
Copyright 2001 IEEE.

Appeared in the IEEE/ACM International Symposium on Cluster Computing and the Grid, May 2001, pp. 194-201.

Available at <http://www.cs.dartmouth.edu/~dfk/papers/oldfield:armada.pdf>.

Armada: A parallel file system for computational grids

Ron Oldfield and David Kotz

Department of Computer Science
Dartmouth College
Hanover, NH 03755

{raoldfi,dfk}@cs.dartmouth.edu

Abstract

High-performance distributed computing appears to be
shifting away from tightly-connected supercomputers to
“computational grids” composed of heterogeneous systems
of networks, computers, storage devices, and various other
devices that collectively act as a single geographically dis-
tributed “virtual” computer. One of the great challenges
for this environment is providing efficient parallel data ac-
cess to remote distributed datasets. In this paper, we discuss
some of the issues associated with parallel I/O and compu-
tatational grids and describe the design of a flexible par-
allel file system that allows the application to control the
behavior and functionality of virtually all aspects of the file
system.

1 Introduction

An exciting trend in high-performance distributed com-
puting is the development of widely-distributed networks
of heterogeneous systems and devices, known as compu-
tational grids. Applications for these environments use
high-speed networks to logically assemble collections of
resources such as scientific instruments, supercomputers,
databases, and so forth. One important challenge facing
grid computing is efficient parallel I/O for grid applications.
This effort is particularly challenging because most earlier
research for parallel I/O and parallel file systems targeted
tightly-connected computer systems that are much different
than grid environments.

Traditional parallel file systems for tightly-connected
computer systems typically restrict control of the function-
ality to the kernel and privileged servers. Applications not
trusted by the operating system are limited to the inter-

This work was supported by Sandia National Laboratory under con-
tract DOE-AV6184.

face and implementation provided by the privileged soft-
ware. Computational grids, unlike tightly-connected sys-
tems, have heterogeneous components, unpredictable per-
formance variations, and span multiple administrative do-
mains. In such an environment, centralized control of re-
sources and functionality is not practical or efficient.

The Galley parallel file system [14] proposed that the tra-
ditional functionality of parallel file systems be separated
into two components: a fixed core, standard on all plat-
forms, that encapsulates only primitive abstractions and in-
terfaces, and a set of high-level libraries to provide a vari-
ety of abstractions and application-programmer interfaces
(APIs). While this approach is more flexible than conven-
tional parallel file systems, the core API still resides on the
compute nodes. Applications have no control over the poli-
cies implemented on the I/O nodes. The Armada paral-
lel file system adds this flexibility by allowing application-
supplied code to run on the compute nodes, I/O nodes, and
intermediate network nodes. The system decides where to
place the code based on resource availability, cost, perfor-
mance, or user preference. We illustrate the evolution from
conventional parallel file systems to Galley and then to Ar-
mada in Figure 1.

In Armada, the core file system is extremely simple:
there is no caching, prefetching, or remote access. The data
servers provide a (local) interface to open, close, read and
write data and arbitrate among server programs competing
for processor time, memory, disk access, and network ac-
cess. In short, the core system focuses on the shared aspects
of the file system.

There are many reasons to allow application code to
run outside the client node. I/O nodes can implement
application-specific caching and prefetching policies to im-
prove disk usage. Data-dependent mapping functions can
distribute file data in an application-specific way, for exam-
ple, in applications with a data-dependent decomposition of
unstructured data [6]. I/O nodes can apply data-reduction
filters to save network bandwidth and compute-node mem-

1

Core System

Traditional

Compute
Nodes

I/O Nodes

Network
Nodes

Galley Armada

Core SystemCore System

Library

Application Application

Library

Application

Figure 1. Our proposed evolution of paral-
lel file-system structure allows application-
control over the functionality on the compute
nodes, the I/O nodes, and intermediate net-
work nodes.

ory [3]. I/O nodes can rearrange file blocks between disks
without passing data through the client nodes. In short,
there are many ways to optimize memory and disk activ-
ity on the data servers, and reduce disk and network traffic,
by moving what is essentially application code closer to the
data.

2 Armada system design

We designed the Armada parallel file system for grid
applications that need access to large, remote, distributed
datasets. Users access remote datasets through a network
of distributed application objects. Each object, known as a
ship, provides a small piece of functionality that helps de-
fine the behavior and structure of the overall system. Ap-
plications can move functionality closer to the data by ex-
ecuting ships on remote hosts. The goals of our design are
to provide a simple architecture for building and maintain-
ing the application-specific ships, and to provide a secure,
robust environment on which to deploy the ships.

2.1 Architecture

In Armada, the core functionality of the file system lies
on the processors that host ships. The system code, called
a harbor, is layered on top of the host’s operating system
and can exist on machines near the client (client nodes), or
on machines near the data (I/O nodes), or on any machine
between the clients and the data (network nodes). In all
cases, harbors provide a secure execution environment that
allows ships to access the host CPU, memory, and network
resources. Harbors on an I/O node provide additional func-
tionality to access to the host file system.

2.2 Security

Armada provides authentication and authorization ser-
vices through a security manager known as the harbor mas-
ter. Before installing an untrusted ship on a harbor, the har-
bor master authenticates the client wishing to install the ship
and authorizes use of the host resources based on the iden-
tity of the client and on the security policies set by the host.
We discuss the details of our implementation in Section 4.1.

2.3 Blueprints

The metadata used to describe the arrangement of ships
on the network is called a blueprint. Unlike traditional
file systems, Armada does not provide specific storage or
a namespace for this metadata. Blueprints can be stored
on conventional file systems, web servers, databases, or
any other location; one typical approach would be to store
blueprints in files on a Unix workstation. The system
storing the blueprint provides the necessary access-control
mechanisms for the blueprints, and Armada provides se-
curity at the harbors to prevent unauthorized clients from
accessing data represented by the blueprints. We do not
prevent authorized clients from accessing data through ar-
bitrary blueprints; however, the application will likely need
to know the correct organization and layout of the data to
use it effectively. This approach is not unlike the approach
used by most file systems. For example, a Unix application
may access data within a Unix file as sequence of bytes,
even though the format of the data may be more structured.
Users and applications typically infer the format of a Unix
file through a filename suffix (e.g., .gif, .tar, .zip), a file
header, or through prior knowledge by the application.

Figure 2 shows examples of some simple blueprints. In
the blueprint illustrations in this document, we show the
clients on the left and the servers on the right, with Armada
ships between. The first blueprint provides access to data
stored on a single disk. The second blueprint represents a
distributed file, and the third blueprint shows how an appli-
cation might modify the second blueprint to include caching
functionality and an application-specific interface.

In the examples in Figure 2, solid lines show the con-
trol flow (the flow of requests), and the dashed lines show
the data flow for reading the file. In a proper implementa-
tion, each ship should forward requests, split and forward
requests, or generate new requests. For example, the cache
ship from Figure 2-c generates a new data request every
time a cache miss occurs. The distribution ship splits re-
quests from the cache into smaller sub-requests and for-
wards the sub-requests to the appropriate segment ship (we
discuss segment ships in Section 3.1). While the control
flow includes every ship in the graph, data only needs to
pass through ships that generate new requests. For exam-

2

Client Seg

(a)

Client Distrib
Seg

Seg

Seg

Seg

(b)

Client

CacheAPI
Client

Client

Client

Distrib
Seg

Seg

Seg

Seg

(c)

Figure 2. Example blueprints in Armada: (a)
shows a blueprint providing simple access to
a single file segment; (b) shows a blueprint
providing access to a distributed file; (c) ex-
tends the blueprint from (b) by adding an
application-specific cache and interface.

(a) (b)

Figure 3. The types of subgraphs in a series-
parallel digraph: (a) shows a sequential sub-
graph and (b) shows a parallel subgraph.

ple, the data does not need to flow through the distribution
ships from Figure 2-c, but it should pass through the cache
and the API ships. An implementation that allows data to
bypass some of the ships will make fewer data copies and
remove potential bottlenecks in the network.

We can express any legal control-flow graph as a series-
parallel directed tree (SP tree). In an SP tree, a vertex is
either a ship or a subgraph. Subgraphs take two forms: a
sequential subgraph, or a parallel subgraph. A sequential
subgraph (shown in Figure 3-a) represents a series of con-
nected vertices. A parallel subgraph (Figure 3-b) consists
of a set of simultaneous vertices, connected to a source on

the left and a sink on the right. By expressing the arrange-
ment of ships in series-parallel form, we convert a poten-
tially complex network graph into an easier to manage tree.
Figure 4 illustrates this conversion.

The data-flow graph is technically a subgraph of the
control-flow graph and can be expressed as a separate
series-parallel tree. Rather than supporting two separate
graph representations, it is often more convenient to estab-
lish the data-flow graph at runtime. In Section 4.3, we dis-
cuss such an implementation.

2.4 Accessing data in Armada

Unlike traditional file systems that allow access to data
with a single “open” call, Armada requires a two-step pro-
cess. First, the programmer constructs a blueprint describ-
ing the arrangement of ships in the graph. Second, the sys-
tem deploys the ships to the network and thus provides ac-
cess to the remote data. We discuss each of these steps in
turn.

There are two ways to construct ship graphs in the Ar-
mada system: the programmer can build them at runtime us-
ing a graph-construction library, or the user can build them
off-line using a graphical interface. Both the runtime library
and the graphical interface allow the application, or user, to
construct and connect the various types of SP-tree vertices.
One can construct a blueprint from scratch, or download an
existing blueprint and dynamically add application-specific
functionality by attaching new ships to the existing graph.
For example, an application may want to apply a filter near
the data, or access data through a different interface. In such
a case, the application could construct a new two-vertex se-
ries object, with the application-constructed graph as the
left vertex and the downloaded graph as the right vertex.

After constructing the blueprint, the application tells the
system to deploy the ships to the harbors. Our algorithm
recursively traverses the SP tree, starting at the root, and
checks for three cases: a ship, a series, or a parallel vertex.
If the vertex is a ship (the base case), the algorithm finds the
harbor specified by the ship representation, installs the ship
on the harbor, establishes communication links between the
new ship and the list of ships to the right, and returns the
ship as a list of size one. If the vertex is a series, we re-
cursively deploy and connect the vertices in the series from
right to left and return the list of ships from the left-most
vertex. In the third case, we recursively deploy the vertices
in the parallel group and return the cumulative list of ships
deployed by those vertices.

3 Application-specific functionality

The task of the application or library developer is to de-
cide what functionality is required and to implement that

3

Client

D2

Seg

Seg

Seg

D3
Seg

Seg

D1

Client

Client Cache

Cache

Cache s

s

s

p

p
p

p

(a)

 S

 P P D1

Cache Cache Cache S

D2 P

Seg Seg Seg

 S

D2 P

Seg Seg

(b)

Figure 4. Subfigure (a) shows an Armada blueprint broken into series-parallel vertices. Subfigure (b)
shows the series-parallel tree representation of the Armada blueprint.

Armada
Ships

Optimization
ships

 Cache

 Prefetch

 Compression

Segment

 Replication

 Distribution

Structural
Ships

Filter
Ships

Interface
ships

 Matrix

 String

 Line

 Unix file I/O

 Data Correlation

 Data conversion

 Data aggregation

Figure 5. Hierarchy of Armada ship classes.

functionality in the form of Armada ships. To aid the devel-
oper, the class hierarchy in Figure 5 illustrates some basic
functionality.

In our hierarchy, Armada ships fall into one of four cat-
egories: structural ships that describe the organization and
layout of the data, optimization ships that attempt to im-
prove performance, filter ships that manipulate the data, and
interface ships that provide semantic meaning to the data.
We discuss each type in turn.

3.1 Structural ships

Structural ships describe the organization of data onto
distributed data servers. They can describe application-

specific distributions of parallel files, provide replication
management, or combine separate existing datasets into
federations of datasets. In our proposed ship hierarchy, we
present three types of structural ships: segment ships, dis-
tribution ships, and replication ships.

Segment ships interact directly with remote storage
servers to provide access to file segments stored on the data
servers. A segment is a sequence of bytes, typically stored
as a file in a local conventional file system. Typically, the
segment ship object is loaded on the harbor containing the
segment data. Implementations of segment ships process
requests by reading and writing data through the local file
system interface provided by the harbor.

Distribution ships define an application-specific map-
ping of data to other ships. A specific example would be
a distribution ship that provides a simple striping algorithm
for mapping byte requests to an array of segment ships. An-
other implementation could use a table, instead of a strip-
ing algorithm, to map portions of an incoming request to
lower-level ships. Developers could also implement com-
plex “nested” distribution strategies by layering distribution
ships on top on one another. For example, consider an appli-
cation that sums the contents of two existing distributed files
and sends the result to the client. We illustrate the graph for
such an application in Figure 6. Our application uses two
types of distribution ships: a distribution ship to direct re-
quests to the proper file (labeled D1 in the figure), and a
distribution ship to direct requests to segment ships to re-
trieve the portions of the file needed by the application (D2
in the figure).

A third type of structural ship provides support for repli-
cation of data. Replication can improve performance and

4

Client

D2
Seg

Seg

Seg

Seg

D2 Seg

Seg

Seg

D1Sum

server− side
functionality

client− side
functionality

File
1

File
2

Figure 6. The graph shows application that
uses nested distribution ships to sum the
contents of two separate distributed files.

fault tolerance for “read-mostly” datasets. By increasing the
number of locations of the data set, we reduce the chance of
the data being unavailable because of a network or server
failure. We can also use replicas to distribute load by for-
warding requests to the least-used storage server, or to the
server with the fastest network connection. Such an im-
plementation could use performance tools like the Network
Weather Service [18] or Netlogger [16] to decide where to
forward requests.

3.2 Optimization ships

Optimization ships improve I/O performance by re-
ducing data retrieval time through traditional bandwidth-
reduction and latency-reduction techniques. Ships of this
type provide caching, data aggregation, and pre-fetching.
Caching and pre-fetching policies that match the access pat-
terns of the application can significantly reduce network la-
tency associated with reading a remote file. Data aggrega-
tion, near the client nodes for writing and near the I/O nodes
for reading, increases the size of network transfers and thus
reduces the number of requests that travel through the net-
work.

3.3 Filter ships

Filter ships provide data-processing functionality be-
tween the client and the data servers. Data-reduction filters
applied near the data source could improve performance by
reducing the amount data sent through the network. For ex-
ample, consider again the application in Figure 6. In that
application, a filtering ship sums the contents of two exist-
ing files and sends the result to the client. By applying the
filter near the data sources, we reduce the amount of data
transferred through the network by half.

3.4 Interface ships

With the goal of matching the application semantics, In-
terface ships provide a high-level interface to an Armada
file. It is often the case that well-structured typed objects
have predictable access patterns and by representing a file as
a high-level object, rather than a traditional “flat” sequence
of bytes, optimizations like pre-fetching and caching can be
effectively built into the file structure [5]. Parallel applica-
tions could benefit from a parallel I/O interface that allows
optimizations such as collective I/O and data sieving [15].
Others may provide an interface customized for a language
designed for out-of-core programming [2]. Still others may
want to provide a conventional Unix I/O interface to allow
legacy software to seamlessly access Armada files.

4 Implementation

Our design allows library programmers to define the
policies and access interfaces for the system. Armada must
provide the core functionality to support the libraries. In
particular, we need a secure environment for executing un-
trusted client ships on remote harbors, we need mechanisms
to construct and append blueprints, and we need to be able
to deploy and connect application ships.

4.1 Security

Security on Armada harbors requires authentication of
clients, protection of the system resources from untrusted
ships, and control over access to resources allocated to
ships.

The harbor master uses authentication mechanisms, pro-
vided by the host machine, to identify clients that wish to
install ships on the harbor. The host provides mechanisms
that implement security policies set by the host administra-
tor. Although this issue is beyond the scope of this paper,
two options for implementing authentication include using
ssh, or using a Kerberos authentication service [13].

The most common approaches used to protect system re-
sources from untrusted code are hardware protection (e.g.,
running the untrusted code in a separate Unix process),
software fault isolation (SFI) [17], verification of assem-
bly code [10, 11], and use of a type-safe language (e.g.,
Java or Modula3 [12]). Hardware protection requires un-
trusted code to run in a separate address space from the har-
bor. While this clearly protects the harbor from the client
code, the overhead of communicating through normal IPC
system calls is quite high. Both SFI and verification of as-
sembly code offer promising solutions, but they typically
target a limited set of machines, making them non-portable.
Type-safe languages provide portability and memory pro-

5

tection for untrusted code: two important features for het-
erogeneous grid environments.

We chose to use Java because it provides a “sandbox”
for executing untrusted client code on the harbors, it is rea-
sonably efficient now that just-in-time compilers are avail-
able, it is increasingly popular among HPC programmers, it
has convenient mechanisms for remote execution and com-
munication (RMI), and it can interface to application code
in other languages through the Java Native Interface (JNI).
Only the ships and harbors need to be written in Java; client
code could be in C, C++, or possibly others.

Even though Java provides protection against unau-
thorized memory accesses, it still does not provide the
resource-control mechanisms we desire. In particular, Java
does not allow object references to be revoked. A ship im-
plemented in Java could allocate a resource and hold on to it
much longer than it needs to, thus denying access to that re-
source from other ships. We remedy this by forcing ships to
access resources through harbor-generated capabilities [4].
Capabilities provide a “wrapper” around system resources
that allows harbors to revoke access to client ships. When
a ship accesses a revoked resource, the capability throws an
exception that is then handled by the ship implementation.

4.2 XML blueprints

As we explained in Section 2.4, the first step towards
gaining access to Armada files is constructing a blueprint.
We implement blueprints as Extensible Markup Language
(XML) documents. We chose XML primarily because the
Java API for XML Parsing (JAXP) provides existing mech-
anisms for creating and manipulating XML documents, and
because XML’s hierarchical structure fits our SP tree needs
well.

As specified in Section 2.3, blueprints use series-parallel
trees to represent ship graphs. A vertex in the SP tree is
either a representation of a ship, a series of connected ver-
tices, or a set of parallel vertices. We define the structure of
the SP-tree blueprint with this XML Document Type Defi-
nition (DTD):

<!ELEMENT blueprint (vertex | ship)>
<!ELEMENT vertex (vertex | ship)+>
<!ATTLIST vertex

type (PARALLEL,SERIAL) #RE-
QUIRED >
<!ELEMENT ship EMPTY>
<!ATTLIST ship

host CDATA #REQUIRED
className CDATA #REQUIRED
fileName CDATA >

A ship representation in a blueprint contains information
about the preferred host and information about how to lo-
cate and construct the ship on the chosen harbor. Figure 7
shows an XML blueprint for a simple distributed file.

Striped
Distribution

Flat

Flat

<blueprint>
<vertex type="SERIES">

<ship
host="tahoe.cs.dartmouth.edu"
className="StripedDistribution" >

</ship>

<vertex type="PARALLEL">
<ship

host="dorset.cs.dartmouth.edu"
className="Flat"
fileName="test1" >

</ship>

<ship
host="pecos.cs.dartmouth.edu"
className="Flat"
fileName="test1" >

</ship>
</vertex>

</vertex>
</blueprint>

Figure 7. XML blueprint of a simple dis-
tributed file.

4.3 Deploying ships to harbors

We implement harbors and ships as remote objects that
communicate using Java Remote Method Invocation (RMI).
Harbors are persistent server objects that export methods to
“anchor” Armada ships to the harbor. The anchor methods
require a class name and an optional class loader.

public interface Harbor extends Remote {
Ship anchor(String className)

throws RemoteException;
Ship anchor(String className,

ClassLoader loader)
throws RemoteException;

}

We deploy ships to harbors by executing a Java version
of the deployment algorithm from Section 2.4 on a client
thread. In our implementation, the client installs a new ship
on a remote harbor by calling the harbor’s “anchor” method.
The harbor returns a reference to the ship so that other ships
can communicate using RMI.

Ships pass three types of objects between each other: re-
quests, data, and exceptions. Request objects travel from
the client to the server through ships along the control path.
They describe the type of data and contain information
about the size and location of requested data. They also

6

hold a reference to the ship or client that generated the re-
quest. For example, a byte request would have an offset, a
length, and a reference to the ship that constructed the re-
quest.

As we mentioned in Section 2.3, each ship should for-
ward requests, both split and forward requests, or generate
new requests. A ship can “split” a request by duplicating the
request and modifying the access information of the dupli-
cates. In our byte-request example, duplicates would have
the same reference to the ship that generated the original
request, but different values for the offset and length.

We establish a data-flow path between ships and the data
servers by using the ship reference in the request object.
The requesting ship implements an interface to send and
receive data accessed by the segment ships on or near the
data servers. By using this approach, we bypass ships in the
control path that do not explicitly generate new requests.
Our approach is similar to the disk-directed I/O model [7]
because the segment ships, located on the servers, initiate
the data flow. Data is either “pulled” to the server by the
segment ships, or pushed toward the client by the segment
ships.

5 Related work

Various groups within the research community as well as
the commercial sector are investigating issues related to I/O
for computational grids. This section discusses the projects,
systems, and ideas that had the largest influence over the
design of the Armada system. In particular, we discuss par-
allel I/O systems and systems with support for remote user
code.

The Hurricane File System (HFS) [8] is a parallel file
system for tightly-connected shared-memory parallel ma-
chines. It was designed with the notion that flexibility is
essential to provide good performance to a wide range of
applications. They provide this flexibility by representing
files as a collection of application-specific stackable build-
ing blocks. They demonstrate that for a several file access
patterns, HFS can provide the full I/O bandwidth of the
disks to the application. Armada uses the same philosophy
of flexibility, but we target a grid environment.

An interesting system that uses a data-flow model is
the Parallel Storage-and-Processing Server (PS2) [9], from
École Polytechnique Fédérale de Lausanne. PS2 uses the
Computer-Aided Parallelization tool (CAP) to express the
parallel behavior of the I/O intensive applications at a high-
level. The CAP system constructs a data-flow computation
graph with “actors” as nodes of the graph. The actors are
computational units that provide application-specific func-
tionality. For I/O-intensive applications, the actors provide
application-specific data distribution, prefetching, or filter-
ing that potentially execute near the data storage devices.

PS2 presents a nice programming model for data-intensive
applications; however, they lack the flexibility to provide
application-specific interfaces and the user has no control
over the placement decisions of the system.

DataCutter1 [1], developed at the University of Mary-
land, is middleware used to explore and analyze scientific
datasets stored on archival storage systems across a wide-
area network. DataCutter provides a query-based interface
with support for accessing subsets of datasets and for per-
forming user-defined transformations of large data sets in
archival storage. The processing structure is composed of a
set of processes called “filters” that typically execute close
to the data source. While the processing structure and data
filtering ideas of the DataCutter are similar to ours, Armada
is more flexible because it allows libraries to define the
structure of distributed files and to provide an application-
specific interface to the client application.

6 Summary

Efforts to develop high-performance computational grid
applications have led to many new research challenges in
the field of distributed computing. One of the greatest chal-
lenges is providing efficient I/O to grid applications. In a
grid environment, where centralized control over system re-
sources is not practical, we propose a flexible approach that
allows application libraries to control the behavior and func-
tionality of virtually all aspects of the file system. In Ar-
mada, applications access remote distributed files through a
graph of application-defined objects called ships. The ships
provide application-specific functionality near the data by
executing on remote hosts known as harbors. Harbors pro-
vide the core file system functionality; they provide a secure
environment that allows untrusted ships to access local re-
sources, and they arbitrate among client ships competing for
processor time, memory, disk access, and network access.

7 Status in February 2001

We are in the process of developing our first prototype of
the Armada file system, and hope to produce experimental
results within the next few months. Current efforts include
developing tools for constructing XML-based ship graphs,
a harbor implementation (built using J-Kernel [4]) to pro-
vide capability-based access to host resources, and a “fleet”
of ships to allow construction of distributed files through a
byte-level application interface. Initial experments will be
conducted on a local cluster of Unix-based workstations.

1http://www.cs.umd.edu/projects/hpsl/Chaos.htm

7

References

[1] M. D. Beynon, R. Ferreira, T. Kurc, A. Sussman, and
J. Saltz. DataCutter: Middleware for filtering very large sci-
entific datasets on archival storage systems. In Proceedings
of the 2000 Mass Storage Systems Conference, pages 119–
133, College Park, MD, Mar. 2000. IEEE Computer Society
Press.

[2] A. Colvin and T. H. Cormen. ViC*: A compiler for virtual-
memory C*. In Proceedings of the Third International
Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS ’98), pages 23–33, Mar.
1998.

[3] E. Franke and M. Magee. Reducing data distribution bot-
tlenecks by employing data visualization filters. In Pro-
ceedings of the Eigth IEEE International Symposium on
High Performance Distributed Computing, pages 255–262,
Redondo Beach, CA, Aug. 1999. IEEE Computer Society
Press.

[4] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and
T. von Eicken. Implementing multiple protection domains
in Java. In Proceedings of the 1998 Annual USENIX Tech-
nical Conference, New Orleans, LA, June 1998.

[5] J. F. Karpovich, A. S. Grimshaw, and J. C. French. Exten-
sible file systems (ELFS): An object-oriented approach to
high performance file I/O. In Proceedings of the Ninth An-
nual Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 191–204, Portland, OR,
Oct. 1994. ACM Press.

[6] D. Kotz. Expanding the potential for disk-directed I/O. In
Proceedings of the 1995 IEEE Symposium on Parallel and
Distributed Processing, pages 490–495, San Antonio, TX,
Oct. 1995. IEEE Computer Society Press.

[7] D. Kotz. Disk-directed I/O for MIMD multiprocessors.
ACM Transactions on Computer Systems, 15(1):41–74,
February 1997.

[8] O. Krieger and M. Stumm. HFS: A performance-oriented
flexible file system based on building-block compositions.
In Proceedings of the Fourth Workshop on Input/Output in
Parallel and Distributed Systems, pages 95–108, Philadel-
phia, May 1996. ACM Press.

[9] V. Messerli. Tools for Parallel I/O and Compute Intensive
Applications. PhD thesis, École Polytechnique Fédérale de
Lausanne, 1999. Thèse 1915.

[10] G. Morrisett, D. Walker, K. Crary, and N. Glew. From sys-
tem F to typed assemply language. In Proceedings of the
Twenty-Fifth ACM Symposium on Principles of Program-
ming Languages, San Diego, CA, Jan. 1998.

[11] G. Necula. Proof-carrying code. In Proceedings of the
Twenty-Fourth ACM Symposium on Principles of Program-
ming Languages, pages 106–119, Paris, France, 1997.

[12] G. Nelson, editor. System Programming in Modula-3. Pren-
tice Hall, 1991.

[13] B. Neuman and T. Ts’o. Kerberos: An authentication service
for computer networks. IEEE Communications, 32(9):33–
39, 1994.

[14] N. Nieuwejaar and D. Kotz. The Galley parallel file system.
Parallel Computing, 23(4):447–476, June 1997.

[15] R. Thakur, W. Gropp, and E. Lusk. Data sieving and col-
lective I/O in ROMIO. In Proceedings of the Seventh Sym-
posium on the Frontiers of Massively Parallel Computation,
February 1999.

[16] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks,
and D. Gunter. The Netlogger methodology for high per-
formance distributed systems performance analysis. In Pro-
ceeding of IEEE High Performance Distributed Computing
conference (HPDC-7), 1998.

[17] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Ef-
ficient software-based fault isolation. In Proceedings of the
Fourteenth ACM Symposium on Operating Systems Princi-
ples, pages 203–216, Ashville, NC, 1993. ACM Press.

[18] R. Wolski, N. T. Spring, and J. Hayes. The network weather
service: A distributed resource performance forecasting ser-
vice for metacomputing. Journal of Future Generation
Computing Systems, 15(5-6), Oct. 1999.

8

