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Abstract

The ideal storage system is always available, is incre-
mentally expandable, scales in performance as new com-
ponents are added, and requires no management. Existing
storage systems are far from this ideal. The recent intro-
duction of low-cost, scalable, high-performance networks
allows us to re-examine the way we build storage systems
and to investigate storage architectures that bring us closer
to the ideal storage system. This document examines some
of the issues and ideas in building such storage systems and
describes our first scalable storage prototype.

1 Motivation

Today, managing large-scale storage systems is an ex-
pensive, complicated process. Various estimates suggest
that for every $1 of storage, $5-$10 is spent to manage it.
Adding a new storage device frequently requires a dozen or
more distinct steps, many of which require reasoning about
the system as a whole and are, therefore, difficult to auto-
mate. Moreover, the capacity and performance of each de-
vice in the system must be periodically monitored and bal-
anced to reduce fragmentation and eliminate hot spots. This
usually requires manually moving, partitioning, or replicat-
ing files and directories. For example, directories contain-
ing commonly used commands are often replicated to dis-
tribute load across several disks and file servers. Also, user
directories are frequently partitioned across several file sys-
tems, resulting in naming artifacts such as /user1, /user2,
etc.

Another important contributor to the high cost of manag-
ing storage systems is component failures. In most storage
systems today, the failure of even a single component can
make data inaccessible. Moreover, such failures can often
bring an entire system to halt until the failed component is
repaired or replaced and the lost data restored. As comput-
ing environments become more distributed, the adverse ef-
fects of component failures become more widespread and
frequent. Aside from the cost of maintaining the necessary
staff and equipment, such failures could incur significant

opportunity costs.
Products such as redundant disk arrays and logical vol-

ume managers often simplify the management of central-
ized storage systems by automatically balancing capacity
and performance across disks, and by tolerating and au-
tomatically recovering from some component failures [4].
Most such products, however, do not support large-scale
distributed environments. They cannot balance capacity or
performance across multiple server nodes and cannot toler-
ate server, network, or site failures. They are effective in
managing storage local to a given server but once your sys-
tem grows beyond the limits of a single server, you must
face all the old management problems anew at a higher
level. Moreover, because distributed systems, unlike cen-
tralized systems, can suffer from communication failures,
the difficulty of the problems is significantly increased.

Of course, products to manage storage in distributed en-
vironments are also available. They collect information
from throughout the system, summarize the information in
an easy to understand format, and provide standard inter-
faces for configuring storage components. We are unaware
of any, however, that provides the level of automation and
integration offered by the best centralized storage manage-
ment products. In this paper, we propose properties that
are desirable of block-level distributed storage systems and
ideas for implementing such storage systems. We describe
the implementation of our first distributedstorage prototype
based on these ideas and conclude with a summary and di-
rections for future work.

2 An Architecture for Scalable Storage

The desirable properties of a distributed storage archi-
tecture are straight-forward. First, the system should be al-
ways available. Users should never be denied authorized
access to data. Second, the system should be incremen-
tally expandable, and both the capacity and throughput of
the system should scale linearly as additional components
are added. When components fail, the performance of the
system should degrade only by the fraction of the failed
components. Finally, even as the storage system’s size in-
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Figure 1: Architecture for Scalable Storage.

creases, the overhead in managing the system should re-
main fixed.

Such a scalable storage architecture would allow us to
buildstorage systems at any desired level of capacity or per-
formance by simply putting together enough scalable stor-
age components. Moreover, a large storage system would
be no more difficult to manage than a small storage system.
We could start with a small system and incrementally in-
crease its capacity and performance as the needs of our sys-
tem grew.

But how do we design such scalable storage systems?
The key technological innovation that makes scalable stor-
age systems feasible is commodity scalable (switch-based)
networks and interconnects. Without scalable intercon-
nects, the size of a computer system is limited to a single
box or at most a few boxes each containing a few process-
ing, storage and communication elements. Only so many
CPU’s, disks and network interfaces could be aggregated
before the system interconnect, usually a bus, saturates.
In contrast, scalable interconnects can support almost arbi-
trary levels of performance, allowing us to build systems
with an arbitrary number of processing, storage and com-
munication elements. Furthermore, we could group many
elements together into specialized subsystems that provide
superior performance but can be accessed and managed as
if they were a single element.

Figure 1 illustrates these concepts when applied to the
storage subsystem. Each scalable storage server consists
of a processing element, some disks, and a network inter-
face. In the ideal case, we plug the components into the
scalable interconnect, turn them on, and the components
auto-configure, auto-manage and communicate with each
other to implement a single large, highly-available, high-
performance storage system. In particular, the servers auto-
matically balance capacity and performance across the en-
tire storage system and uses redundancy to automatically
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Figure 2: Round-Robin Data Striping.

tolerate and recover from component failures. All the intel-
ligence needed for implementing the storage system is con-
tained within each individual scalable storage server; the
storage servers do not require help from the clients or a cen-
tralized command center. To the clients, the storage servers
collectively appear as a single large highly-available high-
performance disk with multiple network interfaces. When
an additional storage server is added, the storage systems
simply looks like a larger, higher-performance disk with
more network connections.

To conclude, all systems, whether they are biological,
social, or computational, are limited in size and effective-
ness by the capabilities of their basic control and transporta-
tion infrastructure. The advent of commodity scalable net-
works and interconnects radically alter the basic assump-
tions we use for building computing systems. In particular,
we believe that they willdramatically alter the way we build
and use distributed storage systems.

3 Availability and Scalable Performance

The main technical challenges in designing scalable
storage systems are availability and scalable performance.
We have found that in large distributed systems, scalable
performance is closely tied with good load-balancing. Fur-
thermore, because almost all schemes for providing high-
availability impose a performance penalty during the nor-
mal operation of the system and also because failures
should not cause disproportionate degradations in perfor-
mance, the availability and performance issues are closely
related. This section discusses the basic mechanisms for
meeting these challenges: data striping and redundancy.

Figure 2 illustrates round-robin data striping. The solid
rectangles represent blocks of storage on the specified stor-
age server, the dotted rectangle emphasizes that the storage
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Figure 3: Mirrored-Striping.

servers appear as a single logical disk to its clients. Each
letter represents a block of data stored in the storage system.
The figure shows that the first block of data, D0, is stored
on storage server 0, the second block of data, D1, is stored
on storage server 1, and so on. This effectively implements
a RAID 0 [4], using storage servers instead of disks. The
main problem with this arrangement is the availability of
the system. Any single disk failure will result in data loss
and any single server failure will result in data unavailabil-
ity.

In theory, you can implement a distributed RAID 5 us-
ing storage servers [2]. However, in practice, the complex-
ity of the additional synchronization required for RAID 5
systems in comparison to a replication-based redundancy
scheme is greatly amplified in a distributed environment.
Also, RAID 5 has the undesirable property that the failure
of a single storage server increases the average read load
by a factor of two. This makes RAID 5 unacceptable for
many performance-critical applications such as video-on-
demand.

Figure 3 illustrates the mirrored-striping data placement
scheme. Data is striped round-robin across a set of mir-
rored servers. This provides good reliability by protecting
the system from both disk and server failures. However,
should Server 0 fail, Server 1 must assume all of Server 0’s
load while servers 2 and 3 experience no load increase.
Clearly, it would be better if all surviving servers experi-
enced a 33 % increase in the read load rather than having a
single server experience a 100 % increase in load.

Figure 4 illustrates the chained-declustered data place-
ment scheme [7]. Note that Server 0’s copy of D0 is on
Server 1, Server 1’s copy of D1 is on Server 2, and so on.
Now, if Server 1 fails, servers 0 and 2 share Server 1’s read
load but Server 3 experiences no load increase. This is not
perfect but much better than having a single server bear all
of Server 1’s load. By performing dynamic load balancing,
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Figure 4: Chained-Declustering.

we can do much better. For example, since Server 3 has
copies of some data from servers 0 and 2, servers 0 and 2
can offload some of their normal read load on Server 3 and
achieve uniform load balancing.

Although we have presented this example with four
servers, the same type of offloading can be done with many
more servers. Chaining the data placement allows each
server to offload some of its read load to either the server
immediately following or preceding the given server. By
cascading the offloading across multiple servers, a uni-
form load can be maintained across all surviving servers.
A disadvantage of this scheme is that it is less reliable
than mirrored-striping. With mirrored-striping, if Server 1
failed, only the failure of Server 0 would result in data un-
availability. With chained-declustering, if Server 1 fails,
the failure of either Server 0 or Server 1 will result in data
unavailability.

Figure 5 illustrates a variation on the
chained-declustered data placement called multi-chained-
declustering. Instead of having a single chain of stride
one, multiple chains of varying strides are used. The sys-
tem illustrated in Figure 5 uses chains of both stride one
and stride two. If dynamic load balancing is not used,
this scheme provides better load balancing than chained-
declustering. For example, if Server 2 fails, servers 0, 1,
3, 4 each experience a 25 % increase in the read load com-
pared to 50 % with chained-declustering. In large config-
urations, multi-chained-declustering has an additional ben-
efit over chained-declustering. With chained-declustering,
multiple failures can prevent uniform load balancing by
breaking the chain in more than one place. This effect is
most pronounced if the two failures occur close together in
the chain. With multi-chained declustering, this is not prob-
lem since the chain of stride two can be used to skip over
the failed servers. As expected, however, multi-chained-
declustering is less reliable than chained-declustering. If,
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Figure 5: Multi-Chained-Declustering.

for example, Server 2 fails the failure of any one of servers
0, 1, 3, and 4 results in data unavailability. As this exam-
ple illustrates, in the absence of dynamic load balancing, a
tradeoff exists between load balancing in the face of failures
and the availability of the system.

4 Virtual Volumes

The primary practical, in contrast to technical, problem
in designing scalable storage systems is making them easy
to manage. Designing systems to automatically tolerate and
recover from component failures and to automatic balance
load is an important part of the solution, but it is not suf-
ficient. Although we have described how to build a sin-
gle large block-level device with high-availabilityand scal-
able performance, we have not provided any mechanism for
sharing this device in heterogeneous distributed environ-
ments or for making consistent backups and restores of such
large devices. For the scale of storage systems we are con-
sidering, the standard UNIX mechanism of statically par-
titioning a device into several fixed-size devices is inade-
quate. Our solution to the problem applies a well known
technique for sharing resources in computer systems; we
virtualize the resource.

The primary storage management abstraction we sup-
port is the virtual volume. A virtual volume looks like a
large block-level device but unlike a real device, it can be
created and destroyed as needed by clients of the scalable
storage system. Each virtual volume gives each client ac-
cess to the performance capabilities of the entire scalable
storage system. Similar to the virtual address space abstrac-
tion supported by many operating systems, the creation of
a virtual volume only allocates a range of virtual disk ad-
dresses and does not in itself allocate any physical storage.
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Figure 6: Virtual Volumes.

It is only when locations in the virtual volume are used that
physical storage is allocated and mapped to an address in
the virtual volume. Thus, a virtual volume need not have
a definite size. This can be an advantage for advanced file
systems that can dynamically grow in size. For some ap-
plications, it may be desirable to guarantee each virtual vol-
ume some minimum amount of physical storage. Likewise,
it is probably desirable to place maximum size restrictions
on volumes to prevent it from using up all the physical stor-
age. Figure 6 illustrates how virtual volumes might fit into
heterogeneous distributed environments.

Virtual volumes are implemented by explicitly mapping
each virtual volume identifier and offset to a correspond-
ing physical disk address. The existence of this map be-
tween virtual and physical addresses allows us to play the
same type of mapping games found in virtual memory sys-
tems. For example, by adding a facility for making vir-
tual volumes copy-on-write, we can support an efficient
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mechanism for creating instantaneous snapshots of vol-
umes. Such a snapshot facility is needed to make consis-
tent file system dumps withoutmaking file systems unavail-
able for long periods of time. Periodic snapshots can also
be used to recover accidentally deleted files and directories
without resorting to tape backups. Finally, read-only snap-
shots of volumes can be mounted as read-only file systems
on several file servers simultaneously, allowing commonly
accessed files such as executables to be servered from mul-
tiple machines without having to partition or replicate the
files.

5 Our First Prototype

Over the past year, we have applied the ideas described
in this paper to construct our first scalable storage proto-
type. The primary goal of the prototype is to study the high-
availability and scalable performance characteristics of the
scalable storage system. Currently, the prototype survives
any single component failure including disk, server, and
network failures. Appropriately partitioning the servers
over two or more sites should allow the system to sur-
vive site failures, but this has not been tested. The proto-
type currently does not support virtual volumes. The pro-
totypes is implemented using Alpha/OSF workstations and
the AN1 [9] (similar to switched FDDI) network. Due to
the current lack of spare disks in our computing environ-
ment, we have thus far simulated the disks.

Our first prototype uses the chained declustered data
placement described previously. One nice property of this
data placement is that, assuming an even number of servers,
placing the even and odd numbered servers at different sites
results in a system that can survive any single site failure.
A system using the multi-chained declustered data place-
ment described in this paper can also be partitioned to sur-
vive site failures, however, this placement requires a mini-
mum of three rather than two sites.

We use the fail-stop failure model in designing the pro-
totype’s redundancy mechanisms. That is, we assume that
when a component fails, it ceases to operate. In particular, a
failed component does not continue to operate incorrectly.
A distributed voting mechanism based on timeouts ensures
that all servers can agree on the failed or operational status
of each other in the face of communication failures.

The software components of the scalable storage proto-
type can be broken into roughly two basic components: the
server software that runs on each scalable storage server,
and the client software that runs on each client of the scal-
able storage system. The client software looks just like a
standard block-level device driver to its host operating sys-
tem. From the clients’ perspective, adding a scalable stor-
age system is similar to adding a new disk controller. Once

the scalable storage driver is installed, a client can access
the scalable storage system just as if it were a locally at-
tached disks.

A basic design principle in implementing the server and
client software was to implement all the necessary function-
ality in the server software and to maintain only “hints” in
the client software. This makes it unnecessary to imple-
ment complicated consistency protocols to constantly up-
date information cached at clients, and ensures that a client
cannot compromise the logical consistency of data stored in
the scalable storage system. The client currently maintains
only a small amount of high-level mapping information that
is used to route read and write requests to the most appro-
priate server. If the request is sent to the wrong server, the
server updates the information at the client and the client
retries with the new information.

A primary example of this design philosophy, is that
data redundancy is implemented completely within the
servers; the clients are completely unaware of the redun-
dancy scheme that is used or, indeed, that any redundancy
scheme is being used. This results in a particularly sim-
ple network interface that makes it easier to experiment
with different redundancy schemes and makes it impossible
for the clients to compromise the data redundancy mech-
anisms. This also means that the clients are not burdened
with the additional work required for supporting data re-
dundancy. For example, when a write request is generated
by a client, the appropriate scalable storage server is re-
sponsible for generating any additional network requests
needed for updating the corresponding replica.

Preliminary performance measurements of our untuned
first prototype show that each server can service 1100 512-
byte read requests per second and 400 512-byte write re-
quests per second. For 8 KB requests, each server can
service read requests at 4.8 MB/s and write requests at
1.6 MB/s. The reader may have noticed that the write
performance for both small and 8 KB requests is approx-
imately one-third the read performance. This is because
for a read request, the storage system need only read the
requested data from, the simulated, disk and send it out
over the network, whereas for a write request, the storage
system must receive the data, send it to the corresponding
replica server and the replica server must subsequently re-
ceive and process the data. Thus, a write request generates
three times the network processing overhead generated by a
read request. As expected, preliminary performance analy-
sis of the system indicates that optimization of the network-
ing code should result in significant performance improve-
ments. The reader should bear in mind that the above de-
scribes the performance that is achieved by each server in
the scalable storage system. We expect the performance of
the system to scale linearly up to a hundred or more servers.
The largest scalable storage system we have tested to date
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is with four servers.

6 Summary, Conclusions and Future Work

The ideal storage system is always available, incremen-
tally expandable, scales in performance as new components
are added, and requires very little management. When ad-
ditional capacity or performance is needed, a new storage
server is plugged into the network and turned on. The ad-
dition storage is then immediately and transparently ac-
cessible to all clients of the storage system. In particular,
the capacity and load is automatically distributeduniformly
across all storage servers in the system.

In this paper, we have presented ideas for building stor-
age systems that come closer to this ideal. We’ve outlined
some of the data striping and redundancy schemes that are
suitable for distributed storage systems and briefly men-
tioned why RAID level 5 systems, while good for central-
ized storage systems, may not generalize well to distributed
storage systems. We’ve also motivated the usefulness of
virtual volumes in managing and allocating storage in dis-
tributed environments and some of the additional function-
ality such as snapshots that they can efficiently support. Fi-
nally, we have briefly described our first scalable storage
prototype and tried to give an idea for the level of perfor-
mance that can be expected.

Over the next year or two, we plan to finish our imple-
mentation of virtual volumes, include support for adding
disks and servers on-line without making the storage sys-
tem unavailable, build a larger prototype using real disks,
and look for interesting applications for the system. One
class of applications that currently appeals to us is provid-
ing a wide-area information service over the Internet.

In conclusion, we believe that large-scale distributed
storage systems represents a very important opportunity
for both research and product development. The avail-
ability, performance and manageability of existing storage
systems is inadequate for building the large-scale informa-
tion systems that are envisioned for the future. If we truly
wish to build the massive video-on-demand, regional med-
ical information systems, enterprise-wide information sys-
tems, and consumer-oriented information systems that the
recent advances in telecommunications make possible, we
must reexamine the basic building blocks we use in build-
ing large distributed systems. Irregular stones may be fine
for building cottages but we need modular bricks to build
cathedrals. (Yes, it’s not a very pretty analogy but I think
that it makes a point.)
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