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New Ideas

MEASUREMENT-BASED HYBRID MODELS FOR FAST MULTI-SCALE SIMULATION

• Novel  measurement-based traffic  modeling 
methodology  based on general time-Series 
processes (e.g., Auto-regressive Modular)

• New hybrid discrete-continuous 
flow (HDFC) paradigm to combine 
discrete and continues flows 
resulting in fast simulation and 
considerable modeling flexibility

Impact
• Accurate traffic modeling driven by
measurement-based models
• Multi-scale simulation paradigm 
from 
packet transport to protocol-based 
messages

• Identification of generic scalable 
network topologies
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• Formulation of 
HNS
• Initial
implementation

• Initial 
testing

• Completion of  
basic HNS 
platform

• Completion of testing
and verification

•Teletraffic modeling
of Internet traffic

•Analysis module

• Completion of 
HNS

• Implementation 
of some Internet 
protocols

• Software 
delivery
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• Emerging high-speed packet-based   
telecommunications  networks carry enormous 
traffic loads 

• compressed video
• file transfer

• Network modeling and analysis technologies are 
urgently needed (witness Internet congestion)

• network control (admission and congestion)
• network provisioning and planning

MOTIVATIONMOTIVATION
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• PROBLEM: Emerging high-speed packet-based 
telecommunications  networks are hard to analyze

• current analytical models cannot capture teletraffic 
burstiness and are overly optimistic

• simulation of complex networks is either infeasible,
or takes forever to complete 

PROJECT  GOALSPROJECT  GOALS

• SOLUTION GOALS: Develop a new modeling and 
simulation paradigm

• hybrid simulation paradigm that combines traditional 
discrete  flows  with continuous ones

• multi-scale simulation paradigm from packet transport 
to protocol-based messages

• accurate teletraffic modeling driven by measurement-based 
teletraffic models
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• How to achieve a high expressive power of 
simulation models by capturing multiple scales?

• transaction level (discrete and continuous flows) 
• message level (subject to prescribed protocols) 

TECHNICAL  CHALLENGESTECHNICAL  CHALLENGES

• How to speed up simulation runs?
• large and complex network models give rise to
enormous numbers of packet-based events 

• traditional simulation would require prohibitive 
computational  resources to process

• How to achieve a high accuracy of predicted 
performance measures?

• burstiness modeling
• measurement-based teletraffic modeling



Sepember 27-29,  2000 6

• Traffic model 
• new accurate measurement-based teletraffic modeling
methods via ARM (AutoRegressive Modular processes),
e.g., TES, QTES

• New Hybrid Discrete-Continuous Flow (HDCF) 
paradigm combines discrete and continuous flows

• fast simulation takes advantage of fluid transport
• flexible modeling allows modeler to assign type of flows
(traditional discrete jobs or fluid-flow streams) 

NEW  IDEASNEW  IDEAS
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• Integration with network applications
• modeling of Next Generation Internet at multiple levels 

of detail
• network design and capacity planning
• network control (buffer management, service allocation)

• Ability to model and simulate complex networks
• accurate simulation models whose computational 
complexity using traditional models is currently 
infeasible or prohibitive

• flexible paradigm allows users to control trade-off 
between computational complexity and model fidelity

BENEFITS  TO  DODBENEFITS  TO  DOD
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• Problem: traditional discrete-event simulation 
at packet level is often infeasible

• time complexity (too many packets to process)
• space complexity (too many packets to store)

• Proposed Solution: fluid-flow models
• transactions (customers, packets) become fluid
• random discrete arrivals become random arrival rates
• random discrete services become random service rates
• random routing becomes rate thinning and merging
• sample paths governed by differential equations
• complex networks are modeled as TT/CT 
(Target-Traffic /Cross-Traffic) networks  

FLUID-FLOW  MODEL  SOLUTIONFLUID-FLOW  MODEL  SOLUTION
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• The generic TT/CT (Target-Traffic / Cross-Traffic) 
network model is a useful class of networks

• simple HDCF network with tandem topology
• reduced complexity renders simulation scalable in path size n
• accurate measurement- based teletraffic modeling and 
generation methods (e.g., QTES) already developed under a 
previous DARPA/ITO project

THE  GENERIC TT/CT NETWORK MODELTHE  GENERIC TT/CT NETWORK MODEL
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• Fluid-flow simulation implications

• events correspond to rate changes, which occur far less
frequently than packet arrivals, service and routing

• rate changes affect all downstream flows in a fluid-flow 
network, so fluid-flow events are more expensive than
packet–flow events

• overall, a fluid-flow simulation usually runs much faster
than its packet–flow counterpart

FLUID-FLOW  MODELING  IMPLICATIONSFLUID-FLOW  MODELING  IMPLICATIONS
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Defining  Processes

BASIC CONTINUOUS-FLOW  MODEL (CFM)BASIC CONTINUOUS-FLOW  MODEL (CFM)

( )tα

( )tγ

( )tβ

( )tδ

( )x t

( )c t

t t
t t

c t t

( ) = inflow rate at time 

( ) = service rate at time 

( ) = capacity rate at time 

α
β
&

( ) = workload at time 

( ) = loss rate at time 

( ) = outflow rate at time 

x t t
t t
t t

γ
δ

Derived  Processes
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• The inflow rate process                satisfies
• with probability 1,  the sample paths            are            

piecewise continuous and continuously differentiable
in their continuity intervals

• The buffer capacity rate process                satisfies 
• with probability 1,  the sample paths are 

piecewise continuous and continuously differentiable
in their continuity intervals

• The service rate process                satisfies
• with probability 1,  the sample paths           are 

piecewise continuous and continuously differentiable
in their continuity intervals

• The time horizon is an interval

DEFINING  PROCESSES  ASSUMPTIONSDEFINING  PROCESSES  ASSUMPTIONS

[ , )T0
={ ( )}Tttα 0

( )α ×

={ ( )}Tttβ 0
( )β ×

0
T
tc t ={ ( )}&

c( )×&
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CFM  AND  DISCRETE-EVENT SIMULATIONCFM  AND  DISCRETE-EVENT SIMULATION

• Suppose that with probability 1, all defining 
processes of the basic CFM satisfy

• all defining sample paths are piecewise constant
• the number of jumps in finite time intervals is finite

• Then
• the CFM is a DEDS (Discrete-Event Dynamic System)
• the CFM can be simulated by a discrete-event simulation
• the superposition of all jump time points of all defining 

processes over any finite interval can be written 
(with probability 1) as a strictly increasing finite sequence

={[ , )}Ni i it t +1 0

, N Tt t += =0 10
• in particular, for any initial interval,
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• The workload process                is governed by

WORKFLOW  PROCESSWORKFLOW  PROCESS

={ ( )}Ttx t 0

, if ( )=  and ( ) ( )

( ) = ( ), if ( ) = ( ) and ( ) ( ) ( )

( ) ( ), otherwise

x t t t
d x t c t x t c t t t c tdt t t

α β
α β

α β

ì £ïïïï - ³íïï -ïïî

0 0
& &

• Let all defining sample paths be piecewise constant,
with finite number of jumps in finite time intervals

• then the workload process is piecewise linear, and its 
values at event times can be computed recursively by

for a given initial value

min{max{ ( ) [ ( ) - ( )][ ], }, ( )}i i i i i i ix x t t t t t c tα β+ + += + -1 1 10
( )x x= 00
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• The outflow rate process                is defined by

OUTFLOW  RATE  PROCESSOUTFLOW  RATE  PROCESS

={ ( )}Tttδ 0

( ), if ( ) =
( ) =

( ), if ( ) >

t x tt t x t
αδ β

ìïïíïïî
0
0

• if the defining sample paths are piecewise constant, then 
the loss rate  process is piecewise constant,  and can be  
computed from the workload process

• The average outflow (throughput) over            is

( ) = ( )
TT t dtTδ δò0

1
[ , )T0
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• The loss rate process                 is defined by

LOSS  RATE  PROCESSESLOSS  RATE  PROCESSES

={ ( )}Tttγ 0

( ) ( ) ( ), if ( ) = ( ) and

( ) ( ) ( ) ( )

, otherwise

t t c t x t c t
t t t c t

α β
γ α β

ì - -ïïïï= ³ +íïïïïî

&

&

0

• if the defining sample paths are piecewise constant, 
then  the loss rate  process is piecewise constant,  
and can be computed from the workload  process
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• The loss fraction over is defined by

• The loss volume                over            is defined by

LOSS  VOLUME  PROCESSESLOSS  VOLUME  PROCESSES

( , )L t t1 2

( , ) ( )
t

t
L t t t dtγ= ò 2

1
1 2

( , ) = ( ) ( )
t t

f t t
L t t t dt t dtγ αò ò2 2

1 1
1 2

[ , )t t1 2

• Let all defining sample paths be piecewise constant,
with finite number of jumps in finite time intervals

• then the partial loss volumes over              are given by

[ )t t1 2,

[ ( ) - ( )][ - ]+ ( ) - ( ), if  ( ) ( )
( , )

, otherwise
i i i i i i i i

i i
t t t t x t c t x t c tL t t α β + + +

+
ì =ïï=íïïî

1 1 1
1 0

[ )t t1 2,
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Defining  Processes

CFM  NETWORKSCFM  NETWORKS

1 t( )α

1 t( )γ

1 t( )β
( )tδ

1x t( )

1c t( )

i

i

i

t i
t i

c t i

( ) = inflow rate at node 

( ) = service rate at node 

( ) = capacity rate at node 

α
β
&

i

i

i

x t i
t i
t i

( ) = workload at node 

( ) = loss rate at node 

( ) = outflow rate at node 

γ
δ

Derived  Processes

2 t( )α

2 t( )γ

2 t( )β

2 t( )δ

2x t( )

2c t( )
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CFM  NETWORKS (Cont.)CFM  NETWORKS (Cont.)

• A CFM network is a set of interacting basic CFM 

nodes
• shared buffer

• shared server

• Basic CFM nodes may be interconnected
• flows have an itinerary of multiple nodes

• flows may split and merge

• For piecewise constant defining processes 
• CFM network is a DEDS, with all derived processes being 

piecewise constant

• CFM network is amenable to discrete-event simulation



Sepember 27-29,  2000 20

i

i

i

t i th
t i th
t

c t i th
c t

( ) = inflow rate

( ) = service rate

( ) = total service rate

( ) = capacity rate

( ) = total buffer capacity

α
β
β

-
-

-&

Defining  Processes

MULTIPLE-FLOW  CFM’sMULTIPLE-FLOW  CFM’s

( )tα2

( )tγ2

1 2t t t( ) ( ) ( )β β β= +
( )tδ2( )x t2

( ) ( ) ( )c t c t c t= +1 2

( ) = workload

( ) = loss rate

( ) = outflow rate

i

i

i

x t i th
t i th
t i th

γ
δ

-
-
-

Derived  Processes

( )tδ1( )x t1( )tα1

( )tγ1
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INTERACTING  EQUAL-PRIORITY  FLOWSINTERACTING  EQUAL-PRIORITY  FLOWS

• Basic equal-priority CFM1 and CFM2

• inflow rates are ( ), = ,i t iα 1 2
• service rates are                            subject to 

a shared total service rate   

( ), = , ,i t iβ 1 2
( ) ( ) ( )t t tβ β β= +1 2

• buffer capacities are subject to 

a shared total buffer capacity

( ), = , ,ic t i 1 2
( ) ( ) ( )c t c t c t= +1 2

• Defining processes

• Derived processes
• workloads                             computed separately( ), = , ,ix t i 1 2
• loss rates computed separately( ), = , ,i t iγ 1 2
• outflow rates computed separately( ), = , ,i t iδ 1 2
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( ), if ( ) >
( )

, if ( )

c t x tc t x t
ìïï= íï =ïî

1
1

1

0
0 0

INTERACTING  PREEMPTIVE-PRIORITY  FLOWSINTERACTING  PREEMPTIVE-PRIORITY  FLOWS

• Basic CFM1 of higher priority than basic CFM2

• inflow rates are ( ), = ,i t iα 1 2
• service rates are                            subject to 
a shared total service rate such that

( ), = , ,i t iβ 1 2
( ) ( ) ( )t t tβ β β= +1 2

• buffer capacities are subject to a shared  
total buffer capacity such that

( ), = , ,ic t i 1 2
( ) ( ) ( )c t c t c t= +1 2

• Defining processes

• Derived processes are computed separately

( ), if ( ) >
( ) =

( ), if ( ) =

t x tt t x t
ββ α

ìïïíïïî
1

1
1 1

0
0 ( ) = ( ) ( )t t tβ β β-2 1

( ) ( ) ( )c t c t c t= -2 1
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NETWORK SERVICE  RATE  ALLOCATIONNETWORK SERVICE  RATE  ALLOCATION

• network nodes

• current inflow rate at each node

• current workload at each node

• network total service rate to be allocated to nodes

1j j n{ : = , , }α …

• service rates at each node                                such that

• Input

• Output

1 n{ , , }¼

1j j n, = , , ,β …

1
j

n

j
β β

=
=å

β

• CFM simulation requires a service rate allocation 

algorithm, invoked on state changes

1jx j n{ : = , , }…
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SERVICE  RATE  ALLOCATION  ALGORITHMSERVICE  RATE  ALLOCATION  ALGORITHM

• Initialize

• Finalize

1N nset { , , }¬ ¼

bset β¬
0j jZ j N x nset { : and }α β¬ Î = <

• Main loop
while ( )Z ¹ Æ

j j j Zset for allβ α¬ Î
set j Z jb b αÎ¬ - å

N N Zset ¬ -
set { : and | |}j jZ j N x Nα β¬ Î = <0

if ( )N ¹ Æ
j b N j Nset | | for allβ ¬ Î
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FLUID  VS.  PACKET  TRANSPORTFLUID  VS.  PACKET  TRANSPORT

• Main simulation events in packet-based transport 

• Comparison of Computational Complexity

• arrivals, service completions, packet loss

• Main simulation events in CFM 
• changes in arrival rate, service rate and capacity rate

• packet-based transport has enormous number of events,
each being local

• CFM transport has far fewer events in single-node models
• events in CFM transport are global (rate re-computation)
• in feed-forward CFM networks, rate re-computation is fast, 
but events grow quadratically  via the ripple effect

• in general CFM networks, rate re-computation is hard, 
and events can grow explosively via the echo effect
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PROPOSED  CFM  RESEARCHPROPOSED  CFM  RESEARCH

• CFM telecommunications applications  

• network design, planning and provisioning

• network resource allocation

• CFM software tools

• object-oriented CFM simulator architecture and software


