
Flexible and Efficient Parallel I/O for Large-Scale
Multi-component Simulations

�

Xiaosong Ma
�

Xiangmin Jiao
�

Michael Campbell
�

Marianne Winslett
�

Abstract

In this paper, we discuss our experience of provid-
ing high performance parallel I/O for a large-scale,
on-going, multi-disciplinary simulation project for solid
propellant rockets. We describe the performance and
data management issues observed in this project and
present our solutions, including (1) support for rela-
tively fine-grained distribution of irregular datasets in
parallel I/O, (2) a flexible data management facility for
inter-module communication, and (3) two schemes to
overlap computation with I/O. Performance results ob-
tained from both development and production platforms
show that our I/O optimizations can dramatically reduce
the simulation’s visible I/O cost, as well as the number
of disk files, and significantly improve the overall perfor-
mance. Meanwhile, our data management facility helps
to provide simulation developers with simple user inter-
faces for parallel I/O.

1 Introduction

Progress in developing high-performance processors
and the use of massively parallel computers have en-
abled the development of large-scale scientific simula-
tions. These applications often run for days and generate
terabytes of output data, normally snapshots and check-
points.1 Typically a simulation code compute in discrete
time-steps, writing out data to disks at certain time-step
intervals. Efficient transfer of such periodic output to
secondary storage has been a great challenge.

�
Research funded by the U.S. Department of Energy through

the Center for Simulation of Advanced Rockets under Subcontract
B341494.�

Department of Computer Science, University of Illinois at
Urbana-Champaign. � xma1, winslett � @cs.uiuc.edu�

Center for Simulation of Advanced Rockets, University of Illinois
at Urbana-Champaign. � jiao, mtcampbe � @csar.uiuc.edu

1A snapshot stores the current “image” of simulation data, to be
used for time-based visualization or analysis. A checkpoint saves
enough simulation data for a future run to restart from the current time-
step. Sometimes, a snapshot can also serve as a checkpoint.

Performance-wise, periodic I/O is now more
bottleneck-prone than ever, for several reasons. First,
the performance improvements of disks lag behind those
of other system components. Second, as today’s super-
computers and clusters make it possible for scientists
to explore massive parallelism in their applications with
hundreds or even thousands of processors, the scalabil-
ity of secondary storage becomes a more serious prob-
lem. With shared file systems, I/O bandwidth is often
limited by the number of I/O channels and the num-
ber of disks, which are normally smaller than the num-
ber of processors. Further, the advances in processor
and network performance have created higher demands
for I/O: equipped with stronger processing power, larger
disk storage capacity, and better displays, scientists can
simulate larger problems and like to save more data at
higher output frequencies, to provide a closer view of
the simulations and to make more detailed animations.

Further, complex simulations face hard data man-
agement problems. Unlike parallel I/O performance,
which has been an object of intensive research in the
past decade [3, 10, 19, 20], data management issues for
parallel I/O were addressed in relatively few previous
studies [16, 17]. Typically, simulation data are writ-
ten to disk files using a pre-defined layout required by
post-processing tools. The same data layout is shared by
multiple modules written by different groups of develop-
ers, and it often needs to evolve as the simulation code
evolves. The above issues, plus the fact that the authors
of the simulation codes are scientists whose expertise is
often in fields other than computer science, often make
it unproductive for them to manage their output data and
perform I/O in the desired format, not to mention ob-
taining satisfactory I/O performance.

Through our experience of supporting parallel I/O
for a cutting-edge whole-system rocket simulation, we
found that some characteristics of this type of appli-
cations create new challenges for parallel I/O perfor-
mance and data management. In this paper, we identify
these issues and present our solutions: support for par-
allel output of large numbers of irregularly distributed

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

datasets, a data registration and management mecha-
nism to facilitate inter-module communication for both
I/O and computation, and flexible schemes for hiding
the application-visible I/O cost. Advantages of our pro-
posed approaches are demonstrated by performance re-
sults from the rocket simulation.

The remainder of the paper is organized as follows.
Section 2 discusses related work. Section 3 introduces
the rocket simulation and identifies the I/O issues it im-
poses. Section 4 describes the parallel I/O architecture
and I/O libraries used. Section 5 presents our proposed
data management mechanism, and section 6 presents our
buffering schemes. Section 7 shows the performance re-
sults and section 8 concludes this paper.

2 Related Work

Previous work has also characterized scientific ap-
plications’ I/O demands [7, 5, 12]. Our work follows
the tradition of studying scientific applications’ I/O re-
quirements by identifying new issues and problems in
an on-going, large-scale, and multi-disciplinary simula-
tion, and by addressing both the performance and data
management topics.

Many techniques have been proposed for high perfor-
mance parallel I/O in general (e.g., [3, 10, 19, 20]). Most
of these techniques are based on the concept of collec-
tive I/O, where processors collaborate to read/write data
from/to files on a shared file system. We complement
the above works by supporting collective I/O with inde-
pendent irregular datasets on individual processors.

On data management for parallel I/O, No et al. pro-
posed a scientific data management system [16, 17],
which uses MPI-IO files for array data and a database
for metadata. We address the same problem with a dif-
ferent approach: using widely supported scientific file
formats to store both the array data and the metadata in
portable files, and providing a high-level data manage-
ment interface that facilitates both computation and I/O.

Some previous research addressed irregular datasets
or irregular data distribution in parallel I/O context
[4, 11, 15, 17]. In this paper, we investigate irregular
data distributions in the form of collections of indepen-
dent mesh blocks, which, to our knowledge, has not been
discussed in previous work.

We provide high-level I/O services through an exten-
sible modular software framework. In the literature, a
few other frameworks also aim at extensibility and mod-
ularity to ease the development and integration of mod-
ules for large-scale parallel simulations, but with differ-
ent focuses (e.g.,[1, 2, 18]). In contrast to these frame-
works, our approach minimizes changes to application
codes and hides from application codes more details of
the framework and services.

3 Application Overview

3.1 Integrated Rocket Simulation Code

The rocket simulation discussed in this paper is an
on-going, ten-year project taking place at the Center for
Simulation of Advanced Rockets (CSAR) at the Uni-
versity of Illinois. The goal of CSAR is the detailed,
whole-system simulation of solid propellant rockets un-
der both normal and abnormal operating conditions [6].
Such a complex simulation poses significant research
problems in computer and computational science, in ar-
eas such as parallel programming environments, per-
formance analysis, numerical algorithms, computational
geometry, and visualization.

The rocket simulation code developed at CSAR is re-
ferred to as GENx, with releases ranging from GEN0
in 1998 to the current GEN2.5. To provide flexibil-
ity, GENx allows users to plug in different modules for
each utility service and/or physics computation. Figure
1(a) shows the overall architecture of GEN2.5. On the
left are the physics modules for gas dynamics, structural
mechanics, and combustion. The gas dynamics solvers,
Rocflo-MP and Rocflu-MP, are two multi-physics codes
using multi-block structured and unstructured meshes,
respectively. Rocsolid and Rocfrac are two structural
mechanics solvers, both using an Arbitrary Lagrangian-
Eulerian formulation. The combustion solver is com-
posed of a two-dimensional framework Rocburn-2D and
three nonlinear one-dimensional burn-rate models with
integrated ignition models.

On the right are the computer science service mod-
ules. Rocface is responsible for transferring data at
the fluid-solid interface. Rocblas provides parallel al-
gebraic operators for jump conditions. Rocpanda and
Rochdf are interchangeable modules providing parallel
I/O services, whose output can be read directly by our
in-house visualization tool Rocketeer, or read for restart.
At the top is the manager module Rocman, which or-
chestrates the control- and data-flow of the overall simu-
lation. In the middle are the integration framework Roc-
com, which glues all modules together, and the commu-
nication libraries, which can be either MPI or Charm++.
Charm++ provides additional functionality such as dy-
namic load balancing.

3.2 I/O Challenges in GENx

GENx performs extensive file output once every cer-
tain number of time-steps, to write out the current state
of computation for multiple computational modules. In
contrast, input is performed only for initialization at the
beginning of the run, either starting from the initial data

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Rocman
Rocflo-MP

Rocflu-MP

Rocsolid

Rocfrac

Rocburn2D

Z

N

A

P

N

P

Y

Rocblas

Rocface

Rocpanda

Rochdf
MPI/Charm

Roccom

(a) (b)

Figure 1. (a) Modules in GEN2.5. (b) Visualization picture generated by Rocketeer that shows
gas velocity and solid propellant average stress in a cutaway section of a booster rocket at 0.83
seconds after ignition.

files or restarting from checkpoint files written in a pre-
vious run. Therefore, in this paper, we mainly focus on
the periodic output operations.

Through our experience of supporting parallel I/O for
GENx in the past three years, we have discovered its
characteristics that make high-performance I/O and effi-
cient post-processing especially challenging:

First, data are distributed finely and irregularly. The
simulation object is pre-partitioned into a large number
of mesh blocks and each processor is assigned a num-
ber of such blocks. For the same material (e.g., solid or
fluid), each block has similar attributes and data organi-
zation, but can have different sizes. These mesh blocks
change as the propellant burns in the simulation, requir-
ing adaptive refinement over time. During each output
phase, GENx outputs a snapshot of current intermediate
results, such as updated mesh data and node- or element-
centered variables, based on the mesh blocks. This rel-
atively fine-grained, irregular, and dynamically chang-
ing data distribution already creates data management
problems for the computation and inter-module commu-
nication, as well as for parallel I/O. Because there are
no global datasets, array-based collective I/O techniques
[14, 15, 17, 19] do not apply here. MPI-IO [20] supports
definition of this kind of data distribution through its
general data distribution directives, but the large num-
ber of irregular mesh blocks makes the creation of the
MPI file view on each processor a huge pain, and the
file view must be re-calculated when the mesh blocks or
their distribution change at runtime.

Second, metadata need to be coupled with “real” data
for both computation and post-processing. Like many

other scientists, investigators at CSAR prefer to inte-
grate metadata with array data in scientific data formats
and the current choice is the Hierarchical Data Format
(HDF) [9]. HDF organizes multiple datasets (both array
data and metadata) in a single file, supports user-defined
attributes for datasets, and is binary-portable. Unfor-
tunately, writing in a scientific format normally takes
much longer than in a plain binary format, and the rela-
tively small blocks used in GENx present a further per-
formance problem with HDF as the internal overhead
of managing the datasets is significant [13]. Further,
the data distribution style mentioned above makes it im-
practical for the user code to directly use parallel inter-
faces currently available with HDF5. These interfaces
require all processors to collectively create each dataset
in a shared file. As each dataset is relatively small and
resides on a single processor in GENx, this restriction
practically serializes a large part of I/O.

Third, inter-module communication is difficult. In
such a large, multi-disciplinary project, the scientists in
fields like fluid dynamics or combustion are not famil-
iar with the internals of high-performance parallel I/O,
nor do they know the detail about the simulation compo-
nents from fields other than their own. Similarly, devel-
opers of the I/O modules are reluctant to look at the gi-
ant computation codes. Many codes in the computation
modules are from stand-alone applications developed by
different research subgroups, some in C, some in C++,
and some in Fortran. These vastly heterogeneous com-
putation modules need to interact with each other, and
communicate with the I/O module. A data management
scheme that facilitates this interaction both in computa-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

tion and I/O is highly desired.
Fourth, the simulation codes keep evolving. There

are big milestones such as upgrading from 2-D in GEN0
to 3-D in GEN1, and constant updates as new compu-
tation modules join in, test cases become more compli-
cated and realistic, and individual modules change their
algorithms or data structures. GENx’s visualization tool,
Rocketeer, evolves as the rocket images become more
and more detailed and requires corresponding changes
in the organization of the HDF output files. Meanwhile,
the primary version of HDF itself upgraded from HDF4
to HDF5 on most platforms during the development of
GENx. The data management and I/O implementation
need to shield developers from updates in other modules
and file I/O interfaces as much as possible.

Finally, debugging runs have critical performance re-
quirements. With such a complex and evolving simu-
lation, the number of debugging runs far exceeds that
of production runs. Since production runs are large and
normally done on huge supercomputers where resources
are tight and access is restricted by citizenship, most of
the development and testing work is done on local plat-
forms. Compared to production platforms, such local
platforms often have inferior shared file system band-
width. Even worse, in debugging runs the scientists of-
ten perform periodic output more frequently than in a
typical production run.

In response to the above challenges, we have de-
veloped new approaches to I/O. To accommodate fine-
grained, irregular, and dynamic distribution of data, we
employed scalable I/O architectures for both collective
and individual I/O. For data management, we designed
and implemented a scheme that benefits both computa-
tion and I/O. For performance optimization, we focused
on aggressively overlapping computation and I/O to re-
duce the application-visible I/O cost, rather than speed-
ing up the actual file I/O. These techniques will be dis-
cussed in the next three sections respectively.

4 Parallel I/O Architectures for GENx

Before we describe the I/O architectures used in
GENx, we first introduce the concept of a data block. A
data block is a collection of arrays and metadata associ-
ated with the arrays. It is also the unit of work distributed
to the compute processors. In GENx, a data block con-
tains all the data based on a mesh block, including the
mesh coordinates and connectivity data, and element-
and/or node-centered variables on this mesh block, such
as pressure, velocity, and temperature. HDF files gen-
erated by GENx are also organized by data blocks, with
data from different arrays in the same data block stored
in neighboring HDF datasets.

 shared file system

I/O processors running
collective I/O servers

mass storage

Internet

visualization tool

disks

 compute processors
 running scientific simulation
 and collective I/O clients

workstation running

� �� �

� �� �
� �� �

� �� �� �
� �� �� �

� � �� � �

	 	 		 	 	

� � �� � �� � �
� � �� � �� � �

 � � �

� � �� � �� � �
� � �� � �

� � �� � �� � �
� � �� � �� � �

� � �� � �

� � �� � �� � �
� �� �

� � �� � �� � �
� �� �� �

� � �� � �

� � �� � �
� � �� � �

� �� �� �
� �� �� �

� � �

! ! !! ! !
" " "" " "

#
$ $$ $$ $

% % %& & &

' ' '' ' '
((((((

)))))))))
* * ** * ** * *

+ + +, ,

- - -- - -
.

/ // // /
0 00 00 0

11
11
11
11
1

22
22
22
22
2

33
33
33
33
3

44
44
44
44
4

55
55
55
55
5

66
66
66
66
6

77
77
77
77
7

88
88
88
88
8

99
99
99
99
9

::
::
::
::
:

;;
;;
;;
;;
;

<<
<<
<<
<<
<

==
==
==
==
=

>>
>>
>>
>>
>

? ?? ?? ?
@@
@

A A A A A A AC C C C C CD D D DE E E

Figure 2. General architecture for collec-
tive I/O in GENx.

4.1 Collective I/O

Collective I/O enables global parallel I/O optimiza-
tions by having processors collaborate with one another
in I/O operations. It also helps reduce the number of
files generated by a simulation, which is important to the
users. However, as explained previously, existing collec-
tive techniques do not easily apply to applications like
GENx. Here, in lieu of global data structures that tradi-
tional collective I/O techniques rely upon, we designed a
client-server scheme for performing collective I/O with
fine-grained and irregular data distributions. Figure 2
shows the I/O architecture we used for collective file
access. In addition to the compute processors (clients)
running the simulation, some additional processors are
dedicated as I/O processors (servers) running the server
routine of our parallel I/O library. Typically, the client-
to-server ratio used in GENx is larger than 8:1.

When the clients issue an output request, all the
clients enter the collective output call. Each server is
assigned to a number of clients. The servers will collect
data blocks from the clients and write them to HDF files.
The array data and metadata in these files are organized
in the way specified by the post-processing application.
Collective input is performed in a similar way for restart.
For GENx, snapshot files for visualization also serve as
checkpoints for restart. In this case, each client has a list
of data blocks to read into memory after initialization.
The servers collect the list of block IDs from the clients
and build a mapping between block IDs and client pro-
cess IDs. The restart files are assigned to the servers
in a round-robin manner, and each server scans through
its assigned files, finds requested data blocks, and sends
them to appropriate clients.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

The above design enables collective I/O based on ir-
regular data distribution. It allows great flexibility in
handling the ever-changing data and their distribution.
First, the mesh blocks can expand or shrink over time,
the number of mesh blocks can change with adaptive
refinement, and the simulation developers need not to
redefine the data distribution for I/O. Second, irregular
distribution of data is easily handled. Third, it allows
dynamic load-balancing, where data blocks may be mi-
grated among processors, without affecting how I/O is
done. In turn, dynamic load-balancing in computation
benefits parallel I/O performance. In this architecture,
the I/O workload is partitioned among the servers by
partitioning the clients into equal-sized groups and hav-
ing each server serve one such group. With fine-grained
data distribution and dynamic load-balancing, the clients
are likely to receive a balanced data assignment, result-
ing in a balanced I/O workload at the servers automati-
cally. Fourth, the way restart is performed allows users
to restart with a different number of servers than used
in the previous run where the restart files were written.
Finally, this architecture allows convenient overlap be-
tween computation and I/O with the memory and pro-
cessing resources on the dedicated servers, which will
be fully discussed in section 6.

Our collective I/O is implemented in a parallel I/O
library called Rocpanda, a special edition of the Panda
parallel I/O library [19]. Panda was designed for parallel
I/O with multi-dimensional arrays distributed regularly
in HPF style. In Rocpanda, we reused Panda’s frame-
work of a client-server protocol, but added support for
collective I/O with individual arrays on each client.

Simulations using Rocpanda with � clients and �
servers run the job with � � � processors. After MPI
initialization, all processors perform Rocpanda initial-
ization, where the processors split into two MPI commu-
nicators, for the clients and the servers respectively. The
clients are passed the client communicator and continue
with the rest of the simulation, using this communica-
tor for communication among themselves. The servers,
instead, enter the Rocpanda server routine and wait for
clients’ collective I/O requests. To avoid resource con-
tention on SMPs, we place the servers on different nodes
as much as possible, by assigning processors with global
rank � , �� , � �� ... to be servers. This placement yields
an unexpected performance advantage on GENx’s pro-
duction platform, an IBM SP with 16-way SMP nodes.
We found that using 15 processors on each SMP node as
compute processors and one processor as an I/O server
actually gets visibly better performance in computation
than using all the 16 processors as compute processors,
because many operating system related tasks go to the
server processor automatically, where the CPU is mostly
idle. This suggests that dedicating one processor on each

node for I/O achieves double effects by off-loading both
I/O and operating system tasks.

4.2 Individual I/O

The above collective I/O architecture generates fewer
files and offload I/O from the compute processors, but
it can also inconvenience simulation developers. First,
when existing simulation codes are adapted to use Roc-
panda, all the instances of MPI COMM WORLD need
to be replaced by the client communicator returned by
the Rocpanda initialization routine. Second, the deci-
sion to dedicate one processor as an I/O server on each
SMP node must be made before the mesh is partitioned.
Otherwise, the number of problem partitions in the sci-
entific world is typically a power of two, as is the num-
ber of processors in an SMP node. Both problems re-
quire extra planning and foresight from users. Third,
when the number of processors is limited, especially on
debugging platforms, it can be difficult to obtain addi-
tional processors for I/O servers.

To allow parallel I/O in more general circumstances,
we also provide a server-less architecture for individual
I/O. In this architecture, each compute processor out-
puts its own data blocks. In GENx, this is done through
another I/O library called Rochdf, which writes local
blocks into individual HDF files. This simpler archi-
tecture avoids communication during I/O. In some cir-
cumstances Rochdf may offer additional performance
advantages over Rocpanda because it generates smaller
files, and HDF4 read/write performance does not scale
well as the number of datasets increases in a file (un-
like HDF5) [13]. On the other hand, having all the
processors accessing files can create higher contention
for I/O resources and cause degradation in I/O perfor-
mance. The largest disadvantage of the individual I/O
architecture, however, is that it creates the same number
of files per snapshot as the number of compute proces-
sors. While CSAR’s visualization tool has no problem in
processing files generated in this mode, having so many
files certainly brings file management problems for pro-
duction runs on a large number of processors.

For Rochdf, performance problems can be handled
with the same approach used in Rocpanda: overlapping
computation with I/O. Here there are no dedicated I/O
servers to perform file I/O when the compute processors
are computing, we create an extra I/O thread on the com-
pute processors to issue I/O requests in the background.
Details will be given in section 6.

5 Data Management and I/O Interface

We provide high-level parallel I/O services through
a component-based integration framework called Roc-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

com developed at CSAR. Roccom facilitates flexible
inter-module data exchange and function invocation in
parallel simulations, and is designed to maximize con-
currency in development of code modules, minimize
user effort for integration, and provide interoperabil-
ity between different programming languages (in par-
ticular, C, C++, and Fortran 90). Note that Roccom
is not specialized for integrating I/O with applications,
but is a more general-purpose tool for integrating multi-
component simulation codes. In effect, all the GENx
components of CSAR are integrated through Roccom.

Roccom provides systematic methods for modules in
a complex simulation to keep track of their data and to
access data defined by other modules. Besides declar-
ing variables and allocating buffers, each computation
module registers its datasets through Roccom. These
datasets can later be retrieved from Roccom by the same
module or other modules. Functions can be registered
and invoked in the same way. This scheme allows great
independence in design and development of individual
modules and hides the coding details of different re-
search subgroups, which is convenient for both compu-
tation and I/O components. For parallel I/O, the compu-
tation modules can simply tell the I/O library: “write the
mesh coordinates and the pressure value on all the mesh
blocks”. Meanwhile, the I/O library never has to know
how each data block is defined. A detailed description
of Roccom is beyond the scope of this paper. Here we
only briefly explain the concepts and interfaces related
to parallel I/O.

Roccom’s design addresses several research issues.
First, there needs to be an intuitive way for users to or-
ganize their data, with the irregular mesh blocks distri-
bution style of GENx. Roccom organizes data and func-
tions into distributed objects called windows. A win-
dow encapsulates a number of data members, such as
the mesh (coordinates and connectivities), some associ-
ated data attributes, and public functions of a module,
any of which can be empty. In a parallel setting, a win-
dow is partitioned into panes. A pane corresponds to
a data block described in the previous section, and is
owned by a single process, while a process may own
any number of panes. All panes of a window must have
the same collection of data members, although the size
of each data member may vary. To use Roccom, the
computation modules first create windows, then register
their local data blocks as panes in appropriate windows,
providing a unique pane ID. The components of the data
blocks can later be retrieved from Roccom using the ap-
propriate window name, attribute name, and pane ID.

Second, Roccom provides very simple and high-level
parallel I/O interfaces through its data and function man-
agement mechanism. Scientists writing a computation
module simply want to write out a collection of data

blocks to a file with a given name, and they see this
as an atomic operation. Roccom enables Rocpanda
and Rochdf to encapsulate all lower-level I/O opera-
tions into three high-level, file-format-independent, col-
lective operations: read attribute, write attribute, and
sync. Hidden under these one-step interfaces are file
operations such as open, close, and data accesses. The
sync interface is designed for performance analysis and
debugging when I/O is overlapped with computation.
When a sync request is issued, the compute processes
will wait for previously issued I/O operations to com-
plete. Compared to available parallel I/O interfaces such
as parallel HDF and MPI-IO, parallel I/O in GENx has
been greatly simplified from the users’ point of view.

Further, different I/O approaches used in GENx
should have uniform user interfaces. Roccom han-
dles this by having each I/O service module provide its
own load module and unload module routines. The
load module routine creates a window in Roccom, reg-
isters a Rocpanda or Rochdf object in the window, and
associates user interface functions as the member func-
tions of the object. An application code invokes the
I/O operations through COM call function, which au-
tomatically selects the appropriate function, depending
on which module is loaded at the beginning of the run.
Switching between collective I/O and individual I/O is
done by simply loading a different I/O service module.

Finally, modules written in different languages need
to collaborate with each other. In GENx, the main driver
is written in C, many computation modules are written
in Fortran, and the I/O service modules, Rocpanda and
Rochdf, are written in C++. Roccom, written in C++ it-
self, acts as a bridge between these heterogeneous mod-
ules. Its interface routines have different bindings for C,
C++, and Fortran 90, with similar semantics. Roccom
also handles differences between the languages transpar-
ently by performing additional processing such as ap-
pending null terminators to Fortran strings.

In general, Roccom facilitates communication be-
tween simulation modules, for computation and I/O as
well. In the context of parallel I/O, it provides simple,
high-level interfaces that make users’ lives much easier.
Such conveniences are well received by users in CSAR.

6 Maximizing Overlap between I/O and
Computation

Data written in the periodic output phases of scien-
tific simulations are often write-only during the run: the
simulation itself normally would only read the data back
if it is an out-of-core code, and typically there are no
other applications running concurrently and accessing
the output files. Therefore, users often do not care when
their data actually reach the disk, as long as all the data

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

are recorded at the end of the whole run. Also, as dis-
cussed previously, many characteristics of today’s irreg-
ular, multi-component simulations make it harder than
before to achieve high throughput in file I/O. As a result,
our main approach toward providing high-performance
parallel I/O is to hide the I/O cost, rather than reduce it,
by promoting the overlap between I/O and other tasks.

In this paper, we present two schemes for overlap-
ping computation and periodic output, to work with our
collective and individual I/O architectures, respectively.
Unlike in traditional asynchronous I/O, the overlap in
our schemes is transparent to users: it works through
the simple blocking I/O interface, and enforces the same
semantics as blocking I/O, as users can reuse their output
buffers immediately after the output function returns.

6.1 Active Buffering in Rocpanda

With the client-server I/O architecture, it is intuitive
that the servers can perform the actual write operations
while the compute processors compute. We proposed a
scheme called active buffering to enable this overlap in a
flexible and adaptive way. The details of active buffering
and related work on overlapping I/O with computation
can be found in a previous paper [13]. Here we only give
a high-level description of active buffering, and concen-
trate on its effects for GENx. Basically, during a collec-
tive output operation, the servers buffer data rather than
write them out. The clients return to computation when
all the output data are buffered at the servers. The major
benefits of active buffering are as follows:

First, active buffering can use whatever memory
available and handles buffer overflow gracefully. The
users do not have to worry about whether there is enough
buffer space. If buffers overflow, servers automatically
write previously buffered data out to make room for in-
coming data. The full active buffering scheme has a
buffer hierarchy on both the clients and servers for larger
buffer capacity and better performance [13]. In GENx,
only server-side buffering is used because the servers
have enough idle memory to hold all the output data with
typical client-server configurations.

Second, active buffering maintains responsiveness to
clients’ new output requests. The servers write out data
when the clients are computing, and check for new client
requests between writing two data blocks. This way, the
writing of buffered data yields to the handling of new
requests. This is especially helpful in multi-component
simulations like GENx, where different modules issue
back-to-back output requests between relatively long
computation phases. To better utilize the idle CPU re-
sources, we used multiple ways to probe for new mes-
sages from the clients. When there are data to write,
servers use the non-blocking MPI probe interface, so

that if there are no new messages, they can go ahead
and write another data block out. However, when there
are no data to write, the servers use the blocking probe
interface, so that the server processes block until new
client messages arrive and the operating system can use
the server CPUs, as mentioned in section 4.1.

6.2 Background I/O in Multi-threaded Rochdf

With the server-less architecture, the overlap between
computation and I/O is achieved by using a separate
thread to carry out the actual writes. We designed and
implemented individual I/O with background writing in
a multi-threaded version of Rochdf, T-Rochdf. Instead
of writing out the data immediately while the callers
wait, T-Rochdf allocates local buffers on each compute
processor and copies the output data to these buffers. At
this point, the main threads return to computation and
the I/O thread on each processor writes out the buffered
data, which are shared between the two threads.

In T-Rochdf, there is only one I/O thread on each
processor. This thread handles all output function calls
on the processor. The use of a single persistent thread
helps to reduce thread switching overhead and avoids
contention among multiple write requests. The main
thread buffers all the data output from multiple write
requests in the same time-step snapshot, but will block
until the I/O thread finishes writing these data out before
buffering data for the next snapshot. This is based on the
assumption that each processor has enough memory to
buffer its local output data for a snapshot, which is true
for CPU-intensive simulations like GENx. In practice,
GENx’s main threads usually do not have to wait for the
I/O threads, because the computation time between two
snapshots is normally long enough to write the files.

Like Rocpanda, T-Rochdf enables transparent over-
lap between computation and I/O. Because the buffering
is done locally, the user-visible write cost is even smaller
with T-Rochdf than with Rocpanda, and its performance
scales better when the number of processors increases.
However, it is currently not used on GENx’s production
platforms, where Rocpanda offers the extra benefit of
combining output into fewer files.

7 Performance Results

7.1 Performance on Development Platform

We first present results from GENx’s primary devel-
opment platform, the Turing cluster at University of Illi-
nois. It has 208 compute nodes running Linux 2.4, each
with dual 1GHz Pentium III processors and 1GB mem-
ory, connected with Myrinet. It has shared file system

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

on RIESERFS, mounted via NFS and accessed through
one server. Turing is built for research development, and
is not intended for performance benchmarking. It has no
job scheduling mechanisms and cannot guarantee a job’s
exclusive use of any dual-processor nodes. On the other
hand, performance on Turing is important to scientists
at CSAR, because they use it intensively and all runs
on Turing are interactive. Because Turing’s nodes are
shared by multiple concurrent jobs, performance varies
significantly from run to run. In this paper, we show the
best results measured in five consecutive runs.

We timed test runs of the latest version of GENx,
GEN2.5, in which we simulated a lab-scale solid rocket
motor, with design and data obtained from the Naval
Air Warfare Center. In this test, we partitioned and dis-
tributed the same set of simulation data onto different
numbers of compute processors, so the total amount of
computation and input/output is fixed regardless of the
number of processors used. We executed the simula-
tion for 200 time-steps and performed snapshots every
50 time-steps, resulting in five output phases (includ-
ing the initial snapshot). This output frequency is typ-
ical in GENx’s debugging runs. For each snapshots,
GENx wrote approximately 64MB of output data. We
measured the performance with three I/O implementa-
tions described in this paper: Rochdf (non-threaded ver-
sion, which serves as a base for comparison), T-Rochdf,
and Rocpanda. The results obtained with 16, 32, and
64 compute processors are shown in table 1. When
Rocpanda is used, extra processors are dedicated as I/O
servers and the client-to-server ratio is fixed at 8:1.

compu. proc. 16 32 64

compu. time 846.64 393.05 203.24
visible Rochdf 51.58 83.28 51.19

I/O T-Rochdf 0.38 0.18 0.11
time Rocpanda 2.40 1.48 1.94

restart Rochdf 5.33 1.93 0.72
time Rocpanda 69.9 39.2 18.2

Table 1. Computation and I/O times on Tur-
ing cluster, in seconds.

The computation time is the total time spent on time-
step iterations to update solutions in GENx. In table
1, the computation time is independent of the I/O ap-
proach and scales well as the number of compute pro-
cessors increases. The visible output time is the total
time spent in calls to the output interfaces, i.e., the time
the compute processors need to wait for the snapshots
to be completed. For Rochdf, this is the time to write
all the data to HDF files. For T-Rochdf, this is the time
to buffer the output data locally. For Rocpanda, this is
the time to send the output data to appropriate servers.

For this test case, the idle memory on the compute pro-
cessors or on the dedicated servers is large enough to
buffer all the output data for each snapshot, so T-Rochdf
and Rocpanda are both able to hide the actual I/O cost
effectively. Compared to the performance of the non-
threaded Rochdf, T-Rochdf and Rocpanda dramatically
reduce the application-visible output time, as well as
considerably reduce the total run time2, by actively over-
lapping I/O with computation. With the non-threaded
Rochdf, more than 50 seconds are spent on taking the
snapshots, and the performance does not scale up as the
number of processors grows. Especially, with 32 pro-
cessors the write contention between different proces-
sors outweighs the decrease in local data size, causing a
large increase in the write time. With T-Rochdf, the vis-
ible I/O time is almost eliminated, and the performance
scales up well. Compared to the non-threaded Rochdf,
Rocpanda reduces the visible I/O time by a factor be-
tween 21 and 55, and reduces the number of output files
by a factor of 8. Rocpanda’s performance does not scale
properly, because on Turing, the message passing sys-
tem does not scale well and the impact of other con-
current jobs grows as more processors are used. This
causes increasing communication cost in both the data
transfer and the handshaking protocols of Rocpanda’s
client-server framework.

Note that both Rochdf and Rocpanda write HDF4
files, and the performance difference shown in table 1
is not the performance difference between HDF and an-
other file format. The non-threaded Rochdf’s perfor-
mance is the performance that we would expect from
a fine-grained, irregular simulation using a general-
purpose scientific I/O library that has no asynchronous
I/O support, without any performance optimization. T-
Rochdf and Rocpanda show that application-specific I/O
libraries built on top of the same scientific I/O library
can make a huge difference in performance.

We also measured the restart latency of Rochdf and
Rocpanda. Since no computation can be overlapped
with restart operations, T-Rochdf performs restart in
the same way as Rochdf does. As shown in table 1,
Rochdf’s restart cost is considerably lower than Roc-
panda’s, due to two reasons. First, each Rocpanda restart
file contains much more datasets, and as mentioned be-
fore, HDF4’s data access performance does not scale
well when the number of datasets grows in a file. Sec-
ond, the NFS-mounted shared file system shows much
better tolerance to concurrent reads than to concurrent
writes, so Rochdf gains extra I/O parallelism by having
all the processors performing reads.

2The total run time is the sum of the total computation time and
the total visible I/O time, which grows along with the number of time-
steps computed and the number of snapshots taken respectively, plus a
bounded initialization and finalization time.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

With Roccom’s ability to load the I/O module at run-
time, users can choose between T-Rochdf and Rocpanda
for debugging runs. If they do not care about the num-
ber of files generated, they can use T-Rochdf for better
performance. Otherwise, Rocpanda is a natural choice.

7.2 Performance on Production Platform

Next we present results from GENx’s primary pro-
duction platform, the ASCI Frost. Frost is an IBM SP
located at Lawrence Livermore National Laboratory. It
has 63 POWER3 375 MHz 16-way SMP compute nodes
running AIX 4.3, each with 16GB memory, connected
with SP Switch2. The GPFS file system has 20.6TB disk
space, accessed through two GPFS server nodes.

To investigate the performance and scalability on
Frost, we used GENx’s “scalability” test, which simu-
lates an extendible cylinder of the rocket body. Unlike
the lab-scale test used in section 7.1, here the amount
of data is fixed on each processor, and the total data
size scales with the number of processors. We mea-
sure the apparent aggregate write throughput as the num-
ber of compute processors increases. Fifteen processors
per SMP node are used for computation, and with Roc-
panda, one processor per node is used as an I/O server.

On Frost, Rocpanda demonstrates its advantage over
Rochdf by both reducing the number of output files and
hiding the periodic output costs. Figure 3(a) shows the
apparent aggregate write throughput computed by divid-
ing the total output data size by the total visible output
cost. With Rocpanda, when the number of compute pro-
cessors is smaller than 16, only one 16-way SMP node
is used, where one processor is assigned to be the I/O
server. The increase in Rocpanda’s throughput from 1
compute processor to 15 compute processors is mainly
due to higher utilization of the intra-node message pass-
ing bandwidth. After the number of compute processors
grows past 15, the number of servers starts increasing,
and the apparent throughput scales up too. The apparent
throughput reaches 875MB/s with a total of 512 proces-
sors, more than five times higher than the highest paral-
lel HDF5 throughput with the same number of proces-
sors measured on Frost by other researchers [8].

We mentioned earlier that the client-server architec-
ture offers extra benefits in SMP environments. Figure
3(b) demonstrates this effect by showing the computa-
tion time with different processor configurations, again
with fixed amount of work per compute processor. In
the “16NS” case, 16 processors per SMP node are used
for computation. In the “15NS” case, 15 processors per
node are used for computation and the one processor left
is idle. In these two cases, I/O is done through Rochdf.
In the “15S” case, 15 processors per node are used for
computation and the one processor left on each node is

used as a Rocpanda I/O server. When the total number
of compute processors is 8 or less, all the three cases use
the same number of compute processors, and the “15S”
case uses one extra processor as an I/O server.

As the number of compute processors grows, the
computation time when using all 16 processors per
node as compute processors becomes visibly longer than
when using only 15 processors. When one processor on
each node is used as an I/O server, the computation time
is slightly longer than when that processor is left idle,
but is considerably shorter than the “16NS” case. Note
that with more than 32 processors, the “15S” computa-
tion time is less than � � � � � of the “16NS” computation
time, while the computation work done in the “15S” case
is � � � � � of that in the “16NS” case. This indicates that
our client-server I/O architecture not only improves the
apparent aggregate I/O throughput, but also improves
the aggregate computation throughput on SMPs.

8 Conclusion

This paper identifies the gap between application-
specific I/O requirements and general-purpose parallel
interfaces, through analyzing the data management and
performance problems presented by GENx, a complex,
cutting-edge simulation. By carefully wrapping the un-
derlying I/O services provided by a general-purpose sci-
entific data I/O library with optimizations, and provid-
ing high-level parallel I/O interfaces, we have obtained
dramatic performance gain while alleviating users’ bur-
den to understand the low-level I/O details and to use
efficiently general-purpose parallel I/O libraries. We be-
lieve that the real-world I/O challenges that we observed
from GENx exist in other large-scale, multi-component
simulations, and expect that many of our solutions will
apply to those applications as well.

References

[1] G. Allen, T. Dramlitsch, I. Foster, N. Karonis,
M. Ripeanu, E. Seidel, and B. Toonen. Support-
ing efficient execution in heterogeneous distributed
computing environments with Cactus and Globus.
In Proc. of SC ’01, Nov. 2001.

[2] R. Armstrong, D. Gannon, A. Geist, K. Keahey,
S. Kohn, L. McInnes, S. Parker, and B. Smolin-
ski. Toward a common component architecture for
high-performance scientific computing. In Proc. of
HPDC, Nov. 1999.

[3] R. Bordawekar, J. Rosario, and A. Choudhary. De-
sign and evaluation of primitives for parallel I/O.
In Proc. of SC ’93, Nov. 1993.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0

100

200

300

400

500

600

700

800

900

1000

2 (1) 4 (1) 8 (1) 15 (1) 30 (2) 60 (4) 120
(8)

240
(16)

480
(32)

number of compute processors (number of SMP nodes)

ap
p

ar
en

t
ag

g
re

g
at

e
w

ri
te

th

ro
u

g
h

p
u

t
(M

B
/s

)

Rochdf Rocpanda

(a) Apparent aggregate write throughput in GENx

0

100

200

300

400

500

600

700

1 1 1 8 8 8 16 15 15 32 30 30 64 60 60

number of compute processors

T
o

ta
l c

o
m

p
u

ta
ti

o
n

 t
im

e
(s

ec
)

16NS 15NS 15S

(b) Computation time using different number of proces-
sors per SMP node

Figure 3. Performance results on Frost. Results are averaged over three experiments and the
error bars show the 95% confidence intervals. Computation time on Frost has little variance.

[4] B. Broom, R. Fowler, and K. Kennedy. KelpIO:
A telescope-ready domain-specific I/O library for
irregular block-structured applications. In Proc. of
CCGrid, May 2001.

[5] P. Crandall, R. Aydt, A. Chien, and D. Reed. In-
put/output characteristics of scalable parallel appli-
cations. In Proc. of SC ’95, Nov. 1995.

[6] W. Dick and M. Heath. Whole system simulation
of solid propellant rockets. In Proc. of the 38th
AIAA/ASME/SAE/ASEE Joint Propulsion Confer-
ence and Exhibit, Jul. 2002.

[7] N. Galbreath, W. Gropp, and D. Levine.
Applications-driven parallel I/O. In Proc. of SC
’93, Nov. 1993.

[8] http://flash.uchicago.edu/˜zingale/flash benchmark io.
FLASH I/O Benchmark Routine.

[9] http://hdf.ncsa.uiuc.edu/UG41r3 html/. HDF
4.1r3 User’s Guide.

[10] D. Kotz. Disk-directed I/O for MIMD multipro-
cessors. In Proc. of OSDI, Nov. 1994.

[11] D. Kotz. Expanding the potential for disk-directed
I/O. In Proc. of SPDP, Oct. 1995.

[12] D. Kotz and N. Nieuwejaar. Dynamic file-access
characteristics of a production parallel scientific
workload. In Proc. of SC ’94, Nov. 1994.

[13] X. Ma, M. Winslett, J. Lee, and S. Yu. Faster col-
lective output through active buffering. In Proc. of
IPDPS, Apr. 2002.

[14] J. Nieplocha, I. Foster, and R. Kendall. Chemio:
High-performance parallel I/O for computational
chemistry applications. The Intl. Journal of Su-
percomputer Applications and High Performance
Computing, 12(3):345–363, 1998.

[15] J. No, S. Park, J. Carretero, and A. Choudhary. De-
sign and implementation of a parallel I/O runtime
system for irregular applications. Journal of Par-
allel and Distributed Computing, 62(2):193–220,
2002.

[16] J. No, R. Thakur, and A. Choudhary. Integrat-
ing parallel file I/O and database support for high-
performance scientific data management. In Proc.
of SC ’00, Nov. 2000.

[17] J. No, R. Thakur, D. Kaushik, L. Freitag, and
A. Choudhary. A scientific data management sys-
tem for irregular applications. In Proc. of the 8th
Intl. Workshop on Solving Irregularly Structured
Problems in Parallel, Apr. 2001.

[18] J. Reynders et al. Pooma: A framework for sci-
entific simulations on parallel architectures. In
G. Wilson and P. Lu, editors, Parallel Program-
ming using C++, pages 553–594, 1996.

[19] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak,
and M. Winslett. Server-directed collective I/O in
Panda. In Proc. of SC ’95, Nov. 1995.

[20] R. Thakur, W. Gropp, and E. Lusk. On implement-
ing MPI-IO portably and with high performance.
In Proc. of IOPADS, May 1999.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

