turn can
be edge-colored to determine the schedule of the data trans-
fers in the bipartite graph. The scheduling problem is there-
fore reduced to finding a mapping function m from data to
servers so that the reduced tripartite graph minimizes the
maximum degree among all servers.

3. Distributed Scheduling of Parallel I/O

In many distributed environments, global information
about I/O data transfers is not centrally available and clients
(and similarly servers) do not have shared memory or hard-
ware support for fast communication between them. We

propose a distributed algorithm for scheduling parallel data
transfers using only a small number of rounds of bidding
between clients and servers.

The distributed algorithm is based on a distributed, two-
step bidding process. During the first step, each client se-
lects one of its pending transfers and sends a bidding pro-
posal to the associated server. In the second step, each server
resolves conflicts by selecting one of the bidding proposals
it receives and sending back an acceptance message. Bid-
ding proposals from other clients are rejected. When ev-
ery bidding client has received an acknowledgment mes-
sage (acceptance or rejection) from the associated server,
the algorithm proceeds to the next round of bidding. The
same process repeats until all the pending transfers have
been scheduled. After the scheduling phase completes, the
clients send out data transfer requests one by one as planned
in their ordered lists.

The algorithm we propose, Highest Degree Low-
est Workload First (HDLWF), is a heuristic that aims to
approximate our augmenting path based algorithm in a dis-
tributed environment. First we introduce some data
structures that are used in HDLWF. Each server j main-
tains a client set Cj that will request data from j. Each
client i maintains a set of pending data requests along
with their replicated copies, denoted by Ri. The func-
tion server of(Ri) gives the server ids of the pending
requests. In addition, each client i maintains a list of cur-
rent workload (CW[1,m]) of the servers that i will request
data from. CW(k) represents the number of data transfer re-
quests that have currently been accepted by server k. CW(k)
are all set to zero initially and are updated upon receiv-
ing an acceptance/rejection message on the client.

The distributed algorithm HDLWF has two steps in each
round of bidding. During the first step, each client i se-
lects a server j with the smallest current workload (smallest
CW value) from Ri, and sends a bidding proposal to server
j. The proposal contains both the request and the degree
of client i. In the second step, each server resolves con-
flicts by selecting the client that has the highest current de-
gree. It is known that to obtain an optimal edge coloring,
every matching must be a critical matching; i.e., must in-
clude an edge adjacent to the highest degree node. By fa-
voring high-degree clients on the server side, HDLWF in-
creases the probability of obtaining a critical matching. We
also show in our previous paper [16] that to obtain an op-
timal selection of data transfer pattern, the maximum de-
gree of the servers must be minimized. By favoring low-
workload servers, HDLWF also increases the probability of
obtaining minimum degree.

Once the server has made its choice of client, it appends
the selected data request to its ordered list, increases its cur-
rent workload by one, and sends back its new value of cur-
rent workload in an acceptance (rejection) message to the
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chosen (rejected) clients. Upon receiving the acceptance
message, the selected client appends the data transfer re-
quest to its ordered list and updates its current workload en-
try CW(j) accordingly. The selected client i also removes the
data request and its replicated copies from the set of pend-
ing data transfers Ri. Note that the current degree of a client
and the current workload of a server are exchanged between
clients and servers through the bidding proposals and the ac-
ceptance/rejection messages, and thus they do not require
additional message passing. Figure 3 gives the pseudo code
of HDLWF.

Algorithm HDLWF:

On each client i:
Repeat until all R_i become empty
/* choose the pending request whose server has

the lowest current workload */
Select data request j from R_i that has the

smallest CW(server_of(j)).
Send bidding proposal (i, j) to server_of(j)
Wait for acceptance/rejection message + new_CW.
if proposal accepted

Append (i, j,server_of(j))) to schedule
Remove all_copies_of(j) from R_i.

end if
/* update current workload of the server */

CW(server_of(j)) <- new_CW
End repeat

On each server j:
schedule_done = false
Repeat until schedule_done

Wait for all bidding proposals, B, until time out
if B is not empty
then choose B(i) such that client_of(B(i)) has

the highest current degree
Append (B(i),client_of(B(i)),j) to schedule
CW <- CW + 1
Send acceptance message and CW to

client_of(B(i)).
/* send reject msg to all the other bidding clients */

Send rejection message and CW to
clients_of(B) - client_of(B(i))

else schedule_done = true
end if

End repeat

Figure 3. The pseudo code of Highest Degree
Lowest Workload First (HDLWF) algorithm.

4. Experimental Results

We conducted simulations to evaluate the effectiveness
of our algorithms. The simulation parameters include net-
work latency and bandwidth, disk latency and bandwidth,
synchronization cost, and buffer size. These parameters are
obtained experimentally from a 32-node Pentium-III clus-

ter with Myrinet interconnects and IDE disks. In all of the
experiments, we fix the number of clients to be 256. For
our study, we investigate the impact of the following fac-
tors on the performance of different scheduling algorithms:
number of I/O servers, number of data transfers, number
of replicated copies of data, and data transfer patterns (uni-
form vs. non-uniform or hot spots).

The most important factor is data transfer pattern. Al-
though “uniform” data transfers are frequently seen in sci-
entific applications (where each client requests roughly the
same amount of data which are evenly distributed among
the I/O servers), there are also many applications that ex-
hibit hot spots in specific parts of the data and therefore in
specific I/O servers. Thus, the actual effect of scheduling al-
gorithms depends very much on the workload that is applied
in the system. Since there are very few studies on workload
analysis of parallel I/O and we have had difficulty obtain-
ing real parallel I/O trace data, we generate synthesis work-
load in the following way. We do a one-to-one mapping of
a geometric sequence of m items to the m I/O servers, with
common ratio r, where 0 < r <= 1.0 (that is, the first item
is 1.0, the second r, the third r2, and so on.) Let the sum
of the geometric sequence be S. Then we divide each item
with S. Let the resulting sequence be p1, p2, . . . , pm. It is
clear that for all pi, 0 < pi <= 1.0, and

∑m
1 pi = 1. pi rep-

resents the probability that a data transfer will be assigned
to I/O server i. For each data transfer, we choose its I/O
server by picking a random number between 0 and 1 and
then deciding its location by comparing the random num-
ber with the prefix sums of the probabilities sequence. With
large number of sampling, our synthetic workload genera-
tion emulates a normal distribution function. The advantage
of this method is that by choosing different common ratio
r, we are able to experiment with a wide range of work-
load, ranging from uniform workload (r = 1.0) to work-
load with hot spots (with a very small r). Multiple hot spots
can also be generated by mapping multiple sets of geomet-
ric sequences to the I/O servers.

In this section, we compare our distributed algorithm,
HDLWF, against the centralized augmenting path algorithm,
AP, which always finds the optimal schedule. In addition,
we also use a randomized scheduling algorithm as a basis
for comparison. We show that despite of lack of global in-
formation on data transfers between clients and I/O servers,
HDLWF consistently produces better schedules than the ran-
domized strategy. This shows the importance of optimiza-
tion. Furthermore, under the same simulation configuration,
HDLWF yields parallel performance within 15% of AP in al-
most all cases, and in some cases within 3% of AP.
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Figure 4. Effect of the number of data trans-
fers on the schedule lengths of HDLWF, AP
(Augmenting Path, the optimal solution), and
Random.

4.1. Effect of System Size

In this set of experiments, we fix the data transfer dis-
tribution ratio r = 1.0, meaning that the I/O servers have
even workload. Each data has two copies stored on differ-
ent servers.

We use normalized schedule length as the metric for per-
formance comparison. A schedule length is normalized by
dividing it by the shortest schedule length found by the AP
algorithm from all combination of simulation parameters in
this experiment. As a result the AP algorithm under a partic-
ular configuration may have a normalized schedule length
greater than 1.

Figure 4 compares the normalized schedule lengths from
the three algorithms, HDLWF, AP and Random under differ-
ent data-to-IO-server ratios (8,16,32 and 64 respectively).
HDLWF is superior to Random in all cases. This indicates
the importance of optimization. There is very small dis-
crepancy in the normalized schedule lengths generated by
HDLWF and AP when the number of data transfers increases
(ranging from 25 to 211 data transfers). This is an indication
that HDLWF is quite stable with the increase in data trans-
fer traffic. Furthermore, as the data-to-IO-server ratio in-
creases, the gap between HDLWF and AP becomes smaller.
That is, the heavier the workload on the servers, the closer
the schedule generated by HDLWF is to the optimal one. This
indicates good scalability of HDLWF.

4.2. Effect of Data Transfer Patterns

In this set of experiments, we fixed the number of I/O
servers to be 16 and varied the common ratio in data trans-
fer distribution. (ranging from r = 0.25 to r = 1.0). The
four figures in Figure 5 compare the three algorithms un-
der different number of data transfers respectively ((a)128,
(b)256, (c)1024 and (d)2048). In each figure, the common
ratio r ranges from 0.25 to 1.0. The lower the value of r, the
less uniform the data transfer distribution. When r = 1.0,
the servers have even workload, while when r = 0.25, there
is one hotspot server which receives almost 75% of the to-
tal data transfer requests.
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Figure 5. Effect of the distribution of data
transfers on the schedule lengths of HDLWF,
AP, and Random. x-axis represents the com-
mon ratio r used for the distribution of data
transfers, the higher/lower the value of r, the
more/less uniform the load between servers.
When r = 1.0 every server has approximately
the same workload. When r = 0.25, there is a
hotspot server which receives almost 75% of
the total data transfers.

As expected, the schedule lengths all increase when the
common ratio r becomes smaller, because when there is a
hotspot in data transfers, the overall schedule length tends
to be dominated by the hotspot server. Furthermore,HDLWF
is superior to Random in almost all cases except for small
number of data transfers with a hotspot (for example, when
r = 0.2 in Figure 5(a) and (b)). When the data transfer
traffic becomes heavier, HDLWF performs consistently bet-
ter than Random. When the data transfer traffic is lighter
(Figure 5(a) and (b)), HDLWF is more sensitive to the distri-
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Figure 6. Effect of hotspots on the schedule
lengths of HDLWF, AP and Random. A com-
mon ratio r=0.25 for distribution of data trans-
fers is used for all experiments.

bution of data transfers, in that the discrepancy between the
performance of HDLWF and the optimal algorithm increases
when the data transfers concentrate on a hotspot. However,
when the data transfer traffic becomes heavier, HDLWF be-
comes less sensitive to the distribution of data transfers and
is able to find a schedule close to the optimal one (Figure
5(c) and (d)).

Figure 6 examines the effect of hotspots on the schedul-
ing. The total number of data transfers is fixed to be 256
and 2048 in Figure 6(a) and Figure 6(b) respectively and
the number of hotspots varied from 1 to 8. In both figures,
the schedule lengths decrease as the number of hotspots in-
creases, because the data transfer traffic becomes evenly
distributed over the hotspot servers. Again, when data trans-
fer traffic is light, HDLWF is more sensitive to small num-
ber of hotspots. When the traffic becomes more evenly dis-
tributed, HDLWF is almost as good as AP (Figure 6(a)).
When the data transfer traffic becomes heavier, HDLWF
is less sensitive to hotspots and is able to generate near-
optimal schedule (Figure 6(b)).

4.3. Effect of Data Replication (Number of Data
Copies)

In this set of experiments, we examine the impact of
data replication on the scheduling. In Figure 7(a) and Figure
7(b), data transfers are evenly distributed among the servers
(i.e. the servers have even workload). In this case, the re-
sults show that only a small number of replication is needed
to achieve the overall optimal schedule. For instance, in Fig-
ure 7(a), when there are two or more copies of the data, the
optimal schedule length does not decrease, and AP is al-
ways able to find this overall optimal schedule. On the other
hand, three copies of replication is sufficient for HDLWF and
Random. When the data transfer traffic becomes heavier
(Figure 7(b)), all three algorithms require only two copies
of replication to achieve their best scheduling results; there
is no need for keeping more copies of replication.
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Figure 7. Effect of data replication on the
schedule lengths of HDLWF, AP, and Ran-
dom. x-axis represents the number of data
copies stored on the servers.

On the other hand, Figure 7(c) and Figure 7(d) show that
when there are hotspots in data transfers, data replication
seems to always help in reducing schedule length. In an ide-
alized world where there is no cost for distributed schedul-
ing and no cost for maintaining multiple copies of data, data
replication always helps in speeding up parallel I/O.

5. Related Work

In this section, we discuss some of previous works in par-
allel I/O scheduling, including both centralized scheduling
and distributed scheduling.

5.1. Centralized Scheduling

Jain, et. al [13] investigate parallel I/O scheduling on
multi-bus systems. Their model assumes that at most k data
transfers can occur simultaneously at any given time. They
prove that when k is unbounded, exactly d colors are nec-
essary and sufficient to color a bipartite graph of degree
d. When k is bounded, the scheduling problem is equiv-
alent to k-coloring of a graph, in which each color may
be used to color at most k edges. It is shown that at least
p = max(d, �m/k�) colors are necessary to k-color a bi-
partite graph with m edges and degree d.

To further improve the scheduling time, Jain, et. al [14]
propose greedy heuristics (called HDF and HCDF) which
are essentially approximation algorithms for k-coloring the
edges of a bipartite graph. For each color, the algorithm at-
tempts to color as many edges as possible with that color.
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They show that when k is unbounded, a greedy heuris-
tic produces a coloring using at most 2d − 1 colors, and
that both HDF and HCDF are able to edge-color the graph
with exactly 2d − 1 colors. For bounded k, it is shown
that a greedy heuristic produces a coloring using at most
�m/k� + (2d − 1) colors. HDF and HCDF are the fastest
centralized algorithms known so far.

Several other researchers also proposed fast algo-
rithms for constructing minimum length schedule for par-
allel I/O, including the algorithm KT [1], which takes time
O(mn(m + n)), Somalwar’s algorithm [25], which takes
time O(mn1.5 log n), and algorithm A2 [13], which takes
time O(mn0.5 log n).

The only work that we are aware of that schedules par-
allel I/O for systems providing data replication is the Low-
est Destination Degree First (LDDF) algorithm proposed by
Chen and Majumdar [5]. LDDF considers I/O nodes in as-
cending order of degrees, and selects a client randomly for
each I/O node. Once a data is scheduled, all the edges cor-
responding to its duplicated copies are removed from the
graph. This process repeats until all the data requests are
scheduled. In each iteration, it requires O(n log n) steps to
sort the I/O nodes and O(m) steps to pick the client/server
pair. The algorithm iterates n times, resulting in total time of
O(n2 log n+nm). Since LDDF relies on heuristics, it has no
guarantee for finding the optimal solutions. Our augment-
ing path based algorithm always finds the optimal solution
and requires O(nm log n + n2 log

3
2 n) time. In our exper-

iments, we found that our algorithm does not require more
scheduling time than the algorithm LDDF in most cases.

5.2. Distributed Scheduling

The following distributed algorithms are shown analyt-
ically or experimentally to be efficient for various sets of
data transfer traffic. However, none of them has considered
data replication in its scheduling.

Panconesi and Srinavasan [21] present a distributed edge
coloring algorithm (PS) for bipartite graphs. Their algo-
rithm is based on the same two-step bidding mechanism
that we used. They show analytically that their algorithm re-
quires at most 1.6δ + O(log1+δn) colors to edge-color the
entire graph in at most O(logδ) phases, where delta is the
maximum degree. However, their algorithm requires the ini-
tial degree of the graph to estimate the current degree of the
graph at each stage. It would requires O(logδ) communi-
cation to decide the degree of a distributed graph. In exten-
sions of this work, Dubhashi, Grable and Panconesi propose
faster, randomized, distributed edge coloring algorithms
[10, 7]. Their algorithms require at most O((1 + O(1))δ)
colorings with high probability.

Durand, Jain and Tseytlin also propose randomized, dis-
tributed edge coloring algorithms for bipartite graphs [8, 9].

Their algorithms also use a two-step bidding routine. In
their algorithm, Highest Degree First (HDF), during the bid-
ding, each server grants the request of the highest degree
client, with ties broken arbitrarily. It is known that to ob-
tain an optimal edge coloring, every matching must be a
critical matching; i.e. must include an edge adjacent to the
highest degree node. The intuition is that by favoring high-
degree nodes, HDF increases the probability of obtaining a
critical matching. Another algorithm, MPASSES, uses mul-
tiple rounds of bidding to obtain denser matchings, which
in turn improves the schedule length.

6. Conclusion

This paper studies distributed scheduling of parallel I/O
data transfers on systems that provide data replication. We
propose a distributed scheduling algorithm, Highest Degree
Lowest Workload First (HDLWF), which approximates our
previous centralized augmenting path algorithm, but in a
distributed environment. HDLWF is based on a distributed,
two-step scheme that determines appropriate execution or-
der of data requests through a small number of rounds of
bidding between clients and I/O servers. Our experimen-
tal results indicate that HDLWF yields schedules close to the
centralized optimal solution, and in some cases within 3%
of the optimal solution.

Our experimental results indicate that the existence of
data transfer hotspots has a significant impact on data trans-
fer schedule length. However, when the data transfer traf-
fic increases, the normalized schedule length of HDLWF
actually decreases, indicating that the schedule length of
HDLWF increases at a slower pace than the optimal one.
We also found that only two or three copies of duplica-
tion is necessary to improve data transfer rate under uni-
form data access patterns; more duplication does not help.
However, when there are data transfer hotspots, increas-
ing copies of duplication helps in improving data transfer
rate. Furthermore, under all types of data transfer patterns
(uniform, non-uniform, hotspots), the performance gap be-
tween HDLWF and the optimal algorithm decreases as the
data transfer traffic increases. This indicates good scalabil-
ity of HDLWF.

Currently HDLWF use a single round of bidding in each
scheduling step. Those clients that were rejected by the
servers will wait for the next scheduling step. It would be
interesting to allow the possibility of multiple bidding, i.e.,
a client may bid for several servers, or multi-stage bidding
in which those rejected clients are able to compete again im-
mediately after they received the rejection. We will continue
the investigation on these alternatives, and develop bidding
techniques that can improve data transfer performance in a
distributed environment.
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