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Abstract—At the access to networks, in contrast to the core,
distances and feedback delays, as well as link capacities are small,
which has network engineering implications that are investigated
in this paper. We consider a single point in the access network
which multiplexes several bursty users. The users adapt their
sending rates based on feedback from the access multiplexer.
Important parameters are the user’s peak transmission rate p,
which is the access line speed, the user’s guaranteed minimum
rate r, and the bound ε on the fraction of lost data.
Two feedback schemes are proposed. In both schemes the users
are allowed to send at rate p if the system is relatively lightly
loaded, at rate r during periods of congestion, and at a rate
between r and p, in an intermediate region. For both feedback
schemes we present an exact analysis, under the assumption
that the users’ job sizes and think times have exponential
distributions. We use our techniques to design the schemes
jointly with admission control, i.e., the selection of the number
of admissible users, to maximize throughput for given p, r, and
ε. Next we consider the case in which the number of users is
large. Under a specific scaling, we derive explicit large deviations
asymptotics for both models. We discuss the extension to general
distributions of user data and think times.

I. Introduction

In today’s communication networks, design and control of the
network core and access are different, primarily because of the
differences in scale in bandwidth and distance. Quite often the
bottleneck is the access, rather than the core. This may happen
because the access network is characterized by relatively low
line speeds and the limited ability of users to buffer and shape
traffic (think of the extreme case of a user with a wireless
handset). Access control, supported by the use of feedback,
is an important mechanism to address this problem. Since
distances between users/clients and network access points are
relatively short, feedback delay due to propagation is negli-
gible, which contributes to the efficacy of feedback control.
In this paper we investigate the problems of access control by
introducing simple models and techniques for their evaluation,
design and performance optimization.
We make three main contributions. First, we present two
simple models of network access. The models provide a
framework for the joint design of feedback-based schemes for
the adaptation of source rates and admission control. Second,
we show how to compute the stationary behavior of the
aforementioned feedback queues. We illustrate the use of these

techniques to solve the design problem. Finally we show how
to use the theory of large deviations to obtain explicit results
when the system and the number of sources is large.

In our model each user alternates between ‘on’ periods of
transmission, and ‘off’ periods or ‘think times’. The user
model here differs from the familiar on-off source models,
e.g. [2], in that file sizes (where a file size is the amount
of data the source transmits during an active period) are
independent, identically distributed (iid) random variables, but
the on periods are not specified a priori. The on-periods
are determined by the combination of the file sizes and the
transmission rates allocated by the access control scheme, to
be described below, which depend on the interaction of the
multiplexer with the collective behavior of users. In contrast,
the think times are iid random variables. The lengths of on
periods and the throughputs of the individual users are key
performance quantities to be obtained from an analysis of the
model.
The access line speed (p for each of the users) is typically
small compared to the output rate of the access multiplexer,
and therefore constitutes an important constraint.
Another model feature is the minimum throughput rate (r) that
is guaranteed to the users. In a number of applications clients
derive zero utility if the throughput is below a threshold.
This point has been made by Massoulié and Roberts [20] for
the case of TCP traffic, in which performance collapse may
ensue. As soon as the notion of a minimum guaranteed rate is
introduced, admission control needs to be considered, together
with the calculation of the capacity of the network.
We present two schemes for feedback-based adaptation of the
users’ rates. In both schemes users are allowed to transmit
at rate p if the system is relatively lightly loaded, at rate r
during periods of congestion, and at a rate between r and p,
which is determined by the processor sharing discipline, in an
intermediate region. In our model the feedback signal from
the buffer to the sources is assumed to arrive with negligible
delay, which is reasonable when the round trip distances are
small. In the first scheme the feedback is based on the
number of active users and whether the queue is empty or
not. The second scheme utilizes a threshold B∗ on the buffer
content. Depending on whether the buffer content is less

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 3 IEEE INFOCOM 2002



than, greater than, or equal to B∗, the user rate is p, r, or
determined by the processor sharing discipline, respectively.
Importantly, the second scheme does not require knowledge
of the (activity) state of the users, and is simpler to implement
on that count. However, the analysis of the first queue is
simpler and our results for it are in closed form. As discussed
below, the combined use of the threshold and the number of
admissible users in the second model provides a greater facility
for regulating important trade-offs.
We note a feature of the behavior of the models, which
is counter-intuitive. Our analysis shows that the effect of
feedback is to increase the mean time that the buffer is empty,
while simultaneously increasing the throughputs of the users.
The explanation of this apparently paradoxical behavior is that
the rates allocated to the users are higher during the periods
that the buffer is empty. Hence feedback has the effect of
reducing the on periods and consequently the cycle time of
each user, and thereby it increases individual users’ throughput
and the system throughput, which is defined as the sum of the
individual users’ throughputs.
Next consider the role of the feedback parameter B∗, the
threshold level in the buffer content in the second model. By
reasoning as above, we infer that increasing B∗ has the effect
of increasing the throughput of the users. However, this is
at the cost of increasing the probability of buffer overflow.
Similarly, with all other parameters held fixed, increasing the
number of users N has the effect of increasing both the total
system throughput as well as the probability of buffer overflow.
Hence, this model allows the study of interesting trade-offs
between several important quantities, including the individual
users’ throughput, the system throughput, the loss probability
and the number of users. By proper design the parameters B∗

and N can regulate the trade-off.
There are several possible frameworks in which the trade-offs
may be studied and quantified. We require that the fraction of
source data that is lost does not exceed a given QoS parameter
ε. Then we may seek a joint design of the feedback control
scheme and admission control, i.e., selection of B∗ and N
such that the system throughput is maximized. The numerical
procedure that is developed in this paper allows such design
questions to be addressed. Indeed one of the highlights of
the numerical results that we present later in the paper is
the computed solution for an instance of the above design
problem.

The two proposed feedback schemes both fall into the category
of feedback fluid queues, which were introduced in [26] as
generalizations of the well-known Markov-modulated fluid
models in e.g. [2], [17]. In the latter, a fluid buffer receives
or depletes fluid at rate ri (positive or negative) at times
when a background continuous-time Markov chain is in state
i. Typically, stochastic fluid models are characterized by the
generator (Q) of the background process and a diagonal rate
matrix (R) which contains all fluid rates ri. In feedback
fluid queues most of the above remains true, except that the
behavior of the background process (i.e. the matrix Q), and
possibly the matrix R as well, depends on the current buffer
content. As a result the background process is no longer

an autonomous Markov process. In this paper we confine
ourselves to feedback fluid queues in which Q and R are
piecewise constant functions of the buffer content level, see
also [27]. Notice the crucial difference with [11], in which
there are also thresholds, like here, but these only affect R,
and not also Q. The analysis of these feedback fluid queues,
based on spectral expansions [2], [10], [11], [17], is one of
the main contributions of this paper.

An intrinsic drawback of the analytical approach described
so far is that it is computationally intensive. This provides
motivation for simpler, asymptotic approaches to deal with
the access models. In both access models, we study large-
deviations asymptotics for the scaling introduced by Weiss
[31], i.e. the regime in which the number of users grows large
and resources (buffer and bandwidth) scale proportionally. We
derive ‘exponential approximations’, comparable to those in
[3], [4], [9] for the ordinary FIFO discipline. Exponential
approximations of the first feedback model, i.e., without the
threshold, were obtained earlier by Ramanan and Weiss [23]
for exponential file sizes and think times. Our major contribu-
tion is that these results are explicit and the computations are
simple. Some of them have nice insensitivity properties, i.e.,
depend on the distributions of the think times and job sizes
only through their means.

The role of feedback in packet networks has a long history, see
[28, Ch. 7] for a review. Recently there has been a resurgence
of interest, driven in part by work on explicit congestion
notification (ECN) marking schemes by Gibbens and Kelly
[12], [13], [16], and others. In [22] a feedback model with
feedback delays is considered based on the marking scheme
of [10]. However, the feedback considered there regulates
the marking of packets to be dropped later on, whereas in
our model the feedback regulates the actual source rate. The
processor sharing discipline has been highlighted in recent
work on QoS delivery by Roberts et al. [24], [25], albeit
in the bufferless framework.

The organization of the paper is as follows. Section II deals
with the first access model. Section III considers the more
advanced feedback scheme that utilizes a threshold. The large
deviations asymptotics are described in Section IV. Finally
Section V reports on several numerical examples.
For reasons of space we have had to omit several general
results, specifically a treatment of general feedback fluid
queues, including finite buffers and multiple thresholds, and
the large deviations asymptotics for the feedback model with
a threshold. These results are in [19].

II. Feedback model without threshold

A. Model

We model a single aggregation or multiplexing point in the
network. The output trunk speed is C, and there are N access
links. The peak (or line) rate of each access link is p. The
minimum rate given to each access user is r. We make the
simplifying modeling assumption that traffic can be considered
to be continuous fluid. For the benefit of the reader, we note
that in fluid models there may be considerable transfer of fluid,
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Number of W (t) = 0 W (t) > 0
active sources

0 ≤ Y (t) ≤ N ′ p (0) r (−)
N ′ < Y (t) ≤ N ′′ C/Y (t) (0) r (−)
N ′′ < Y (t) ≤ N NA r (+)

TABLE I

Allowed user transmission rates (and sign of the buffer drift), as functions
of number of active sources and buffer content.

i.e., high throughput, even during periods when the buffer is
empty. This is because in fluid models, once the buffer is
empty, it remains empty for as long as the total input rate
does not exceed the output capacity.
In this section we describe the scheme without threshold.
When the multiplexer buffer is empty, the access rate will
be determined by dividing equally the trunk rate between the
(small) number of active users, truncated to p. At the other
extreme, when the number of active users exceeds a critical
number, N ′′ in this work, then the fair share of the trunk rate
for an active user drops below the guaranteed rate of r, and
the buffer is no longer empty and its content grows. As long
as the buffer content is positive, each source is assigned the
rate of just r. Clearly, N ′′ is the largest integer not exceeding
C/r.
While the buffer is empty and the number of active users is
small, say below a critical number N ′, then each active user
transmits at peak access rate p. It is easily seen that N ′ is the
largest integer not exceeding C/p. When the number of active
users is between N ′ and N ′′, which is the middle range, and
the buffer is empty, then the trunk speed is shared equally, i.e.,
the processor sharing regime holds. Hence, when the buffer is
empty there are two regimes characterized respectively by the
access line speed and the processor sharing rate. In contrast,
when the buffer is not empty, there is a unique transmission
rate, namely r, the guaranteed minimum.
Table I summarizes the feedback protocol. Let Y (t) denote
the number of active sources at time t, and W (t) the buffer
content at time t. In the table the allocated rate, as well as the
sign of the ‘drift’ of the buffer content are given, as functions
of Y (t) and W (t).
An important aspect of our model is the behavior of the
homogeneous sources. Each source alternates between ac-
tivity (‘on’) and inactivity (‘off’). The inactivity periods are
independent, exponentially distributed random variables with
mean λ−1. Each source transmits a file during its activity
period, whose size (in bits) is independent of everything else
and exponentially distributed with mean µ−1. The length of
the induced activity period is not given a priori, since this
depends on the rate(s) at which the file is transmitted. An
important parameter for the Quality of Service is ε, which the
buffer overflow probability is required not to exceed.
We follow a conventional approach in inferring finite-buffer
performance from an infinite-buffer model. Since the long
run fraction of time a source is on, given that the buffer level
is large, is λ/(λ+µr) (note that (µr)−1 is the maximum time
to transmit a file of size µ−1), the stability condition of this

infinite-buffer model is given by

N
λr

λ+ µr
< C. (1)

In practice, there is a need to prevent N from being too
large. One of the objectives of the analysis is to calculate
the capacity of our system, which is the largest value of N
such that the overflow probability of the queue does not exceed
ε. In particular, the number Nr(ε) of connections admissible
as a function of ε and the guaranteed rate r, is an important
design parameter. We return to the calculation of this quantity
in Section V-B.

B. Preliminary results

To analyze the model described in Section II-A, we first
review some results from the model without feedback. Anick,
Mitra, and Sondhi [2] consider the model in which the sources
transmit at a constant rate, say r, while in the on-state, i.e.,
the allowable transmission rate does not depend on current
occupancy of the system. Detailed results on this model are
available [2], [10], [17].

Buffer content distribution. For this case without feedback we
denote the state of the background process (i.e. the number of
sources that are transmitting) and the buffer content process
at time t as X(t) and V (t) respectively. In [2] the stationary
distribution of the content process is given. It is computed as
follows. Clearly X(·) constitutes a continuous-time Markov
chain on the state space {0, . . . , N}. The (i, j)th element
(i �= j) of its generator Q is given by

Q(i, j) :=




(N − i)λ if j = i+ 1,
irµ if j = i− 1,
0 otherwise.

The diagonal elements (i = j) are such that the rowsums
are zero. Element (i, j) represents the probability flux of the
continuous-time Markov chain from state i to state j. Define
by R the diagonal matrix diag{r0, . . . , rN} with ri the net
input rate if there are i sources in the on state, i.e., ri = ir−C.
To find the stationary buffer content distribution, we first define
Fi(x) := IP(X = i, V ≤ x). It is not hard to show that the
vector F(·) := (F0(·), . . . , FN (·)) satisfies F′(x)R = F(x)Q.
The spectral expansion of the solution is given by

F(x) =
N∑

j=0

ajvj exp [zjx] , (2)

where the aj are coefficients determined later, and (zj ,vj) is
an eigenvalue-eigenvector pair, i.e., obtained from zjvjR =
vjQ.
The coefficients aj are calculated as follows. Define D, the
set of states with downward drifts, by all states i such that
ir < C, and U , the set of states with upward drifts, by all other
states. Assume that there is no state i such that ir = C. Let
QDD, QDU , QUD, QUU be the submatrices that are obtained
by partitioning Q. The vector FD(x) consists of the Fi(x)
with i ∈ D; FU (x) is defined analogously. It is easily seen
that aj = 0 if Re(zj) > 0, as the distribution should range
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between 0 and 1. The remaining aj follow from FU (0) = 0.
It turns out that there are just as many unknowns as equations.
Clearly, IP(V ≤ x) =

∑
i Fi(x).

Idle and busy periods. Elwalid and Mitra [10] give explicit
expressions for a number of quantities that are related to the
busy and idle periods of the queue. A busy period is defined
as a period in which the buffer content is positive, whereas
an idle period is a period in which the buffer is empty. It is
easily seen that at the beginning of a busy period the number
of sources in the on-state is equal to N ′′+1; at the end of the
busy period the number of sources in the on state is in D. The
lengths of consecutive busy and idle periods are independent.
Denote by P the distribution at the end of the busy period.
Then it is not hard to prove that

P =
1

〈FD(0)QDD,1〉FD(0)QDD, (3)

see Equation 5.9 of [10]; 〈 · , · 〉 denotes the inner product of
two vectors. The mean idle period IEI is given by

IEI = −
∑

i∈D Fi(0)
〈FD(0)QDD,1〉 .

Finally, the mean busy period IEB can be calculated using∑
i∈D Fi(0) = IEI/(IEI + IEB):

IEB = IEI · 1 − ∑
i∈D Fi(0)∑

i∈D Fi(0)
. (4)

C. Analysis

The model analyzed in this section has been described in
Section II-A. Recall that Y (t) ∈ {0, . . . , N} denotes the
number of sources that are transmitting at time t in the
feedback model of Section II-A. Notice that this does not
constitute a Markov chain, unlike X(t) in Section II-B. This
is because the sojourn times and transition probabilities depend
on the amount of fluid stored in the buffer. However, as long
as the buffer is empty, Y (t) behaves as a continuous-time
Markov chain.
Denote the stationary buffer content distribution in the feed-
back model by IP(W < x). A busy period in this model is
distributed as the random variable B′, and an idle period as I ′.
The sequence of busy periods is i.i.d., and so is the sequence
of idle periods, as can be seen easily. The distribution of
Y (t) at the end of the busy period is denoted by (the vector)
P ′. The next lemma links B′ and P ′ to the corresponding
quantities in the model without feedback.

Lemma II.1: Busy periods B and B′ have the same distribu-
tion. Also, the distributions P and P ′ are identical.

Proof. Both in the models with (Section II-A) and with-
out (Section II-B) feedback, during busy periods on-periods
terminate at a rate irµ when there are i sources in their
on-state. In both models the busy period starts when there
are N ′′ + 1 = 
C/r� sources transmitting. Hence, the
buffer dynamics in both models have the same probabilistic
properties during a busy period. This immediately implies
both assertions. ✷

Corollary II.2: With the same argument as in the proof of the
previous lemma, we find

IP(W ≤ x|W > 0) = IP(V ≤ x|V > 0), x > 0.

This immediately implies that IP(W ≤ x) equals

IP(V ≤ x|V > 0)IP(W > 0) + IP(W = 0) =∑
i Fi(x) − ∑

i Fi(0)
1 − ∑

i Fi(0)
IP(W > 0) + IP(W = 0).

As IP(W = 0) = 1 − IP(W > 0), the only quantity that is
left to compute is the probability of an empty buffer in our
feedback model. This is given by

IP(W = 0) =
IEI ′

IEI ′ + IEB′ =
IEI ′

IEI ′ + IEB
,

applying Lemma II.1. As we know IEB from Section II-B, we
only have to find IEI ′. This will be done in the next lemma,
but first we introduce some required notation.
Q′

DD is a square matrix of dimension N ′′ + 1. For i �= j:

Q′
DD(i, j) :=




(N − i)λ if j = i+ 1,
ipµ if j = i− 1,
0 otherwise,

if i ≤ N ′, and

Q′
DD(i, j) :=




(N − i)λ if j = i+ 1,
Cµ if j = i− 1
0 otherwise,

if i is between N ′+1 and N ′′. The diagonal elements are such
that the rowsums are zero, except for Q′

DD(N ′′, N ′′), which
equals −Cµ− (N −N ′′)λ. Notice that, as long as the buffer
is empty, Y (t) is a Markov chain which obeys the transition
rates of Q′

DD.

Lemma II.3: With P is defined in (3), the mean idle time in
the feedback-based model is given by

IEI ′ = 〈−P(Q′
DD)−1,1〉. (5)

Proof. This follows directly from standard results of mean
passage times [15]. It says that the mean time spent by Y (t)
in j before the set D is left, given that the process starts in i,
is given by the (i, j) entry of −(Q′

DD)−1.
Then the reasoning is analogous to Equations (5.11) and (5.14)
of [10], as follows. The vector −P(Q′

DD)−1 gives the mean
time spent in all states in D during an idle period of the buffer,
applying Lemma II.1. The sum of its entries is the mean length
of the idle period. ✷

We arrive at the following result for the buffer content distri-
bution in the feedback-based model. A similar proportionality
result was found, although not explicitly mentioned, in Adan
et al. [1], where another feedback fluid queue is analyzed that
has two types of behavior, depending on whether the buffer is
empty or not.

Theorem II.4: In the feedback-based model, the stationary
buffer content distribution IP(W ≤ x) is given by∑

i Fi(x) − ∑
i Fi(0)

1 − ∑
i Fi(0)

IEB
IEI ′ + IEB

+
IEI ′

IEI ′ + IEB
,
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Number of W (t) < B∗ W (t) = B∗ W (t) > B∗
active sources

0 ≤ Y (t) ≤ N ′ p (−) NA r (−)
N ′ < Y (t) ≤ N ′′ p (+) C/Y (t) (0) r (−)
N ′′ < Y (t) ≤ N p (+) NA r (+)

TABLE II

Allowed user transmission rates (and sign of the buffer drift), as functions
of number of active sources and buffer content.

where the vector F(x) is given by (2), IEB by (4), and IEI ′

by (5). Equivalently,

IP(W > x) = IP(V > x)
IEI + IEB
IEI ′ + IEB

.

An important interpretation of the above theorem is the fol-
lowing: the gain with respect to the model without feedback
(where the sources always send at rate r when active) is
expressed by the term

IEI + IEB
IEI ′ + IEB

≤ 1. (6)

The fact that this ratio is less than 1 is due to the fact that
IEI ′ ≥ IEI , which can be understood as follows. Clearly, I

′can be interpreted as a first entrance time in the birth-death
process with generator Q′

DD, namely as the first entrance time
to state N ′′+1, starting from a state i ≤ N ′′ that is drawn from
the distribution P ′. Similarly I is the corresponding entrance
time in the birth-death process with generator Q, due to the
fact that P = P ′. Since the death rates in Q′

DD are larger
than those in Q, while the birth rates are equal, it follows that
IEI ′ ≥ IEI .
In many situations, particularly when the number of sources
is large, IEB will be much smaller than IEI and IEI ′. In that
case (6) is well approximated by IEI · (IEI ′)−1. That is, the
ratio of mean idle times of the buffer in the models without
and with feedback effectively quantifies the performance gain
from feedback.

III. Feedback model with threshold

A. Model

In this section we consider a generalization of the feedback
model presented in Section II-A. As before, Y (t) is the
number of active users at time t (with state space {0, . . . , N})
and W (t) is the buffer content at time t. We now introduce
a threshold level B∗ > 0 such that the sources are allowed to
send at peak rate p as long as W (t) < B∗. When W (t) > B∗

the sources are allowed to transmit data only at the guaranteed
rate r. When W (t) = B∗ the processor sharing policy applies.
In that case the buffer content process will ‘stick’ at level
B∗ for as long as the number of active users lies in the set
N ′ + 1, . . . , N ′′. The algorithm is summarized in Table II.
Notice that the model described in Section II-A is a limiting
case of this model, as it is obtained by letting B∗ ↓ 0. We
will describe the exact solution of the stationary buffer content
distribution.
Notice that the stability condition for this model is the same
as (1). Define the matrix Q(r) to be Q (as defined in Section
II-B); generator Q(p) is also defined as Q, but with rate r

replaced by rate p. Finally, Q(∗) is similarly defined, but now
Q(i, i−1) = Cµ. The idea is that Y (t) behaves like a Markov
chain with generator Q(p), Q(∗), Q(r), whenever the buffer
content process W (t) is respectively below, at, or above level
B∗. Furthermore R(r) is defined as in Section II-B, i.e. as a
diagonal matrix of dimension N +1, its ith diagonal element
being given by ir − C. R(p) is similarly defined, except that
its ith diagonal element is given by ip − C. The entries in
these matrices are the net fluid rates into the buffer for the
guaranteed rate (W (t) > B∗) and peak rate (W (t) < B∗)
regimes respectively.

B. Analysis

Our purpose is to find the joint distribution Gi(x) defined as
Gi(x) = limt→∞ IP(Y (t) = i,W (t) ≤ x). To do this we
determine the Kolmogorov forward equations for

G(p)
i(t, x) := IP(Y (t) = i,W (t) ≤ x), 0 ≤ x < B∗;

G(r)
i(t, x) := IP(Y (t) = i,W (t) ≤ x), x ≥ B∗.

For x < B∗, G(p)
i(t+ h, x) equals

(1 − h (q(p)
i,i−1 + q(p)

i,i+1)) G(p)
i(t, x − hr(p)

i)

+h q(p)
i−1,i G(p)

i−1(t, x) + h q(p)
i+1,i G(p)

i+1(t, x) + o(h),

cf. [2]. By taking h ↓ 0 we find, in matrix form,

∂

∂t
G(p)(t, x) +

∂

∂x
G(p)(t, x)R(p) = G(p)(t, x)Q(p),

where G(p)(t, x) is an N -dimensional row vector.
However, for x > B∗ the Kolmogorov equations take a less
simple form. With G(p)

i(t, B∗−) := limx↑B∗ G(p)
i(t, x), we

find that G(r)
i(t+ h, x) equals

G(r)
i(t, x − hr(r)

i)

−h (q(r)
i,i−1 + q(r)

i,i+1) (G(r)
i(t, x − hr(r)

i) − G(r)
i(t, B∗))

−h (q(∗)
i,i−1 + q

(∗)
i,i+1) (G(r)

i(t, B∗) − G(p)
i(t, B∗−))

−h (q(p)
i,i−1 + q(p)

i,i+1) G(p)
i(t, B∗−)

+h q(r)
i−1,i (G(r)

i−1(t, x) − G(r)
i−1(t, B∗))

+h q(r)
i+1,i (G(r)

i+1(t, x) − G(r)
i+1(t, B∗))

+h q
(∗)
i−1,i (G(r)

i−1(t, B∗) − Gi−1
(p)(t, B∗−))

+h q
(∗)
i+1,i (G(r)

i+1(t, B∗) − G(p)
i+1(t, B∗−))

+h q(p)
i−1,i G(p)

i−1(t, B∗−)

+h q(p)
i+1,i G(p)

i+1(t, B∗−) + o(h).

After letting h → 0, this leads to

∂

∂t
G(r)(t, x) +

∂

∂x
G(r)(t, x) R(r) =

(G(r)(t, x) − G(r)(t, B∗)) Q(r) +

(G(r)(t, B∗) − G(p)(t, B∗−)) Q(∗) + G(p)(t, B∗−) Q(p).

Assuming stationarity, we now set G(r)
i(t, x) ≡ G(r)

i(x)
and G(p)

i(t, x) ≡ G(p)
i(x) for i = 0, . . . , N , and take all

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 7 IEEE INFOCOM 2002



derivatives with respect to t equal to 0. In matrix form,

d
dx

G(p)(x)R(p) = G(p)(x) Q(p), and (7)

d
dx

G(r)(x) R(r) = (G(r)(x) − G(r)(B∗)) Q(r)

+ (G(r)(B∗) − G(p)(B∗−)) Q(∗) + G(p)(B∗−) Q(p). (8)

Solving (7) is immediate and leads to

G(p)(x) =
N∑

j=0

a(p)
jv(p)

j exp
[
z(p)

jx
]
, (9)

where (z(p)
j ,v(p)

j) is an eigenvalue-eigenvector pair of
z(p)

jv(p)
jR

(p) = v(p)
jQ

(p), and the a(p)
j are coefficients.

The solution of (8) can be found as follows. To deal with the
inhomogeneous terms we first differentiate with respect to x,
so that we find homogeneous equations for

g(r)(x) ≡ d
dx

G(r)(x).

We write down the solution for the resulting system of equa-
tions using the spectral method.
In the case that all eigenvalues are different, we find the
solution to the differentiated system to be of the form

g(r)(x) =
N∑

j=1

ã(r)
jv(r)

j exp
[
z(r)

jx
]
,

where (z(r)
j ,v(r)

j) is an eigenvalue-eigenvector pair of
z(r)

jv(r)
jR

(r) = v(r)
jQ

(r), and the ã(r)
j are coefficients.

As Q(r) is a generator, it has an eigenvalue 0, and hence one
of the eigenvalues z(r)

j is zero, say z(r)
j∗ = 0, cf. [21].

With this in mind integration immediately yields that G(r)(x)
equals∑

j �=j∗

a(r)
jv(r)

j exp
[
z(r)

jx
]
+ a(r)

j∗v
(r)

j∗x+ w, (10)

where aj
(r) = ã(r)

j/z
(r)

j for j �= j∗, a(r)
j∗ = ã(r)

j∗ , and
the components wi of w are integration constants.

Now the vectors a(p), a(r), and w can be found by considering
the following boundary conditions:
(i) G(p)

i(0) = 0 for all i ≥ N ′ + 1 (i.e., the buffer cannot be
empty when it fills), leading to N −N ′ equations.
(ii) Similarly, G(p)

i(B∗−) = G(r)
i(B∗) for all i ∈ {N ′′ +

1, . . . , N ′}. This gives N +N ′ −N ′′ + 1 equations.
(iii) For all z(r)

j with a non-negative real part, the correspond-
ing a(r)

j is zero, since the G(r)
i(x) should remain bounded

for x → ∞. There are N ′′ + 1 such eigenvalues [21]. Notice
that this also entails that the equilibrium distribution of Y (t)
is given by w.
(iv) By letting x → ∞ in (8), setting the left hand side
equal to zero, we find the N + 1 global balance equations
for w = limx→∞ G(r)(x). What we do here in fact, is to
substitute the integrated solution (10) back into the inhomo-
geneous (undifferentiated) equations (8) to find the integration

constants. From the global balance equations we can derive
the N local balance equations for i ∈ {1, . . . , N},

(N − i+ 1)λwi−1 = irµ
(
wi −G(r)

i(B∗)
)
+

Cµ
(
G(r)

i(B∗) −G(p)
i(B∗−)

)
+ ipµG(p)

i(B∗−).

(v) Finally we normalize:
∑N

i=0 wi = 1.

Noticing that there are just as many boundary conditions as
coefficients (namely 3N + 3), we conclude that the system is
solvable. We have proved:

Theorem III.1: The above procedure gives the exact solution
to the buffer content distribution.

The above solution enables the computation of several key
quantities. Denoting the throughput per user by τ , it is
straightforward to obtain that Nτ equals

N∑
i=0

ipG(p)
i(B∗−) +

N ′′∑
i=N ′+1

C(G(r)
i(B∗)−G(p)

i(B∗−))

+
N∑

i=0

ir(wi −G(r)
i(B∗)).

The mean file transfer delay IET is found from

τ =
1/µ

IET + 1/λ
. (11)

IV. Many sources

The intrinsic drawback of the technique of the previous sec-
tions is its computational complexity. When the size of the
system (i.e., the number of sources) grows, a large eigensystem
needs to be solved. This explains the interest in simpler
asymptotic approaches. In this section we will focus on the so-
called ‘many-sources scaling’, which was introduced by Weiss
[31]. In this regime, we derive explicit results on the overflow
probability.
In the many-sources scaling, buffer and bandwidth resources
are scaled by the number of users N . In other words, if we
scale C ≡ Nc, the exponential decay rate of IP(W ≥ Nx) can
be determined explicitly in terms of x and model parameters r,
p, λ, µ, and c. Because W is now implicitly parametrized by
N , we write WN . The random variable VN is defined as the
buffer content in the corresponding model without feedback
(as in Section II-B).

A. Feedback model without threshold

Asymptotics. First we estimate the average behavior of the
number of active sources in the asymptotic limit (large N ). It
is not hard to show that there are two regimes.
(A) In the first regime λp/(λ+ µp) < c, cf. (1). In this case,
in the asymptotic limit, on average the sources are allowed to
transmit at peak rate; the buffer will be empty nearly always.
The number of active sources on average will be Nm, with
m := λ/(λ+ µp).
(B) In the second regime, c is between λr/(λ + µr) and
λp/(λ+µp). In this case, the network will in general be in the
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processor sharing regime. The average number of active users
simultaneously in the system is Nm with m := 1− µc · λ−1.
The sources are allowed to transmit at a rate m′ between r
and p, where m′ := c/m = λc/(λ− µc).
The following lemma gives the decay rate of the probability
of a non-empty buffer in each of the regimes. A similar result
can be found in Ramanan and Weiss [23].

Lemma IV.1: The decay rate of the probability of a non-empty
buffer is given by

lim
N→∞

1
N

log IP (WN > 0) = I(0).

When λp/(λ+ µp) < c (regime (A)), I(0) is given by(
1 − c

r

)
log

(
1 − c/r

cµ/λ

)
+ log

(
c(λ+ pµ)

pλ

)
+
c

r
− c

p

and when λr/(λ+µr) < c ≤ λp/(λ+µp) (regime (B)), I(0)
is given by(

1 − c

r

)
log

(
1 − c/r

cµ/λ

)
+
cµ

λ
−

(
1 − c

r

)
.

Proof. Directly from Theorem 11.15 of [29], the decay rate
of the probability of a non-empty buffer equals∫ c/r

m

log
(

µxx

λ(1 − x)

)
dx.

Here µx is the (downward) probability flux per source, when
the number of sources in the on state is Nx:

µx :=
{

pµ if xp < c,
cµ · x−1 otherwise.

Direct calculation yields the stated expression. ✷

Define A(t) as the amount of fluid generated in the interval
[0, t) by one source with off-periods that are i.i.d Exp(λ)
random variables, and on-periods that are i.i.d Exp(rµ), and
constant generation rate r. Let IE0 (IE1, respectively) denote
expectation given that the source start in the off (on) state at
time 0.

Proposition IV.2: The decay rate for positive buffer content
values is given by

lim
N→∞

1
N

log IP (WN > Nx) =: I(x) = J(x) + I(0),

with J(x) equal to

inf
t>0

sup
θ

(
θ(x + ct) − c

r
log IE1e

θA(t) −
(
1 − c

r

)
log IE0e

θA(t)
)
.

(12)

Proof. Evidently, IP (WN > Nx) equals

IP (WN > Nx|WN > 0) IP (WN > 0) .

As shown in Section II-C,

IP (WN > Nx|WN > 0) = IP (VN > Nx|VN > 0) .

Immediately from Theorem 1 of Duffield [8], we have

lim
N→∞

1
N

log IP (VN > Nx|VN > 0) = J(x).

Together with Lemma IV.1 this proves the stated. ✷

The variational problem in (12) cannot be solved analytically;
numerical methods have to be applied. Fortunately, for large
x asymptotics are available.

Simple approximations for large buffers. Let θ� the equation
limt→∞ t−1 log IEeθA(t) = cθ. Define, for i = 0, 1,

ai := lim
t→∞ log IEie

θ�A(t) − cθ�t.

In Duffield [8] it is proven that, for x → ∞,

J(x) = θ�x− c

r
a1 −

(
1 − c

r

)
a0 + o(x).

Following the Chernoff Dominant Eigenvalue method of [9],
we propose an even simpler approximation:

lim
N→∞

1
N

log IP (WN > Nx) ≈ θ�x+ I(0). (13)

Here θ� = rµ/(r − c) − λ/c, and I(0) is given in Lemma
IV.1. In [9] it is shown that this approximation is conservative
for all x (in fact it is the best possible linear estimate that
is conservative for all x). Notice that the analysis of [9]
requires the sources to be time-reversible, which condition is
trivially met for exponentially distributed file sizes and user
think times. In [9] it is concluded that the approximation is
usually not overly conservative.

General think-time and file-size distributions for large buffers
The nature of approximation (13) is, for large x,

IP(VN > Nx) ≈ IP(VN > 0)e−θ�Nx. (14)

We may follow the same approach in case of general (rather
than exponentially distributed) think-time and file-size distri-
butions. The questions then are: how to compute the coun-
terparts of the probability of a non-empty buffer IP(VN > 0)
and the exponential decay rate θ�?

The probability of a non-empty buffer is computed as follows.
As long as the buffer is empty, the process behaves like an
infinite-server queue if the number of jobs is below N ′, and
like a processor sharing queue if the number of jobs is between
N ′ and N ′′ +1. Let DN be the number of jobs in the system.
It is easily verified that in the case of exponential think-times
and file-sizes, the blocking probability (i.e., the probability of
DN = N ′′ + 1) equals

1
Norm

(µ
λ

)N ′′+1 (
rN ′′−N ′+1pN ′) N ′! · (N −N ′′ − 1)!

N !
,

(15)
where the normalizing constant Norm is given by

Norm =
N ′∑
j=0

(µ
λ

)j (
pj

) (N − j)!
N !

+
N ′′+1∑

j=N ′+1

(µ
λ

)j (
rj−N ′

pN ′) N ′!(N − j)!
N !

.

It is tedious but straightforward to verify that the decay rate
of (15) is indeed I(0), as was defined in Lemma IV.1.
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Importantly, formula (15) also holds in the case of general
think-time and file-size distributions, with respective means
λ−1 and µ−1. This is due to insensitivity results for networks
of generalized processor sharing queues, as was shown by
Cohen [5].

We now focus on the exponential decay rate θ�. Let T be the
distribution of the think-time and F the distribution of the file-
size. During busy periods, the buffer is fed by a superposition
of N on-off sources with off-times distributed like T , and on-
times distributed like F/r (with peak rate r). Let Ā(t) be the
amount of traffic generated by such a source, in steady state, in
an interval of length t. Then (under mild technical conditions)
the exponential decay rate in this model is the solution of

lim
t→∞

1
t
log IEeθĀ(t) = cθ, (16)

see Glynn and Whitt [14]. Equation (16) does not necessarily
have a solution. In case of heavy-tailed on-times there is no
solution – approximation (14) does not apply.

General think-time and file-size distributions for small buffers.
Above we concentrated on loss behavior under general think-
time (with mean 1/λ) and file-size distributions (with mean
1/µ), and large buffers. For small buffers a result from
Mandjes and Kim [18] is applicable: for x ↓ 0,

lim
N→∞

1
N

log IP (WN > Nx) =
2σ
r

√
x+ I(0) +O(x),

with constant σ given by√
(crµ+ (r − c)λ) log

(
crµ

(r − c)λ

)
−2 (crµ− (r − c)λ).

Strikingly, σ depends on the distributions of the think times
and file sizes only through their means, making this an
insensitivity result.

B. Feedback model with threshold

As before, we scale the resources buffer and bandwidth: C ≡
Nc, and B∗ ≡ Nb∗. Again, this regime allows explicit results,
which we describe below.
As in Section IV-A, it turns out that there are two possible
regimes: (A) the buffer is empty with an overwhelming
probability and the active sources transmit at rate p almost
all the time, and (B) the buffer occupancy is approximately
nb∗ on average, and the active sources send at a rate between
r and p.

(A) π(p)p < c, where π(p) is the on-probability in the ‘peak
rate regime’: λ(λ+ pµ)−1. In this case the ‘average state’ of
the system is a (nearly) empty buffer, and the active sources
transmit at peak rate. In order for the buffer to exceed level
Nx, where x exceeds b∗, four events have to occur in order:
(1) The buffer must become non-empty, i.e., the number of
sources in the on-state must exceed Nc/p. (2) Given that the
buffer content is at the point of becoming positive, an amount
of Nb∗ of fluid has to accumulate. At the epoch the buffer
content reaches Nb∗, let the number of sources transmitting
be Nα. (3) If α is smaller than c/r, then the number of

sources in the on-state has to grow to Nc/r, in order for the
buffer to exceed level Nb∗. If α is already at least c/r then
in this phase nothing has to happen. Let Nα′ be the number
of sources in the on-state at the end of this phase. (4) An
amount of N(x− b∗) of fluid has to accumulate in the buffer,
where at the beginning of this phase the number of sources
transmitting is Nα′. This makes the decay rate be the sum of
four decay rates:

lim
N→∞

1
N

log IP (WN > Nx) ≈
4∑

i=1

Ii. (17)

Notice that this construction (the decay rate of a steady-state
probability being formulated as the solution of a transient
problem, namely the decay rate of the path from equilibrium
towards the rare event) is essentially of the Freidlin-Wentzell
type. Details on this approach are found in [29, Chapter 6].
In [19] explicit expressions for the four decay rates are given,
in terms of the model parameters r, p, c, λ, and µ.

(B) π(r)r < c ≤ π(p)p. In this case the ‘average state’ of the
system is a buffer occupancy of Nb∗, and all active sources
sending at rate m′ = cλ/(λ− cµ). In equilibrium, the system
is operating in the processor sharing regime. Clearly, the first
two decay rates of case A do not apply anymore, as the queue
is already operating at level nb∗ on average. Hence, only
the other two decay rates have to be computed. Again [19]
provides the explicit expressions.

V. Numerical results

In this section we provide numerical results. We first consider
an example where we maximize the system throughput, using
the procedure of Section III. The second example relies on
the many sources asymptotics of Section IV.

A. System throughput maximization

We consider a buffer that is fed by 10 identical and inde-
pendent on-off sources. Let Y (t) denote the number of active
sources at time t; we choose the process Y (·) as the regulating
process. As before, W (t) will denote the buffer content at time
t. The output trunk speed is C = 11. The off-times of the
sources are exponentially distributed with λ = 3. File sizes are
exponentially distributed with µ = 2. The peak transmission
rate of the sources p = 4, which is the actual transmission rate
when the buffer content is below B∗ = 2, and the rate drops
to its minimum value r = 2 when the content is above B∗.
Notice that the buffer content may stick at B∗ for as long as 3,
4, or 5 sources are active; then the total actual transmission rate
is 11, i.e., the output trunk speed, equally shared among the
active sources. As a consequence the transition intensity of the
process Y (·) from state i to i−1, given that the buffer process
remains at 2, is equal to i · 2C/i = 22. These considerations
allow us to write down the diagonal matrices R(p) and R(r),
as well as the tri-diagonal matrices Q(p), Q(r) and Q(∗).
After the numerical determination of the eigensystems of
the matrices Q(p)(R(p))−1 and Q(r)(R(r))−1, we apply the
appropriate boundary conditions to find the 33 unknowns (note
that N = 10). After solving this (linear) set of equations, the
stationary distribution G of the joint process (Y (t),W (t))
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can be found numerically. A graphical representation of
G(y) ≡ IP(W ≤ y) =

∑10
i=0 Gi(y) is given in Figure 1.

The throughput τ of the system can be found as

–10

–8

–6

–4

–2

0

y

Fig. 1. B = ∞: log10(1 − G(y)) as a function of y

τ =
10∑

j=0

jr(pj −Gj
(r)(B∗)) + jpGj

(p)(B∗−) +

C(Gj
(r)(B∗) −Gj

(p)(B∗−)) = 10.2652. (18)

Finite-buffer model. The corresponding finite-buffer system
can be solved similarly [19]. We did the calculations for B =
5, leaving all other parameters the same. Clearly, now the
size of the ‘jump’ that G(y) has at y = 5 is exactly the (time
average) probability of a full buffer:

IP(W = B) = 1 −
10∑

j=0

G
(r)
j (B) = 2.01 · 10−4.

It is also not difficult to find the average amount of fluid sent
into the buffer per unit of time, or fluid input rate τ�:

τ� =
10∑

j=0

jr(pj −G
(r)
j (B∗)) + jpG

(p)
j (B∗−) +

C(G(r)
j (B∗) −G

(p)
j (B∗−)) = 10.2656, (19)

and the average amount of fluid sent over the link per unit of
time, or throughput, as

τ =
10∑

j=0

C(pj −G
(p)
j (0)) + jpG

(p)
j (0) = 10.2651. (20)

Notice that the numerical outcomes for these quantities are
close to each other and to (18), which can be explained by
the fact that we chose the (finite) size of the buffer quite large.
Indeed by subtracting (20) from (19) we immediately find that
the average amount of lost fluid per unit of time, or fluid loss
rate,

Fluid loss rate = τ� − τ = 5.83 · 10−4, (21)

is small. Another way to find this result is to use

Fluid loss rate =
10∑

j=0

(jr − C)(pj −G
(r)
j (B)). (22)

The fraction of fluid that is lost can be found as the ratio of
the fluid loss rate (21) and the fluid input rate (19):

Fraction of fluid lost =
Fluid loss rate

Fluid input rate
= 5.67 · 10−5. (23)

Maximization of system throughput. As a final application we
show how the threshold level B∗ and the number of sources
N may be jointly chosen such that the system throughput is
maximized, with the fraction of lost fluid not to exceed ε =
10−6. The other parameters are as before. In Figures 2 and 3
we plot the throughput and the loss fraction as functions of
the threshold level for N = 7, . . . , 12. From Figure 3 it can
be seen that only for N ≤ 9 the loss fraction criterion can be
satisfied for some value of B∗. From Figure 2 we compare
the corresponding throughputs for these pairs of (N,B∗). It
turns out that the system throughput is maximized by choosing
N = 9 and B∗ = 2.05, giving a throughput of 9.5725. This
also allows us to compute the mean file transfer time, see (11):
solve IET from

9.5725
9

=
0.5000

IET + 0.3333
,

giving IET = 0.1368. During the active period a source’s
throughput is 0.5000/0.1368 = 3.6526, which is between r =
2 and p = 4.
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Fig. 2. Throughput as a function of threshold B∗ for N =
7 (bottom), . . . , 12 (top)

B. Impact of the choice of the guaranteed rate r

The purpose of this subsection is to provide an illustration of
the effect of the feedback mechanisms proposed in a more
practical situation. For reasons of convenience, we assume
that the number of sources is sufficiently large to use the
approximations of Section IV. We consider a 45 Mbit/s link,
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with a buffer of 10 Mbit. The sources have peak rates of
3 Mbit/s. The users alternately send files (exponentially dis-
tributed with mean 100 kbit) and ‘think’ (for an exponentially
distributed time with mean 10 seconds). We again require
that the loss probability is below ε = 10−6. We focus on the
impact of r, the guaranteed minimum throughput advertised
to customers, because this is an important parameter.
Clearly, for a fixed value of B∗ (possibly 0), the loss prob-
ability increases with r. On the other hand, the number of
admissible sources Nr decreases in r, for fixed loss probabil-
ity. In Figure 4, Nr is given as a function of r, for different
values of B∗ (B∗ = 0, 2, . . . , 8 Mbit). We observe that for
low values of r, Nr is quite sensitive to the threshold value
B∗; the opposite is true for r in the neighborhood of p.
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