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1. Introduction 

We will consider a process in which points occur randomly in time. The phrase points in time is 
generic and could represent, for example:  

The times when a piece of radioactive material emits particles  
The times when customers arrive at a service station  
The times when requests arrive at a server computer  
The times when accidents occur at a particular intersection  

It turns out that under some basic assumptions that deal with independence and uniformity in time, a 
single, one-parameter probability model governs all such random processes. This is an amazing 
result and because of it the Poisson process (named after Simeon Poisson) is one of the most 
important in probability theory.  

Random Variables 

There are two collections of random variables that can be used to describe the process, 
corresponding to two different experiments; these collections are dual to one another in a certain 
sense.  

First, let Tk denote the time of the k'th arrival for k = 1, 2, ... The gamma experiment is to run the 
process until the k'th arrival occurs and note the time of this arrival. Next, let Nt denote the number 
of arrivals in the interval (0, t] for t  0. The Poisson experiment is to run the process until time t 
and note the number of arrivals. Note that  

Nt  k if and only if Tk  t
 

since each of these events means that there are at least k arrivals in the interval (0, t].  

The Basic Assumption 

The assumption that we will make can be described intuitively (but imprecisely) as follows: If we fix 
a time t, whether constant or one of the arrival times, then the process after time t is independent of 
the process before time t and behaves probabilistically just like the original process. Thus, the 
random process has a regeneration property. Making this assumption precise will enable us to 
derive the distribution of each of the following in turn:  

The interarrival times  
The arrival times  
The number of arrivals in an interval  

 1. Think about the basic assumption for each of the specific applications given above. 
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2. The Exponential Distribution 

The basic assumption for the Poisson process is that the behavior of the process after an arrival 
should be independent of the behavior before the arrival and probabilistically like the original 
process (regeneration).  

The Interarrival Times 

In particular, the general regeneration assumption means that the times between arrivals, known as 
interarrival times, must be independent, identically distributed random variables. Formally, the 
interarrival times are defined as follows: 

X1 = T1, Xk = Tk - Tk-1 for k = 2, 3, ...
 

where Tk is the time of the k'th arrival. We will assume that
 

P(Xi > t) > 0 for each t > 0.
 

Now, we also want regeneration to occur at a fixed time t. In particular, if the first arrival has not 
occurred by time t, then the time remaining until the arrival occurs has the same distribution as the 
first arrival time itself. This is known as the memoryless property and can be stated in terms of a 
generic interarrival time X as follows 

P(X > t + s) | X > s) = P(X > t) for all s, t  0.
 

Distribution 

Let G denote the right-tail distribution function of X: 

G(t) = P(X > t), t  0.
 

 1. Show that the memoryless property is equivalent to the law of exponents: 

G(t + s) = G(t)G(s) for all s, t  0.
 

 2. Show that the only solutions of the functional equation in Exercise 1, which are continuous 
from the right, are exponential functions. Let c = G(1). Successively show that  

a. G(n) = cn if n is a positive integer. 
 

b. G(1/n) = c1/n if n is a positive integer.  
c. G(m/n) = cm/n if m and n are positive integers.  
d. G(t) = ct for any t > 0.  

In the context of Exercise 2 let r = -ln(c). Then r > 0 (since 0 < c < 1) so 

G(t) = P(X > t) = e-rt, t  0.
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Hence X has a continuous distribution with cumulative distribution function given by 

F(t) = P(X  t) = 1 - G(t) = 1 - e-rt, t  0.
 

 3. Show that the density function of X is 

f(t) = re-rt, t  0.
 

A random variable with this density is said to have the exponential distribution distribution with 
rate parameter r. The reciprocal 1 / r is known as the scale parameter. 

 4. Show directly that the exponential density really is a probability density function.  

 5. In the exponential experiment, vary r with the scroll bar and watch how the shape of the 
probability density function changes. Now set r = 2, run the experiment 1000 times with an update 
frequency of 10, and watch the apparent convergence of the empirical density function to the 
probability density function.  

 6. In the exponential experiment, set r = 1. Run the experiment 1000 times, updating after each 
run. Compute the appropriate relative frequencies to empirically investigate the memoryless property

P(X > 3 | X > 1) = P(X > 2). 

 7. Show that the quantile function of X is  

F-1(p) = -ln(1 - p) / r for 0 < p < 1.
 

In particular, the median of X occurs at ln(2) / r, the first quartile at [ln(4) - ln(3)] / r, and the third 
quartile at ln(4) / r. 

 8. Suppose that the length of a telephone call (in minutes) is exponentially distributed with rate 
parameter r = 0.2.  

a. Find the probability that the call lasts between 2 and 7 minutes.  
b. Find the median, the first and third quartiles, and the interquatile range of the call length.  

 9. Suppose that the lifetime of a certain electronic component (in hours) is exponentially 
distributed with rate parameter r = 0.001.  

a. Find the probability that the component lasts at least 2000 hours.  
b. Find the median, the first and third quartiles, and the interquatile range of the lifetime.  

Moments 

The following exercises give the mean, variance, and moment generating function of the exponential 
distribution. 

 10. Show that E(X) = 1 / r. 

 11. Show that var(X) = 1 / r2.
 

 12. Show that E[exp(uX)] = r / (r - u) for u < r.
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The parameter r is known as the rate of the Poisson process. On average, there are 1 / r time units 
between arrivals, so the arrivals come at an average rate of r per unit time. Note also that the median 
is always smaller than the mean for the exponential distribution:  

ln(2) / r < 1 / r.  

 13. In the exponential experiment, vary r with the scroll bar and watch how the mean/standard 
deviation bar changes. Now set r = 0.5, run the experiment 1000 times with an update frequency of 
10, and watch the apparent convergence of the empirical mean and standard deviation to the 
distribution mean and standard deviation, respectively. 

 14. Suppose that the time between requests to a web server (in seconds) is exponentially 
distributed with rate parameter 2.  

a. Give the mean and standard deviation of the time between requests.  
b. Find the probability that the time between requests is less that 0.5 seconds.  
c. Find the median, the first and third quartiles, and the interquatile range of the time between 

requests.  

 15. Suppose that the lifetime X of a fuse (in 100 hour units) is exponentially distributed with 
P(X > 10) = 0.8.  

a. Find the rate parameter.  
b. Find the mean and standard deviation.  
c. Find the median, the first and third quartiles, and the interquatile range of the lifetime.  

 16. The position X of the first defect on a digital tape (in cm) has the exponential distribution with 
mean 100.  

a. Find the rate parameter.  
b. Find the probability that X < 200 given X > 150.  
c. Find the standard deviation.  
d. Find the median, the first and third quartiles, and the interquatile range of the position.  
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