
Data Sieving and Collective I/O in ROMIO

Rajeev Thakur William Gropp Ewing Lusk
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439, USA

fthakur, gropp, luskg@mcs.anl.gov

Abstract

The I/O access patterns of parallel programs often con-
sist of accesses to a large number of small, noncontiguous
pieces of data. If anapplication’s I/O needs are met by
making many small, distinct I/O requests, however, the I/O
performance degrades drastically. To avoid this problem,
MPI-IO allows users to access anoncontiguous data set
with a single I/O function call. This feature provides MPI-
IO implementations an opportunity to optimize data access.

We describe how our MPI-IO implementation, ROMIO,
delivers high performance in the presence of noncontigu-
ous requests. We explain in detail the two key optimiza-
tions ROMIO performs: data sieving for noncontiguous
requests from one process and collective I/O for noncon-
tiguous requests from multiple processes. We describe how
one can implement these optimizations portably on multiple
machines and file systems, control their memory require-
ments, and also achieve high performance. We demon-
strate the performance and portability with performance
results for three applications—an astrophysics-application
template (DIST3D), the NAS BTIO benchmark, and an un-
structured code (UNSTRUC)—on five different parallel ma-
chines: HP Exemplar, IBM SP, Intel Paragon, NEC SX-4,
and SGI Origin2000.

1 Introduction

Numerous studies of the I/O characteristics of parallel
applications have shown that many applications need to ac-
cess a large number of small, noncontiguous pieces of data
from a file [1, 2, 7, 9, 10]. For good I/O performance, how-
ever, the size of an I/O request must be large (on the order
of megabytes). The I/O performance suffers considerably
if applications access data by making many small I/O re-
quests. Such is the case when parallel applications perform
I/O by using the Unixread andwrite functions, which
can access only a single contiguous chunk of data at a time.

MPI-IO, the I/O part of the MPI-2 standard [6], is
a new interface designed specifically for portable, high-
performance parallel I/O. To avoid the above-mentioned
problem of many distinct, small I/O requests, MPI-IO al-
lows users to specify the entire noncontiguousaccess pat-
tern and read or write all the data with a single I/O function
call. MPI-IO also allows users to specify collectively the
I/O requests of a group of processes, thereby providing the
implementation with even greater access information and
greater scope for optimization.

In this paper we describe how our MPI-IO implemen-
tation, ROMIO, delivers high performance in the presence
of noncontiguous I/O requests. ROMIO is a portable MPI-
IO implementation that works on many different machines
and file systems. We explain in detail the two key optimiza-
tions ROMIO performs: data sieving for noncontiguous re-
quests from one process and collective I/O for noncontigu-
ous requests from multiple processes. We describe how
one can implement these optimizations portably on multiple
machines and file systems, control their memory require-
ments, and also achieve high performance. We demonstrate
the performance and portability with performance results
for three applications on five different parallel machines.

We note that ROMIO can perform the optimizations de-
scribed in this paper only if users provide complete access
information in a single function call. In [14] we explained
how users can do so by using MPI’s derived datatypes to
create file views and by using MPI-IO’s collective-I/O func-
tions whenever possible. In this paper we describe the op-
timizations in detail and provide extensive performance re-
sults.

The rest of this paper is organized as follows. Section 2
gives a brief overview of ROMIO. Data sieving is described
in Section 3 and collective I/O in Section 4. Performance
results are presented in Section 5, followed by conclusions
in Section 6.

2 Overview of ROMIO

ROMIO is a freely available, high-performance, portable
implementation of MPI-IO. The current version of ROMIO,
1.0.1, runs on the following machines: IBM SP; Intel
Paragon; HP Exemplar; SGI Origin2000 and T3E; NEC
SX-4; other symmetric multiprocessors from HP, SGI, Sun,
DEC, and IBM; and networks of workstations (Sun, SGI,
HP, IBM, DEC, Linux, and FreeBSD). Supported file sys-
tems are IBM PIOFS, Intel PFS, HP HFS, SGI XFS, NEC
SFS, NFS, and any Unix file system (UFS). ROMIO 1.0.1
includes everything defined in the MPI-2 I/O chapter except
shared-file-pointer functions, split-collective-I/O functions,
support for file interoperability, I/O error handling, and I/O
error classes. ROMIO is designed to be used withany
MPI-1 implementation—both portable and vendor-specific
implementations. It is currently included as part of three
MPI implementations: MPICH, HP MPI, and SGI MPI.

A key component of ROMIO that enables such a
portable MPI-IO implementation is an internal layer called
ADIO [13]. ADIO, an abstract-device interface for I/O,
consists of a small set of basic functions for parallel I/O.
In ROMIO, the MPI-IO interface is implemented portably
on top of ADIO, and only ADIO is implemented sepa-
rately for different file systems. ADIO thus separates the
machine-dependent and machine-independent aspects in-
volved in implementing MPI-IO.

3 Data Sieving

To reduce the effect of high I/O latency, it is critical to
make as few requests to the file system as possible. When
a process makes an independent request for noncontiguous
data, ROMIO, therefore, does not access each contiguous
portion of the data separately. Instead, it uses an optimiza-
tion called data sieving [12]. The basic idea is illustrated
in Figure 1. Assume that the user has made a single read
request for five noncontiguous pieces of data. Instead of
reading each piece separately, ROMIO reads a single con-
tiguous chunk of data starting from the first requested byte
up to the last requested byte into a temporary buffer in mem-
ory. It then extracts the requested portions from the tempo-
rary buffer and places them in the user’s buffer. The user’s
buffer happens to be contiguous in this example, but it could
well be noncontiguous.

A potential problem with this simple algorithm is its
memory requirement. The temporary buffer into which data
is first read must be as large as theextentof the user’s re-
quest, where extent is defined as the total number of bytes
between the first and last bytes requested (including holes).
The extent can potentially be very large if there are large
holes between the requested data segments. The basic al-
gorithm, therefore, must be modified to make its memory

requirement independent of the extent of the user’s request.
ROMIO uses a user-controllable parameter that defines

the maximum amount of contiguous data that a process can
read at a time during data sieving. This value also represents
the maximum size of the temporary buffer. The default
value is 4 Mbytes (per process), but the user can change
it at run time via MPI-IO’s hints mechanism. If the extent
of the user’s request is larger than the value of this parame-
ter, ROMIO performs data sieving in parts, reading only as
much data at a time as defined by the parameter.

The advantage of data sieving is that data is always ac-
cessed in large chunks, although at the cost of reading more
data than needed. For many common access patterns, the
holes between useful data are not unduly large, and the ad-
vantage of accessing large chunks far outweighs the cost
of reading extra data. In some access patterns, however,
the holes could be so large that the cost of reading the ex-
tra data outweighs the cost of accessing large chunks. The
BTIO benchmark (see Section 5), for example, has such an
access pattern. An “intelligent” data-sieving algorithm can
handle such cases as well. The algorithm can analyze the
user’s request and decide whether to perform data sieving
or access each contiguous data segment separately. We plan
to add this feature to ROMIO.

Data sieving can similarly be used for writing data. A
read-modify-write must be performed, however, to avoid
destroying the data already present in the holes between
contiguous data segments. The portion of the file being ac-
cessed must also be locked during the read-modify-write
to prevent concurrent updates by other processes. ROMIO
also uses another user-controllable parameter that defines
the maximum amount of contiguous data that a process can
write at a time during data sieving. Since writing requires
locking the portion of the file being accessed, ROMIO uses
a smaller default buffer size for writing (512 Kbytes) in or-
der to reduce contention for locks.

One could argue that most file systems perform data siev-
ing anyway because they perform caching. That is, even if
the user makes many small I/O requests, the file system al-
ways reads multiples of disk blocks and may also perform
a read-ahead. The user’s requests, therefore, may be satis-
fied out of the file-system cache. Our experience, however,
has been that the cost of making many system calls, each
for small amounts of data, is extremely high, despite the
caching performed by the file system. In most cases, it is
more efficient to make a few system calls for large amounts
of data and extract the needed data. (See the performance
results in Section 5.)

4 Collective I/O

In many parallel applications, althougheach process
may need to access severalnoncontiguous portions of a

read a contiguous chunk

user’s request for noncontiguous

into memory

into user’s buffer
copy requested portions

data from a file

Figure 1. Data sieving

file, the requests of different processes are often interleaved
and may together span large contiguous portions of the file.
If the user provides the MPI-IO implementation with the
entire access information of a group of processes, the im-
plementation can improve I/O performance significantly by
merging the requests of different processes and servicing
the merged request. Such optimization is broadly referred
to as collective I/O.

Collective I/O can be performed at the disk level (disk-
directed I/O [5]), at the server level (server-directed I/O [8]),
or at the client level (two-phase I/O [3]). Since ROMIO is
a portable, user-level library with no separate I/O servers,
it performs collective I/O at the client level. For this pur-
pose, it uses a generalized version of the extended two-
phase method described in [11].

4.1 Two-Phase I/O

Two-phase I/O was first proposed in [3] in the context
of accessing distributed arrays from files. Consider the ex-
ample of reading a two-dimensional array from a file into
a (block,block) distribution in memory, as shown in Fig-
ure 2. Assume that the array is stored in the file in row-
major order. As a result of the distribution in memory and
the storage order in the file, the local array of each pro-
cess is located noncontiguously in the file—each row of the
local array of a process is separated by rows from the lo-
cal arrays of other processes. If each process tries to read
each row of its local array individually, the performance will
be poor due to the large number of relatively small I/O re-
quests. Note, however, that all processes together need to
read the entire file, and two-phase I/O uses this fact to im-
prove performance.

If the entire I/O access pattern of all processes is known
to the implementation, the data can be accessed efficiently
by splitting theaccess into two phases. In the first phase,
processes access data assuming a distribution in memory
that results in each process making a single, large, con-
tiguousaccess. In this example, such a distribution is a
row-block or (block,*) distribution. In the second phase,
processes redistribute data among themselves to the desired

distribution. The advantage of this method is that by mak-
ing all file accesses large and contiguous, the I/O time is re-
duced significantly. The added cost of interprocess commu-
nication for redistribution is small compared with the sav-
ings in I/O time.

The basic two-phase method was extended in [11] to ac-
cess sections of out-of-core arrays. In ROMIO we use a
generalized version of this extended two-phase method that
can handleanynoncontiguous I/O request as described by
an MPI derived datatype, not just sections of arrays.

4.2 Generalized Two-Phase I/O in ROMIO

ROMIO uses two user-controllable parameters for col-
lective I/O: the number of processes that perform I/O in the
I/O phase and the maximum size on each process of the
temporary buffer needed for two-phase I/O. By default, all
processes perform I/O in the I/O phase, and the maximum
buffer size is 4 Mbytes per process. The user can change
these values at run time via MPI-IO’s hints mechanism.

We first explain the algorithmROMIO uses for collective
reads and then describe how the algorithm differs for collec-
tive writes. Figure 3 shows a simple example that illustrates
how ROMIO performs a collective read. In this example,
all processes perform I/O, and each process is assumed to
have as much memory as needed for the temporary buffer.

We note that, in MPI-IO, the collective-I/O function
called by a process specifies the access information of that
process only. Also, file accesses in collective I/O refer to
accesses from multiple processes to acommonfile.

4.2.1 Collective Reads

In ROMIO’s implementation of collective reads, each pro-
cess first analyzes its own I/O request and creates a list of
offsets and a list of lengths, wherelength[i] gives the
number of bytes that the process needs from locationoff-
set[i] in the file. Each process also calculates the lo-
cations of the first byte (start offset) and the last byte (end
offset) it needs from the file and then broadcasts these two

P0

P1

P2

P3

P0 P1

P2 P3

Read contiguous

Read contiguous

Read contiguous

Read contiguous

Redistribute

Redistribute

Redistribute

Redistribute

File

user’s buffer
(block, block) distribution

 temporary buffer
(block, *) distribution

Figure 2. Reading a distributed array by using two-phase I/O

offsets to other processes. As a result, each process has the
start and end offsets of all processes.

In the next step, each process tries to determine whether
this particular access pattern can benefit from collective I/O,
i.e., whether the accesses of any of the processes are inter-
leaved in the file. Since an exhaustive check can be expen-
sive, each process only checks if, for any two processes with
consecutive ranks (i andi + 1), the following expression is
true: (start-offseti+1 < end-offseti). If not true, each pro-
cess concludes that collective I/O will not improve perfor-
mance for this particular access pattern, since the requests
of different processes cannot be merged. In such cases,each
process just calls the corresponding independent-I/O func-
tion, which uses data sieving to optimize noncontiguous re-
quests.

If the above expression is true, the processes proceed to
perform collective I/O as follows. Portions of the file are
“assigned” to each process such that in the I/O phase of the
two-phase operation, a process will access data only from
the portion of the file assigned to it. This portion of the file
assigned to a process is called the process’sfile domain. If
a process needs data located in another process’s file do-
main, it will receive the data from the other process during
the communication phase of the two-phase operation. Sim-
ilarly, if this process’s file domain contains data needed by
other processes, it must send this data to those processes
during the communication phase.

File domains are assigned as follows. Each process cal-
culates the minimum of the start offsets and the maximum
of the end offsets of all processes. The difference between
these two offsets gives the total extent of the combined re-
quest of all processes. The file domain of each process is ob-
tained by dividing this extent equally among the processes.

After the file domains are determined, each process cal-
culates in which other process’s file domain its own I/O re-
quest (or a portion of it) is located. For each such process,
it creates a data structure containing a list of offsets and
lengths that specify the data needed from the file domain

of that process. It then sends this access information to the
processes from which it expects to receive data. Similarly,
other processes that need data from the file domain of this
process send the correspondingaccess information to this
process. After this exchange has taken place, each process
knows what portions of its file domain are needed by other
processes and by itself. It also knows which other processes
are going to send the data that it needs.

The next step is to read and communicate the data. This
step is performed in several parts to reduce its memory re-
quirement. Each process first calculates the offsets corre-
sponding to the first and last bytes needed (by any process)
from its file domain. It then divides the difference between
these offsets by the maximum size allowed for the tempo-
rary buffer (4 Mbytes by default). The result is the number
of times (ntimes) it needs to perform I/O. All processes
then perform a global-maximum operation onntimes to
determine the maximum number of times (max ntimes)
any process needs to perform I/O. Even if a process has
completed all the I/O needed from its own file domain, it
may need to participate in communication operations there-
after to receive data from other processes. Each process
must therefore be ready to participate in the communication
phasemax ntimes number of times.

For each of thentimes I/O operations, a process does
the following operations: It checks if the current portion of
its file domain (no larger than the maximum buffer size) has
data that any process needs, including itself. If it does not
have such data, the process does not need to perform I/O
in this step; it then checks if it needs to receive data from
other processes, as explained below. If it does have such
data, it reads with a single I/O function call all the data from
the first offset to the last offset needed from this portion of
the file domain into a temporary buffer in memory. The
process effectively performs data sieving, as the data read
may include some unwanted data. Now the process must
send portions of the data read to processes that need them.

Each process first informs other processes how much

File domain of process 0 File domain of process 1 File domain of process 2

process 0’s request

process 1’s request

process 2’s request

F I L E

temporary buffer on process 0 temporary buffer on process 1 temporary buffer on process 2

Read ReadRead

user’s buffer on process 0 user’s buffer on process 1 user’s buffer on process 2

Communication Communication

Figure 3. A simple example illustrating how ROMIO performs a collective read

data it is going to send them. The processes then exchange
data by first posting all the receives asnonblocking oper-
ations, then posting all the nonblocking sends, and finally
waiting for all the nonblocking communication to complete.
MPI derived datatypes are used to send noncontiguous data
directly from the temporary buffer to the destination pro-
cess. On the receive side, if the user has asked for data to
be placed contiguously in the user-supplied buffer, the data
is received directly into the user’s buffer. If data is to be
placednoncontiguously, the process first receives data into
a temporary buffer and then copies it into the user’s buffer.
(Since data is received in parts over multiple communica-
tion operations from different processes, we found this ap-
proach easier than creating derived datatypes on the receive
side.)

Each process performs I/O and communicationntimes
number of times and then participates only in the com-
munication phase for the remaining(max ntimes -
ntimes) number of times. In some of these remaining
communication steps, a process may not receive any data;
nevertheless, the process must check if it is going to receive
data in a particular step.

4.2.2 Collective Writes

The algorithm for collective writes is similar to the one for
collective reads, except that the first phase of the two-phase
operation is communication and the second phase is I/O.

In the I/O phase, each process checks if any holes (gaps)
exist in the data it needs to write. If holes exist, it per-
forms a read-modify-write; otherwise it performs only a
write. During the read-modify-write, a process need not
lock the region of the file being accessed (unlike in inde-
pendent I/O), because the process is assured that no other
process involved in the collective-I/O operation will directly
try to access the data located in this process’s file domain.
The process is also assured that concurrent writes from pro-
cesses other than those involved in this collective-I/O oper-
ation will not occur, because MPI-IO’s consistency seman-
tics [6] do not automatically guarantee consistency for such
writes. (In such cases, users must useMPI File sync
and ensure that the operations are not concurrent.)

4.2.3 Performance Issues

Even if I/O is performed in large contiguous chunks, the
performance of the collective-I/O implementation can be
significantly affected by the amount of buffer copying
and communication. We were able to improve ROMIO’s
collective-I/O performance by as much as 50% by tuning
the implementation to minimize buffer copying and mini-
mize the number of communication calls and use the right
set of MPI communication primitives.

Initially, in each of the communication steps, we always
received data into a temporary buffer and then copied it into
the user’s buffer. We realized later that this copy is needed

only when the user’s buffer is to be filled noncontiguously.
In the contiguous case, data can be received directly into
the appropriate location in the user’s buffer. We similarly
experimented with different ways of communicating data in
MPI and measured the effect on overall collective-I/O per-
formance with different MPI implementations and on dif-
ferent machines. We selected nonblocking communication
with the receives posted first and then the sends, which per-
forms the best on most systems. It may be possible, how-
ever, to tune the communication further on some machines
by posting the sends before the receives or by using MPI’s
persistent requests.

4.2.4 Portability Issues

We were able to implement these optimizations portably
and without sacrificing performance by using ADIO as a
portability layer for I/O (see Section 2) and by using MPI
for communication. Data sieving and collective I/O are im-
plemented within ADIO functions [13]; data sieving is used
in ADIO functions that read/write noncontiguous data, and
collective I/O is used in ADIO’s collective-I/O functions.
Both these optimizations ultimately make contiguous I/O
requests to the underlying file system, which are imple-
mented by using ADIO’s contiguous-I/O functions. The
contiguous-I/O functions, in turn, are implemented using
the appropriate file-system call for each different file sys-
tem.

5 Performance Measurements

We used three applications for our performance experi-
ments:

1. DIST3D, a template representing the I/O access pat-
tern in an astrophysics application (ASTRO3D) from
the University of Chicago;

2. the NAS BTIO benchmark [4]; and

3. an unstructured code (UNSTRUC) written by Larry
Schoof and Wilbur Johnson of Sandia National Lab-
oratories.

The I/O in DIST3D consists of reading/writing a three-
dimensional array distributed in a (block,block,block) fash-
ion among processes from/to a file containing the global
array in row-major order. The BTIO benchmark [4] sim-
ulates the I/O required by a time-stepping flow solver that
periodically writes its solution matrix. The benchmark only
performs writes, but we modified it to perform reads also.
UNSTRUC emulates the I/O access pattern in unstructured-
grid applications by generating a random irregular map-
ping from the local one-dimensional array of a process to a
global array in a common file shared by all processes. The

mapping specifies where each element of the local array is
located in the global array.

We ran the code portably and measured the performance
on five different parallel machines: the HP Exemplar and
SGI Origin2000 at the National Center for Supercomput-
ing Applications (NCSA), the IBM SP at Argonne National
Laboratory, the Intel Paragon at California Instituteof Tech-
nology, and the NEC SX-4 at the National Aerospace Lab-
oratory (NLR) in Holland. We used the native parallel file
systems on each machine: HFS on the Exemplar, XFS on
the Origin2000, PIOFS on the SP, PFS on the Paragon, and
SFS on the SX-4. At the time we performed the experi-
ments, these file systems were configured as follows: HFS
on the Exemplar was configured on twelve disks; XFS on
the Origin2000 had two RAID units with SCSI-2 interfaces;
the SP had four servers for PIOFS, and each server had four
SSA disks attached to it in one SSA loop; the Paragon had
64 I/O nodes for PFS,each with an individual Seagate disk;
and SFS on the NEC SX-4 was configured on a single RAID
unit comprising sixteen SCSI-2 data disks.

We measured the I/O performance of these applications
by using MPI-IO functions to perform I/O in three different
ways as follows:

Unix-style accessesSeparate MPI-IO function calls to ac-
cess each individual contiguous piece of data.

Data sieving Create a file view to describe a noncontigu-
ous access pattern and use a singleindependentMPI-
IO function to access data.

Collective I/O Create a file view to describe a noncontigu-
ous access pattern and use a singlecollectiveMPI-IO
function to access data.

In all experiments, we used the default buffer sizes for
data sieving and collective I/O (see Sections 3 and 4) and
the default values of the file-striping parameters on all file
systems.

Tables 1 and 2 show the read and write bandwidths for
DIST3D. The performance of Unix-style accesses was, in
general, very poor. By using data sieving instead, the read
bandwidth improved by a factor ranging from 2.6 on the HP
Exemplar to 453 on the NEC SX-4. The write bandwidth
improved by a factor ranging from 2.3 on the HP Exemplar
to 121 on the NEC SX-4. Data sieving cannot be performed
for writing on the SP’s PIOFS file system, because PIOFS
does not support file locking. On PIOFS, ROMIO therefore
translates noncontiguous, independent write requests into
multiple Unix-styleaccesses.

The performance improvement with collective I/O was
much more significant. The read bandwidth improved by
a factor of as much as 793 over Unix-style accesses (NEC
SX-4) and as much as 14 over data sieving (Intel Paragon).
The write performance improved by a factor of as much as

Table 1. Read performance of DIST3D (array
size 512x512x512 integers = 512 Mbytes)

Bandwidth (Mbytes/s)
Proc- Unix- Data Coll-

Machine essors style Sieving ective
HP Exemplar 64 5.42 14.2 68.2

IBM SP 64 2.13 11.9 90.2
Intel Paragon 256 3.01 9.50 132
NEC SX-4 8 0.71 322 563

SGI Origin2000 32 14.0 118 175

Table 2. Write performance of DIST3D (array
size 512x512x512 integers = 512 Mbytes)

Bandwidth (Mbytes/s)
Proc- Unix- Data Coll-

Machine essors style Sieving ective
HP Exemplar 64 0.54 1.25 50.7

IBM SP 64 1.85 N/A 57.6
Intel Paragon 256 1.12 3.33 183
NEC SX-4 8 0.62 75.3 447

SGI Origin2000 32 5.06 13.1 66.7

721 over Unix-style accesses (NEC SX-4) and as much as
40 over data sieving (HP Exemplar).

Tables 3 and 4 present results for Class C of the BTIO
benchmark. (BTIO requires the number of processors to be
a perfect square.) For BTIO, Unix-style accesses performed
better than data sieving on three out of the five machines.
The reason is that the holes between data segments needed
by a process are large in BTIO—more than five times the
size of the data segment. As a result, a lot of unwanted
data was accessed during data sieving, resulting in lower
performance than with Unix-style accesses. As mentioned
in Section 3, an intelligentdata-sieving algorithm can detect
such large holes and internally perform Unix-style accesses.
ROMIO’s data sieving algorithm does not currently do this,
however.

Collective I/O performed extremely well on BTIO, be-
cause no unwanted data was accessed during collective I/O
and all accesses were large. The performance improved by
a factor of as much as 512 over Unix-style accesses for read-
ing and 597 for writing, both on the NEC SX-4.

Tables 5 and 6 show the read and write bandwidths for
UNSTRUC. In this application, the I/O access pattern is
irregular, and the granularity of each access is very small
(64 bytes). Unix-style accesses are not feasible for this kind

Table 3. Read performance of BTIO (Class
C, problem size 5x162x162x162 double pre-
cision � 162 Mbytes)

Bandwidth (Mbytes/s)
Proc- Unix- Data Coll-

Machine essors style Sieving ective
HP Exemplar 64 6.35 5.84 44.2

IBM SP 64 2.73 1.66 80.6
Intel Paragon 256 2.28 1.23 82.0
NEC SX-4 9 1.26 116 645

SGI Origin2000 36 12.1 37.0 107

Table 4. Write performance of BTIO (Class
C, problem size 5x162x162x162 double pre-
cision � 162 Mbytes)

Bandwidth (Mbytes/s)
Proc- Unix- Data Coll-

Machine essors style Sieving ective
HP Exemplar 64 0.86 0.50 29.7

IBM SP 64 2.21 N/A 38.6
Intel Paragon 256 1.37 0.45 98.8
NEC SX-4 9 0.99 29.9 591

SGI Origin2000 36 7.93 2.90 67.2

of application, as they take an excessive amount of time.
We therefore do not present results for Unix-style accesses
for UNSTRUC. Collective I/O again performed much better
than independent I/O with data sieving, the only exception
being for reads on the NEC SX-4. In this case, because
of the high read bandwidth of NEC’s Supercomputing File
System (SFS), data sieving by itself outperformed the extra
communication required for collective I/O.

6 Conclusions

For parallel applications to achieve high I/O perfor-
mance, it is critical that the parallel-I/O system be able
to deliver high performance even for noncontiguousaccess
patterns. We have described two optimizations our MPI-IO
implementation performs that enable it to deliver high per-
formance even if the user’s request consists of many small,
noncontiguousaccesses. Our implementation of these op-
timizations generalizes the work in [11, 12] to handleany
noncontiguousaccess pattern, not just sections of arrays.

For the applications we considered, collective I/O per-
formed significantly better than both data sieving and

Table 5. Read performance of UNSTRUC

Bandwidth (Mbytes/s)
Proc- Grid Data Coll-

Machine essors Points Sieving ective
HP Exemplar 64 8 million 3.15 35.0

IBM SP 64 8 million 1.63 73.3
Intel Paragon 256 8 million 1.18 78.4
NEC SX-4 8 8 million 152 101

SGI Origin2000 32 4 million 30.0 80.8

Table 6. Write performance of UNSTRUC

Bandwidth (Mbytes/s)
Proc- Grid Data Coll-

Machine essors Points Sieving ective
HP Exemplar 64 8 million 0.18 22.1

IBM SP 64 8 million N/A 37.8
Intel Paragon 256 8 million 0.22 94.9
NEC SX-4 8 8 million 16.8 81.5

SGI Origin2000 32 4 million 1.33 59.2

Unix-style accesses. Data sieving performed much better
than Unix-style accesses for DIST3D and UNSTRUC. For
BTIO, on some machines, Unix-style accesses performed
better than data sieving, because of large holes between data
segments accessed by each process in BTIO.

The implementation of data sieving and collective I/O
must be carefully tuned to minimize the overhead of buffer
copying and interprocess communication. Otherwise, these
overheads can impact performance significantly.

Acknowledgments

We thank Larry Schoof and Wilbur Johnson for provid-
ing the unstructured code used in this paper. This work was
supported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Com-
putational and Technology Research, U.S. Department of
Energy, under Contract W-31-109-Eng-38; and by the Scal-
able I/O Initiative, a multiagency project funded by the De-
fense Advanced Research Projects Agency (contract num-
ber DABT63-94-C-0049), the Department of Energy, the
National Aeronautics and Space Administration, and the
National Science Foundation.

References

[1] S. Baylor and C. Wu. Parallel I/O Workload Characteris-
tics Using Vesta. In R. Jain, J. Werth, and J. Browne, edi-
tors,Input/Output in Parallel and Distributed Computer Sys-

tems, chapter 7, pages 167–185. Kluwer Academic Publish-
ers, 1996.

[2] P. Crandall, R. Aydt, A. Chien, and D. Reed. Input-Output
Characteristics of Scalable Parallel Applications. InPro-
ceedings of Supercomputing ’95. ACM Press, December
1995.

[3] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved
Parallel I/O via a Two-Phase Run-time Access Strategy. In
Proceedings of the Workshop on I/O in Parallel Computer
Systems at IPPS ’93, pages 56–70, April 1993. Also pub-
lished in Computer Architecture News, 21(5):31–38, De-
cember 1993.

[4] S. Fineberg, P. Wong, B. Nitzberg, and C. Kuszmaul.
PMPIO—A Portable Implementation of MPI-IO. InPro-
ceedings of the Sixth Symposium on the Frontiers of Mas-
sively Parallel Computation, pages 188–195. IEEE Com-
puter Society Press, October 1996.

[5] D. Kotz. Disk-directed I/O for MIMD Multiprocessors.
ACM Transactions on Computer Systems, 15(1):41–74,
February 1997.

[6] Message Passing Interface Forum. MPI-2: Exten-
sions to the Message-Passing Interface. July 1997.
On the World-Wide Web at http://www.mpi-
forum.org/docs/docs.html .

[7] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and
M. Best. File-Access Characteristics of Parallel Scientific
Workloads.IEEE Transactions on Parallel and Distributed
Systems, 7(10):1075–1089, October 1996.

[8] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett.
Server-Directed Collective I/O in Panda. InProceedings of
Supercomputing ’95. ACM Press, December 1995.

[9] E. Smirni, R. Aydt, A. Chien, and D. Reed. I/O Require-
ments of Scientific Applications: An Evolutionary View.
In Proceedings of the Fifth IEEE International Symposium
on High Performance Distributed Computing, pages 49–59.
IEEE Computer Society Press, 1996.

[10] E. Smirni and D. Reed. Lessons from Characterizing the In-
put/Output Behavior of Parallel Scientific Applications.Per-
formance Evaluation: An International Journal, 33(1):27–
44, June 1998.

[11] R. Thakur and A. Choudhary. An Extended Two-Phase
Method for Accessing Sections of Out-of-Core Arrays.Sci-
entific Programming, 5(4):301–317, Winter 1996.

[12] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and
S. Kuditipudi. Passion: Optimized I/O for Parallel Appli-
cations.Computer, 29(6):70–78, June 1996.

[13] R. Thakur, W. Gropp, and E. Lusk. An Abstract-Device In-
terface for Implementing Portable Parallel-I/O Interfaces. In
Proceedings of the 6th Symposium on the Frontiers of Mas-
sively Parallel Computation, pages 180–187. IEEE Com-
puter Society Press, October 1996.

[14] R. Thakur, W. Gropp, and E. Lusk. A Case for Using MPI’s
Derived Datatypes to Improve I/O Performance. InProceed-
ings of SC98: High Performance Networking and Comput-
ing, November 1998.

