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Analysis and Implementation 
of Hybrid Switching 

Kang G. Shin, Fellow, /E€€, and Stuart W. Daniel 

Abstract-The switching scheme of a point-to-point network determines how packets flow through each node, and is a primary 
element in determining the networks performance. In this paper, we present and evaluate a new switching scheme called hybrid 
switching. Hybrid switching dynamically combines both virtual cut-through and wormhole switching to provide higher achievable 
throughput than wormhole alone, while significantly reducing the buffer space required at intermediate nodes when compared to 
virtual cut-through. This scheme is motivated by a comparison of virtual cut-through and wormhole switching through cycle-level 
simulations, and then evaluated using the same methods. To show the feasibility of hybrid switching, as well as to provide a 
common base for simulating and implementing a variety of routing and switching schemes, we have designed SPIDER, a 
communication adapter built around a custom ASIC called the Programmable Routing Controller (PRC). 

Index Terms-Virtual cut-through switching, wormhole routing, hybrid switching, routing controllers, parallel and distributed 
multicomputers. 

1 INTRODUCTION 
HE effectiveness of a parallel or distributed system is T often determined by its communication network. Many 

distributed and parallel applications require the network to 
provide low latency communications in order to operate 
efficiently, while others may require the network to handle 
a large amount of traffic. In addition, the burden placed on 
the host to handle communication-related activities should 
be minimized. 

One of the key factors that determines how well a point- 
to-point network meets applications' requirements in these 
areas is its switching scheme(s). Wormhole [l] and virtual 
cut-through 121 switching are two common schemes for 
forwarding packets through a point-to-point interconnec- 
tion network. Both are "cut-through switching schemes 
that decrease packet latencies by immediately forwarding 
incoming packets to idle output links. In this paper, we 
compare the impact of each scheme upon packet latency, 
the maximum network throughput, and the resources re- 
quired for buffering packets at intermediate nodes. Based 
on this evaluation, we then propose and evaluate a 
"hybrid" switching scheme that combines the salient fea- 
tures of both schemes. 

Virtual cut-through and wormhole switching differ in 
how they handle packets that cannot immediately proceed 
to the next node because the appropriate output links are 
busy with other traffic. Virtual cut-through switching buff- 
ers blocked packets at the local node and releases the links 
currently held by the packet, but wormhole switching stalls 
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the packet in the network, while holding all links the packet 
has acquired. Since packets never buffer at intermediate 
nodes, nodes only handle packets destined for them. Stall- 
ing the packet in the network, however, consumes network 
resources to "store" the packet, effectively dilating the 
packet's length. Virtual cut-through, on the other hand, 
minimizes the network bandwidth consumed by packets, 
but uses memory and control resources at intermediate 
nodes to store blocked packets. 

In this paper, virtual cut-through and wormhole switching 
are shown to have their strengths and weaknesses. Virtual 
cut-through switching provides better throughput and lower 
latencies at heavy loads at the cost of buffering blocked in- 
transit packets, while wormhole switching only requires a 
few small flit buffers in the router and completely isolates 
nodes from in-transit packets. One alternative to improving 
wormhole switching's performance at higher loads would be 
to selectively buffer blocked packets; this would free some 
network resources sooner while still isolating nodes from 
much of the in-transit traffic. 

Virtual cut-through and wormhole switching are both 
cut-through switching schemes, but their performance may 
differ drastically under different traffic loads. For low traf- 
fic loads, the latencies of both schemes are almost identical. 
This is because in a lightly-loaded network the probability 
of blocking is very small and the latency is then determined 
primarily by the length of the packet and the link transmis- 
sion time. As the traffic load increases, however, the prob- 
ability of blocking increases, as does the likelihood of 
blocking other packets. Consequently, networks that use 
wormhole switching generally saturate from contention 
well before they exhaust their bandwidth [3], [4]. The ef- 
fects of this contention can be reduced by increasing the 
number of virtual channels per physical link [4]. Since ei- 
ther wormhole or virtual cut-through switching may yield 
shorter packet latencies, depending on the network traffic 
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and the number of hops the packet must travel, it is ad- 
vantageous to support both switching schemes in order to 
adapt to a wider range of circumstances. Furthermore, a 
network which can dynamically switch from one scheme to 
the other can respond to the offered traffic load and the 
needs of the system's applications. 

To address these tradeoffs, Section 4 introduces and 
evaluates a hybrid switching scheme which balances the 
use of network resources against the use of memory re- 
sources for storing blocked packets. This hybrid scheme 
decides whether to buffer or stall blocked packets based on 
a field within the routing header; this field identifies the 
number of links the packet can hold while stalling in the 
network. If this threshold is exceeded, the blocked packet 
buffers. 

To demonstrate the feasibility of supporting multiple 
schemes on a single platform, Section 2 describes SPIDER, a 
front-end communication interface that supports a wide 
range of routing and switching schemes. In Section 3, we 
compare the performance of virtual cut-through and 
wormhole switching operating on SPIDER. This compari- 
son focuses on three metrics: the mean communication la- 
tency, the memory resources required by each scheme, and 
the maximum achievable throughput of the network. In 
Section 4, we introduce hybrid switching and evaluate it 
relative to both virtual cut-through and wormhole switch- 
ing. The paper concludes with Section 5, which summarizes 
our main contributions and future directions. 

2 A FLEXIBLE ROUTER ARCHITECTURE 
In order to isolate and take advantage of the differences in 
performance between cut-through switching schemes, we 
have developed SPIDER (Scalable Point-to-Point Interface 
DrivER) [51, 161, a communication adapter that impleiments 
multiple switching schemes. SPIDER is microprogramma- 
ble with a wide range of routing and switching schemes, 
providing an ideal platform for experimenting with and 
comparing routing and switching schemes. 

2.1 Existing Router Atchitectures 
Several routers that use wormhole switching have been 
developed [l], [7], [SI, [9]. In general, the design of these 
routers has emphasized speed and simplicity, with the 
routing algorithm hardwired into the system. Each router 
only supports a small number of links, allowing a crossbar 
to be used to transfer data without internal blocking. Fur- 
thermore, the short internode distances allow flow control 
and parallel internode links to be efficiently implemented. 
The Vulcan Switch chip [lo] uses an interesting variation, 
by adding a central dynamically allocated queue to the 
switching element. This queue improves throughput by 
buffering "chunks" of packets in the blocking switch, rather 
than buffering the fIits in several different switches and 
blocking those channels. 

Virtual cut-through routers typically provide better 
throughput under heavy loads at the cost of increased 
buffer requirements. The Mayfly Post Office 1111 uses sev- 
eral (hardwired) routing algorithms and provides an inter- 
nal buffer for packets that cannot cut through, but only 
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supports virtual cut-through switching. It uses a sha:red 
internal bus to transfer packets between ports and alsc to 
and from the buffer pool. The Chaos router [12] also pro- 
v:ides an internal buffer for packets, but this buffer is much 
smaller-the router deroutes packets to avoid blocking or 
dropping them. 

2.2 SPIDER 
SPIDER is designed to support multiple switching schemes, 
including store-and-forward, virtual cut-through, and 
wormhole switching. Supporting the first two schemes re- 
quires that the node be able to buffer several packets si- 
multaneously so that packets can be received without 
blocking. SPIDER provides this using a demand-driven, 
time-multiplexed memory interface that shares memory 
bandwidth between all active injection and reception ports. 
Similarly, cut-through switching schemes require a high- 
bandwidth switch for transferring data between incoming 
and outgoing channels. In SPIDER, this is provided by a 
demand-slotted, time division-multiplexed (TDM) bus with 
bandwidth equal to the physical links. Access to the bus is 
regulated by a binary priority-tree arbiter [131,[141. 

2,.3 SPIDER Components 
As shown in Fig. 1, SPIDER manages bidirectional commu- 
n.ication with up to four neighboring nodes, with three 
virtual channels [4] on each unidirectional link. The pro- 
g,rammable routing controller (PRC), a 256-pin, 0.9 x 0.8 cm 
custom integrated circuit, is the cornerstone of SPIDER [5], 
[IS], [13]. The 12 Transmitter Fetch Units (TFUs) control 
packet transmission, while the four microprogrammable 
routing engines coordinate packet reception. Each routing 
engine performs low-level routing and switching op'xa: 
tions for a single incoming link, with the three virtual 
channels sharing the custom processor. The Network Irrter- 
face Transmitters (NI TXs) and Network Interface Receivers (NI 
RXs) perform the necessary interleaving of virtual channels 
to and from the physical links, on a word-by-word basis.' 
The network interface (NI) performs the media access and 
flow control on four pairs of AMD TAXI chips [15]; these 
TAXI transmitters and receivers control the physical links, 
providing a low-cost fiber-optic communication fabric. Al- 
ternately, the NI's external protocols support direct, parallel 
connection of transmission to reception ports. 

l r  
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Fig. 1. SPIDER. 

1. To reduce the package size of the PRC, a pair of outgoing links sh,ires a 
single set of pins; internally, the PRC operates at 30 MHz, twice the link 
speed, to serve each outgoing link at its full rate. 
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SPIDER treats outbound virtual channels (NI TXs) as in- 
dividually reservable resources, allowing the device to 
support a variety of routing and switching schemes 
through flexible control over channel allocation policies. 
The reservation status unit handles requests from arriving 
packets to reserve or relinquish NI TXs, providing low-level 
support for both connection-oriented and connectionless 
transfer on each virtual channel. An arriving packet can 
invoke a variety of policies for selecting and reserving out- 
bound channels. Upon receiving the header bytes from the 
incoming channel, the routing engine decides whether to 
buffer, stall, forward, or drop the packet, based on its 
microcode' and the packet's routing header. A routing en- 
gine can respond to network congestion by basing its rout- 
ing decision on the reservation status of the outgoing vir- 
tual channels. By reserving multiple NI TXs, the PRC can 
forward an incoming packet to several output links simul- 
taneously, allowing SPIDER to support efficient broadcast 
and multicast algorithms. 

The host controls channel reservations for any packet 
stored in the buffer memory by assigning the packet to a 
particular TFU. The host transmits a packet by feeding this 
TFU with page tags, each of which includes the address of 
an outgoing page and the number of words on the page. 
Likewise, the host equips each NI RX with pointers to free 
pages in the memory, for storing arriving packets. The 
control interface also provides read access to an event 
queue that logs page-level activities on each channel. 

2.4 Basic Operation 
To illustrate the interaction between the host, SPIDER, and 
the network, consider how a message travels from the 
source node, cuts through an intermediate node, and ar- 
rives at the destination node. 

Transmission: When an application requests the host to 
transmit a message to another node, the host disassembles 
the message into multiple packets, where a packet consists 
of one or more (possibly noncontiguous) pages. Using the 
control interface, the host feeds page tags to the appropriate 
TFU to initiate packet transmission. After reserving the NI 
TX, the TFU fetches the 32-bit data words from each page. 
During this memory transfer, the PRC transparently accu- 
mulates a 32-bit cyclic redundancy code (CRC) for error 
detection. After sending the last data word of the packet, 
the TFU transmits a 32-bit timestamp, read from a counter 
on the PRC, followed by the CRC; the timestamp values 
facilitate clock synchronization and computation of end-to- 
end packet latencies. The NI TX transmits each of these 
words to the TAXI transmitter a byte at a time; the TAXI 
device converts each byte into a string of bits for transmis- 
sion on the serial link. 

Cut-through: Packet reception begins when data arrives at 
a TAXI receiver. The receiving NI RX initially forwards 
data to its routing engine until it has accumulated enough 
header words to make a routing decision for the packet. If 
the packet is destined for a subsequent node, the routing 

engine can try to forward the packet directly to the next 
node by reserving an NI TX. If the routing engine is able to 
establish a cut-through, the engine then sends the data it 
has accumulated to that transmitter and configures the NI 
RX to forward subsequent data words directly to the re- 
served NI TX, bypassing the routing engine entirely. When 
the packet has cleared the node, the NI RX automatically 
reconfigures itself to forward the next packet header to the 
routing engine. 

ReceptionfBuffering: When SPIDER stores the packet at 
the local node, however, the routing engine configures the 
NI RX to directly buffer the packet, reaccumulating the CRC 
as the data words travel to the memory interface. SPIDER 
writes these words into pages in the buffer memory and 
logs the arrival (and size) of each page in the PRC event 
queue. At the end of the final page of the packet, SPIDER 
appends the packet with a receive timestamp and logs a 
packet-arrival event indicating the outcome of the CRC 
check. If the packet has reached its destination, the host 
reassembles the pages into a packet and the packets into a 
message. Otherwise, the host schedules the packet for 
transmission to the subsequent node in its route. 

3 COMPARING WORMHOLE AND VIRTUAL CUT- 
THROUGH SWITCHING 

To more accurately compare the performance of the various 
routing and switching schemes, and also to evaluate the 
performance of SPIDER, we have developed a cycle-level 
discrete-event simulator [13], [16]. Written in C++, this 
simulator accurately models the flow of the individual 
bytes of packets through SPIDER. This captures features 
such as the low-level flow control, bus arbitration delays, 
and microcode execution time. While the simulator does 
not model the actual protocol software executing on the 
host, it does capture the effects of these protocols on pack- 
ets that buffer at intermediate nodes. 

This section presents the results of a set of experiments 
that vary the packet generation rate while holding other 
parameters constant. At each node, the inter-arrival time of 
packets for transmission conformed to a negative exponen- 
tial distribution. Packet destinations were uniformly dis- 
tributed across all of the nodes (except where otherwise 
specified). The simulations also used a fixed packet size of 
64 bytes. 

To focus the experiments on the switching scheme, all 
packets use a static, dimension-ordered routing scheme 
[17]. Furthermore, most of the simulations use an un- 
wrapped square mesh topology where only one virtual 
channel per link is required to prevent deadlock under 
wormhole switching. This allows the switching schemes to 
be compared with the same number of virtual channels. 

To collect the data, the network was first placed into a 
steady state and data collected for 2,000 packets at each 
node. For latency, the standard error of the mean is less 
than five cycles for the 95% confidence interval on all traffic 
loads. When the network is saturated, however, this steady 
state cannot be achieved. 

2. Each routing engine has a 256-instruction control store. Microprograms 
for typical routing-switching schemes require about 60 to 70 instructions to 
implement. 
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3.1 Latency 
In Fig. 2, the mean packet latency is shown as a function of 
the link utilization, which is given as a percentage of the 
maximum capacity of the networks physical links. When 
the offered load is low, the average packet latency is the 
same under both switching schemes. Wormhole, however, 
reaches saturation under lighter loads than virtual cut- 
through due to contention for channels, resulting in a dra- 
matic increase in the mean packet latency. Saturation occurs 
at a link utilization of 0.2 in this experiment. Other experi- 
ments have shown that these trends are not significantly 
affected by packet length or the topology of the network. 
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Fig. 2. Packet delivery latencies for virtual cut-through and wormhole 
switching. 

3.2 In-Transit Load 
While virtual cut-through can support a greater traffic load 
than wormhole, it also buffers packets at intermediate 
nodes. Each packet that buffers at a node consumes mem- 
ory resources for its storage and control resources to proc- 
ess the header. If packets are buffered within the switch 
itself, the buffer space is necessarily limited in size. External 
buffers (such as those used by the PRC), on the other hand, 
may be much larger but are generally slower. In addition, 
managing these larger buffers requires either host interac- 
tion or more hardware in the router. 

The relative costs of the two schemes are illustrated for a 
node-uniform traffic load on an unwrapped 8 x 8 square 
mesh in Fig. 3. This figure shows the average rate (in pack- 
ets per cycle, per node) of packets buffering at a node using 
virtual cut-through switching. This rate is composed of two 
components: the “in-transit” rate and the “destination” 
rate. The former is the average rate of packets that are des- 
tined for other nodes buffering at a node, while the latter is 
the average rate of packets buffering at a node that are des- 
tined for that node. The in-transit rate is the region between 
the destination rate (the lower curve) and the total rate of 
packets buffering (the higher curve). At low loads, almost 
all packets successfully cut through and the in-transit arri- 
val rate is very low. As the load increases, the probability of 
cut-through also drops, resulting in an increased in-transit 

packet arrival rate. When the network is in or near satura- 
tion, the arrival rate of in-transit packets surpasses the rate 
of packet generation. In this case, the load on the host for 
buffering and rescheduling these packets is severe. 
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Fig. 3. Rate of in-transit packet arrival. 

3.3 Maximum Achievable Throughput 
Wormhole and virtual cut-through switching are affected 
differently by packet distance. This can be directly sho’wn 
by varying the average number of hops that packets travel. 
This was accomplished through a hop-uniform destination 
mapping, where every packet travels the same number of 
hops. In order to spread traffic uniformly through the net- 
work, a wrapped 8 x 8 square mesh (torus) is used with two 
virtual channels per link (the minimum to prevent deadlock 
under dimension-ordered routing). 

Fig. 4 shows the maximum throughput (in packets per 
cycle) of wormhole switching as a function of the hop count 
of packets. Using wormhole switching, the network satu- 
rates under a lighter link load as the packet distance in- 
creases. This is due to increased contention: packets are 
traveling more hops, and thus stalling more links when 
blocked. This has a snowball effect: blocked packets stall 
more links, and block other packets that may then block 
still other links. The overall effect, therefore, is to degrade 
t.he maximum achievable throughput. Virtual cut-through 
switching, on the other hand, does not exhibit this behavior, 
as it uses memory resources and not network resources to 
stall blocked packets. Its peak throughput is dependent 
upon the link load and not upon packet distance. 

The maximum throughput of a network using wormhole 
switching can be increased by adding virtual channels [41, 
or by significantly enlarging the number of flits buffered at 
each node. Adding virtual channels on each link improves 
throughput by allowing packets to ”bypass” stalled pack- 
ets. The primary cost is in the increased complexity of the 
crossbar connecting the reception channels to the transmis- 
sion channels-either the size of the crossbar must be in- 
creased, or the arbitration becomes more complex 1181. 
Giving each virtual channel a flit buffer large enough to 
hold one packet should significantly improve throughput- 



688 IEEE TRANSACTIONS ON COMPUTERS, VOL. 45, NO. 6, JUNE 1996 

each blocked packet only stalls a single link. Similarly, buff- 
ers capable of holding half of a packet's flits will prevent 
blocked packets from stalling more than two links. 
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Fig. 4. Maximum throughput for wormhole switching under a hop- 
uniform traffic load. 

3.4 Wormhole Switching with Large Buffers 
The previous discussions and results have assumed that 
packets are sufficiently long, so that their "tail" of reserved 
channels stretches from the current head of the packet back 
to the source. By increasing the portion of the packet buff- 
ered at each node, however, the length of the tail can be 
reduced. 

Fig. 5 shows the average packet latency for wormhole 
switching with up to eight words (half of a packet) buffered 
at the input of each node. This limits the maximum number 
of links that a packet can hold while stalling to two. This 
reduction results in a significant increase in performance- 
both the average packet latency (at higher loads) and the 
maximum throughput of the network are increased when 
compared to wormhole switching. The "buffered" worm- 
hole scheme also provides a lower average packet latency at 
mid-range loads than virtual cut-through. This is due to the 
design of the PRC-packets that buffer at an intermediate 
node under virtual cut-through switching must be com- 
pletely buffered prior to retransmission. Since packets are 
still in the network with the buffered wormhole scheme, 
they can be forwarded to the next node as soon as the link 
comes free. The effect is also exaggerated by the disparate 
speeds of the PRC's memory and network interfaces. 

One major drawback to providing such large buffers for 
packets at the inputs is the cost of implementing them for 
larger packet sizes and higher numbers of virtual channels. 
Since the cost is directly proportional to the largest packet 
size permitted in the network and the number of virtual 
channels on each link, the next section will introduce a hy- 
brid switching scheme that uses a central (off-chip) buffer 
for packets that is cheaper to implement and can be much 
larger in size. 

There are significant differences in the performance of 
wormhole and virtual cut-through switching under differ- 
ent traffic loads. Wormhole switching requires fewer buff- 
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Fig. 5. Average packet latency for "buffered wormhole. 

ers than virtual cut-through, but its maximum throughput 
is relatively limited, dependent on packet distance, and 
saturates under relatively light traffic loads. At heavy loads, 
virtual cut-through (as predicted) outperforms wormhole, 
but the cost of buffering in-transit packets can cancel out 
the performance gains. The following section presents a 
hybrid switching scheme that addresses the shortcomings 
of both schemes. 

4 EVALUATING HYBRID SWITCHING 
This section examines how hybrid switching provides a 
level of performance that bridges the gap between virtual 
cut-through and wormhole switching. We evaluate hybrid 
switching's performance relative to these schemes using the 
same metrics as the previous section. 

4.1 Hybrid Switching 
A "hybrid" switching scheme dynamically combines 
wormhole and virtual cut-through switching, using both 
network and memory resources to store blocked packets. 
There are a number of potential hybrid switching schemes 
that meet this requirement. To implement these schemes 
efficiently, however, the switching decisions should be 
based on information available in the packet header or at 
the local node. 

In Section 3.3, we saw that increasing the number of links 
held by packets degraded the throughput achievable with 
wormhole switching. One method for improving wormhole's 
performance under heavier loads would be to relieve con- 
tention by buffering packets that cannot advance yet are 
stalling several links behind them. This scheme would avoid 
the long "tails" of stalled links held by blocked packets, re- 
ducing contention. Such a switching scheme would dynami- 
cally combine virtual cut-through and wormhole switching 
to provide improved packet latencies and a higher achievable 
throughput than wormhole alone, without buffering packets 
as often as virtual cut-through. 

The hybrid algorithm used in the remainder of this pa- 
per decides whether to buffer or stall blocked packets based 
on a field within the routing header; this field identifies the 
number of links the packet can hold while stalling in the 
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network. If this threshold is exceeded, the blocked packet 
buffers. The system can dynamically vary this threshold 
depending on the packet’s needs or the current network 
load by changing the initial value of this header field. 

Implementing the scheme is simple: a field in the routing 
header i s  set to k when the packet is generated and i-hen 
decremented after every hop until it reaches 0. While k > 0, 
the packet will stall if blocked. Once k = 0, the packet buff- 
ers when blocked. Buffering the packet resets k to its initial 
value. Virtual cut-through and wormhole switching can be 
viewed as special cases of this algorithm: wormhole 
switching is equivalent to hybrid switching with k = 00, 
while hybrid switching with k = 0 effectively implements 
virtual cut-through switching. 

The requirements for supporting hybrid switching are 
not much greater than those for supporting wormhole or 
virtual cut-through switching alone. When a router receives 
a packet, it must be able to determine how many hops the 
packet has traveled. If the link reservation fails, the router 
can then choose to buffer the packet. Due to the reduced in- 
transit load, the buffer requirements for hybrid switching 
are significantly reduced compared to virtual cut-through 
switching. 

In the following simulations, all packets use the same 
dimension-order routing as in Section 3. As before, the 
simulations use a fixed packet size of 64 bytes, except 
where indicated otherwise. 

4.2 Latency 
In Fig. 2, we saw that wormhole switching saturates from 
contention well before virtual cut-through, resulting in 
dramatically increased latencies. By preventing blocked 
packets from holding more than k links, hybrid switching 
decreases contention. The effects are shown in Fig. 6, which 
compares the average packet latencies for wormhole 
switching, hybrid switching with k = 1, hybrid switching 
with k = 2, and virtual cut-through switching. 
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Fig 6 Average packet delivery latencies for hybrid switching, com- 
pared to virtual cut-through and wormhole switching 

At very low loads, with a low probability of blocking, 
the mean latencies of the schemes are similar. Once this 
probability rises, however, hybrid switching provides 
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lower packet latencies than wormhole switching. As h de- 
creases, the network can handle a higher offered load with- 
out saturating. Higher values of h will resemble pure 
wormhole switching more closely-saturating at lower of- 
fered loads. These trends also hold over a range of packet 
sizes and network topologies. 

The effects of buffered wormhole switching (as discussed 
in Section 3.4) are similar to hybrid switching, as both 
schemes limit the number of links a packet can hold while 
blocking in the network. They differ in one main aspect- 
hybrid switching may completely remove a packet from the 
network prior to its destination. This is both a plus and a 
dr,iwback-hybrid switching can use a large external buffer 
for packets, allowing larger packet sizes to be supported. At 
the same time, use of this buffer may prevent packets from 
being retransmitted until they have been completely re- 
ceiwed, depcnding on the router’s implementation. 

Fig. 7 compares the buffered wormhole scheme with hy- 
brid switching, for k = 1 and k = 2. As expected, all three 
sclhemes exhibit similar performance, although buffered 
wormhole slightly outperforms both hybrid schemes at 
lower loads. As with virtual cut-through, this difference 
may be attributed to the design of the PRC, which does not 
allow packets that buffer to perform partial cut-throughs. 
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Fig. 7. Average packet delivery latency for hybrid switching, compared 
to “buffered” wormhole switching. 

4.3 In-Transit Load 
One of the primary advantages of wormhole switching is 
tkiat it completely insulates nodes from in-transit traffic; the 
cost, however, is the consumption of network bandwidth 
by blocked packets. Virtual cut-through switching utilizes 
the network’s bandwidth more efficiently, but can require 
nodes to handle large amounts of in-transit traffic (as 
shown in Section 3) .  By only buffering some blocked pack- 
ei s, hybrid switching significantly reduces this load. 

A comparison of the in-transit load for hybrid switching 
and virtual cut-through switching is shown in Fig. 8. This 
graph shows the arrival rate of in-transit packets for a range 
of offered loads. Even at low loads, with a very high prob- 
a’bility of cut-through, hybrid switching significantly re- 
duces the rate of in-transit traffic when compared to virtual 
out-through. As the offered load increases, the probability 
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of cut-through decreases and the in-transit load increases. 
At high loads, virtual cut-through switching uses at least 
h + 1 times more memory resources than the hybrid 
scheme, since the hybrid algorithm allows packets to buffer 
at most once every k + 1 hops. The actual reduction in buff- 
ering is often larger. For example, a packet traveling five 
hops using virtual cut-through may buffer up to four times, 
while hybrid with k = 2 will only buffer it at most once. 

-. 
$ 0004 1 
8 
S I  

c 

Fig. 8. In-transit packet load for virtual cut-through and hybrid switching. 

4.4 Maximum Achievable Throughput 
Fig. 9 shows the maximum achieved throughput (in packet- 
hops per cycle) as a function of the number of hops traveled 
by each packet. As in Fig. 4, the applied traffic load is hop- 
uniform-every packet travels the same number of hops. 
The maximum throughput is only shown for those dis- 
tances greater than k-when each packet travels k hops or 
less, hybrid switching is indistinguishable from wormhole 
switching. 

Unlike wormhole switching and virtual cut-through, 
however, the maximum throughput for hybrid switching 
increases with the number of hops packets travel. This phe- 
nomenon can be explained by examining the proportion of 
packets in each case that have traveled more than k hops 
without buffering. As the average number of hops traveled 
by each packet increases, the percentage of packets that are 
willing to buffer if blocked increases. This alleviates con- 
tention in the network, preventing early saturation. 

4.5 Virtual Channels 
Dally [4], [171 introduced virtual channels to prevent 
deadlock in wormhole switched networks. Since then, vir- 
tual channels have been used to improve network through- 
put [4] and to partition different traffic classes to minimize 
interactions [19]. 

Virtual channels improve network throughput in worm- 
hole-switched networks by allowing packets to bypass 
other blocked packets, thus utilizing otherwise idle network 
bandwidth. Since hybrid switching may also idle links by 
stalling packets in the network, it can also benefit from 
virtual channels. Fig. 10 shows the effects of increasing the 
number of virtual channels on the average packet latency 
and peak throughput of hybrid switching. Under lighter 
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Fig. 9. Maximum throughput under a hop-uniform traffic load. 

loads, increasing the number of channels has little impact 
on the mean packet latency. The primary effect of increas- 
ing the number of channels is an increase in the maximum 
throughput which the network may support. The decreas- 
ing benefit of higher numbers of virtual channels is also 
seen for similar simulations using wormhole switching. 

In wrapped topologies, many wormhole routing 
schemes will idle or underutilize virtual channels to pre- 
vent deadlock. While packets that will stall when blocked 
must utilize deadlock-free routing schemes, packets where 
k has reached 0 may take advantage of available channels 
without regard to preventing deadlock, since they will 
buffer if blocked. This increases the probability of cut- 
through for packets by considering channels that could not 
otherwise be used. 

4.6 Discussion 
The simulations in this paper did not restrict the number of 
buffers at each node. When the packet buffers are imple- 
mented on the same die as the router, the number and size 
of the buffers is restricted. By buffering fewer packets than 
virtual cut-through, hybrid switching reduces the buffer 
space needed. In addition, hybrid switching schemes can 
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Fig. 10. Effects of increasing available virtual channels 

take the available buffer space into account when deciding 
whether to buffer or stall a blocked packet. By buffering 
only packets that are currently holding several links and 
stalling others, hybrid switching can effectively utilize lim- 
ited buffers. 

This section has evaluated only one variant of hybrid 
switching. Another promising hybrid scheme uses a 
“credit” scheme to determine when to buffer a blocked 
packet. Under this scheme, each packet header contains a 
field indicating the maximum number of times it can be 
buffered-every time the packet buffers, the field is decre- 
mented. Once this value reaches 0, the packet will stall in 
the network. This scheme allows packets to stall more 
channels, but buffering other packets should prevent net- 
work congestion. The combination of a restriction on the 
number of times a packet can buffer with k-hop hybrid 
switching also holds promise. 

Hybrid switching also allows the system to dynamically 
determine (on a per-packet or system-wide basis) whether 
network or buffer resources are used to store blocked pack- 
ets. This can be implemented by setting the initial value of k 
at the source of the packet to reflect whether the packet 
should consume more network or buffer resources when 

blocked. For example, large packets that will be traversing a 
large number of links may initially use larger values of k to 
reduce the number of times they buffer. On the other hand, 
systems requiring high bandwidth can use smaller values 
of ,h to shift the load to the networks buffers. 

Hybrid switching uses both network and memory re- 
sources to store blocked packets, addressing the shortcorn- 
ings of other cut-through switching schemes. Using net- 
work resources to store the packets can often have a snow- 
ball1 effect, creating contention throughout the network that 
limits throughput. Schemes that use memory resources, on 
the other hand, increase the system’s communication over- 
head. Through hybrid switching, we attempt to balan’ze 
these concerns. Potentially, the switching decision could be 
also based on the distance still needs to travel, or the nurn- 
beir of buffers available at the local node. In addition, the 
decision could be time-based: packets could stall for some 
smlall amount of time if blocked in the hopes of being able 
to cut through, and then buffer. Alternately, packets that 
are blocked just short of their final destination could block 
in the network, while others that are blocked near their 
soiirce would buffer. This would keep packets from block- 
ing in the network more than once or twice. 

5 CONCLUSIONS 
The switching scheme used by a point-to-point network it, a 
major factor in determining the latency, throughput, and 
overhead of communication. The various cut-through 
switching schemes all improve latency over store-and- 
forward switching (unless the network is saturated), but 
each has its strengths and weaknesses. 

As we have shown in this paper, virtual cut-through 
does not limit the achievable network throughput but does 
impose a significant load on nodes for storing and retrans- 
mitting in-transit packets. Wormhole, on the other hand, 
stadls blocked packets in the network and does not require 
large buffers for blocked packets, it is cheaper to imple- 
ment. Its maximum throughput, however, is limited by 
contention for outgoing links. 

In this paper, we have introduced the concept of hybrid 
switching, which dynamically chooses whether to buffer or 
staill blocked packets in order to balance resource con- 
sumption and improve network throughput. Using SPIDER 
and its simulator model, we plan to explore the potential of 
a inumber of hybrid switching schemes. In particular, we 
plan to examine the effects of different communication 
patterns on the switching schemes. Other investigations 
will compare hybrid switching with wormhole switching in 
the presence of packet-sized input buffers, fixed-size sharl-d 
buffers, and additional virtual channels. 

The hybrid switching scheme presented in this paper coim- 
bines features of both wormhole and virtual cut-through 
switching by buffering a small fraction of blocked packets and 
limiting the number of links that blocked packets can hold. 
This significantly reduces the buffer requirements for in-transit 
packets when compared to virtual cut-through, while provi d- 
ing higher maximum throughput than wormhole switching. 
In this manner, hybrid switching bridges the performance gap 
between other cut-through switching schemes. 
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