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Abstract: In this article we present a new graph
topology for the design of intercommunication
networks of MIMD computers. We show that,
compared to the most used topologies, this original
topology can achieve better performance and is much
more versatile and scaleable.

1 INTRODUCTION

One of the main contributions of graph theory to
parallel computing is to provide suitable topologies for
the design of the network of MIMD high performance
parallel computers. Indeed as soon as the number of
processors to connect increases it becomes too costly
to use a fully connected network. In this situation we try
to use other topologies having good properties, such
as a small diameter for a small degree and a large size.
Unfortunately all solutions proposed up to now lead to
the use of very rigid topologies. By “rigid” we mean
topologies that strongly limit the choice of the size and
the degree of the graph. In this paper we will show that
the K-Ring topology, first introduced by P.Kuonen in
1993 (Kuonen 93), is a suitable topology for building
the interconnection network of MIMD computers.

The rest of this paper is organized as follows:
Sections 2 introduces the K-Ring topology. Section 3
compares K-Ring topology to the most used
topologies. Section 4 presents the major advantage of
K-Rings: versatility. Finally, Section 5 concludes this
presentation.

2 THE K-RING TOPOLOGY

2.1 Main characteristics of graphs

In order to be able to compare different graph
topologies, we need to define the characteristics we
consider as relevant. For our purpose we can
summarize the relevant characteristics of a graph as
listed below:

• the size is the number of nodes of the graph.

• the diameter is the maximum distance between
nodes of the graph. The distance between two
nodes is defined as the minimum number of
edges to cross to go from one node to the
other.

• the degree of a node is equal to the number of
neighbors of this node.

• a regular graph is a graph where every node has
the same degree.

• the cost of the graph is an “ad hoc” parameter
defined for our purpose as the number of
edges of the graph.

Let us first mention that regular graphs are our
favorite candidate as they are best suited for avoiding
hot spots in the communication network. Next, as the
size of the graph is directly related to the number of
processors of the parallel machine, we want to build
graphs with a high size while keeping a low diameter
and a low cost. Unfortunately, these different
characteristics of graphs are not independent. For a
given degree the diameter and the cost increase with
the size and for a given size we can decrease the



diameter by increasing the degree, but in such case
we increase the cost.

2.2 Definition of the K-Ring topology

Intuitively, the K-Ring topology can be seen as a
graph built using K>0 rings where each ring goes over
all the nodes in a different order. The value K is called
the dimension of the K-Ring.

More formally the definition of the K-Ring topology
is the following:

A K-Ring is a graph defined by the values listed
below:

• the size N is an integer >0;

• the dimension K is an integer >0;

• K different positive integers (a1,...,aK), prime1

with N and smaller than (N+1)/2.

The corresponding K-Ring is constructed as follow:

• the nodes are numbered from 0 to N-1.

• each node i is connected to the nodes
(i+aj)       mod      N, for j in [1..K].

Conventions:

1. With such a construction each aj defines a ring
on the N nodes, this ring will be identified as the
ringj and aj will be called the stepj.

2. By renumbering the nodes it is always possible,
for any K–Ring, to obtain a ringj with a stepj

equal to 1. By convention, we decide that this
ring is numbered by 1. Consequently we will
only consider K-Rings with a1=1.

K-Rings are regular graphs with an even degree
equal to 2.K.

Figure 1: Two 2-Rings of size 15

                                                
1 a is prime with N iff the LCM of a and N is equal to a.N.

They are Caley graphs (Rumeur94) and they
belong to the General Corodal Rings
(GCR)(Bermond86). The size of a K-Ring can be any
positive integer. For a given size and a given
dimension there are many different K-Rings. Figure 1
shows two 2-Rings of size 15.

Readers interested in the classification of K-Rings
can find more details in (Kuonen95).

3 K-RING VERSUS OTHER TOPOLOGIES

3.1 Currently used topologies

One of the main issue which is addressed by the
designers of parallel computers is the diameter of the
topology used to build the intercommunication
network. This was the main reason of the success, a
few years ago, of the hypercube topology. It was often
mentioned that the diameter of an hypercube grows
with the logarithm of the size. If this assertion is correct,
it nevertheless lacks to mention that, for keeping this
low diameter, we also have to increase the degree with
the logarithm of the size. In other words, for a given
size there exists only one hypercube with a given
degree. Moreover the size of an hypercube must be a
power of two. Because of this limitation hypercubes
have been largely abandoned and, today, the
designers of parallel computers use more “flexible”
topologies such as the grid or the torus2. More
recently, Meiko company has designed a parallel
machine using a fat-tree topology (Meiko94).

In order to compare these topologies with the K-
Ring we need to define clearly which graphs should be
compared. For our analysis we decided to compare
graphs of the same size and of the same degree. The
motivation of such a choice is the following: when
building a parallel computer the size is directly related
to the number of processors and the degree to the
number of I/O ports by node. Processors and I/O ports
are hardware elements which have a price. Therefore
the problem of designers is to decide, for a given size
and for a given degree (i.e. for a given price), which are
the best topologies for connecting the processors.

3.2 Comparison of diameters

Fat-tree topology is used to build multi-stage
networks. In these networks not all the nodes of the

                                                
2 It can be demonstrate that under some hypothesis,
hypercubes are special cases of toruses.



graph correspond to computing nodes, but some
nodes of the graph correspond to computing nodes
while other nodes correspond to switch nodes.
Figure 2 presents a fat-tree of size 12. Square nodes
are computing nodes while round nodes are switch
nodes. Computing nodes are those which contain
processors. More details on the fat-tree topology can
be found in (Leiserson85).

As it appears in Figure 2, fat-trees are not regular
graphs. In order to compare this topology with a regular
one, we have to decide which degree we assume for a
fat-tree. In order to be fair in our comparison, we based
our choice on the degree of the computing nodes.
Indeed this degree determines how many I/O ports the
processors (or the processor cards) have to possess.
With this hypothesis the graph presented on figure 2
has a degree of 2.

Figure 2: A fat-tree of size 12

In figure 3 we represent the diameter of toruses,
fat-trees and K-Rings of degrees of 4 and 6 in relation
to the amount of computing nodes .
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Figure 3: Comparison of diameters.

These results show that:

1. toruses always have the worst diameter;

2. fat-trees appear to have the best diameter;

Because K-Rings and toruses are both regular
graphs, they have the same cost for the same size and
the same degree. Figure 3 clearly show that, for the
same cost, toruses have a much larger diameter than
K-Rings.

To compare K-Rings and fat-trees we need to take
into account the cost of graphs. Fat-trees have switch
nodes and computing nodes therefore, for a given
number of computing nodes (i.e. for the given number
of processors) we have to use a fat-tree topology with
more nodes than the corresponding K-Ring. Figure 4
compares the cost of fat-trees and K-Rings in relation
to the amount of computing nodes. We can notice that
the cost of fat-trees are significantly higher than for
equivalent K-Rings. In other words, fat-trees provide a
better diameter but at a very high cost.
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Figure 4: Comparison of costs

Diameter

Size Cost F a t - t r e e K - R i n g K
3 2 2 5 6 4 2 8

1 2 8 1 5 3 6 6 3 1 2
5 1 2 8 1 9 2 8 4 1 6

2 0 4 8 4 0 9 6 0 1 0 5 2 0
Figure 5: Comparison of K-Rings and fat-trees of same

cost.

It can be argued that at least fat-trees are able to
provide a very low diameter and that, for high



performance computers, the cost could be a
secondary factor compared to the performance of the
network which is the very critical element of a MIMD
computers. Therefore in order to be able to decide
which is the best topology, we must compare the
diameter of topologies of the same cost.

Figure 5 presents such a comparison for fat-trees
and K-Rings of same size and same cost. These
results show that, at same cost, K-rings have a better
diameter than fat-trees.

4. THE K-RING: A VERSATILE TOPOLOGY

The analysis presented in the previous section has
shown that K-Rings are, in term of diameter and cost, a
better topology than the most used topologies for
designing the interconnection network of MIMD
computers. Nevertheless K-Rings have another major
advantage : it is a much more versatile topology.

First we can noticed that fat-trees and toruses does
not exist for any size. For a torus of dimension K, the
size N must be equal to a1

.a2
.a3...

.ak where ai are positive
integers. The choice of ai has a great influence on the
diameter of the torus. The optimal diameter is obtained
when a1=a2=a3...=ak=A. Therefore we can assume that
for a torus of dimension K the size should be AK, with
A>2. (when A=2, we obtain hypercubes). As the
degree of a torus of dimension K is equal to 2K, size
and degree of toruses are not independent values.
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Figure 6: Maximum degree of K-Rings

Fat-trees are based on trees. The choice of the
degree determines the possible sizes of the fat-tree. In
fact the degree (as we have defined it in section 3) is
equivalent to the branching factor of the fat-tree.
Therefore the possible numbers of computing nodes
for a fat-tree of degree d is: 2(dK) where K is a non-null

positive integer. As for toruses, degree and size are
not independent values.

With K-Rings the situation is completely different.
Size and degree are almost independent factor. There
is only a limitation on the maximum value for the
degree. This maximum value is equal to the number of
positive integers prime with N and smaller than (N+1)/2.
Figure 6 gives the maximum degree of K-Rings for
sizes up to 500. On this figure we can see that this
limitation is not very strong as soon as the size of the
graph is not too small. For example, for a size greater
that 60 we can guarantee a degree greater or equal to
10. Even if we do not have an analytic formula which
allows us to calculate the maximum degree, figure 6
clearly shows that this value grows linearly with the
size.

In fact, the main difficulty with K-Rings is that, up to
now, we do not have many analytic formulas to
determine their characteristics. For example, there are
many different K-Rings having the lowest diameter for
a given dimension and a given size, but we are not able
to determine analytically these K-Rings and if these K-
Rings correspond to the same graphs. On the practical
point of view this ignorance is not very restrictive.
Results presented in this article were obtained by
enumerating the K-Rings. For reasonable sizes and
dimensions this enumeration is possible on standard
workstations. Nevertheless this ignorance on K-Ring is
a motivating intellectual challenge.

Lets us come back to our original goal: to build the
interconnection network of an MIMD computer. Thanks
to K-Rings we are now able to build a MIMD computer
of any size (of any number of processors) with a very
low diameter. But we are able to do more than that; we
can adapt the configuration of the machine to the user
needs. For a given size, i.e. for a given power of the
parallel computer, we can choose the dimension of the
K-Ring according to the desired network performance.
If, subsequently, the user needs to increase the
performance of the network we can increase the
dimension of the K-Ring without changing the number
of processors. The opposite modification is also
possible, we can increase the number of processors
without changing the degree of the K-Ring. This
flexibility which was not possible with the other
topologies, allows us to optimize the ratio
price/performance according the user needs.



CONCLUSION

In this article we have shown that K-Ring is a high-
performance and flexible topology suitable for building
the intercommunication network of MIMD computers.
We demonstrated that K-Rings have better
characteristics than the currently used topologies. K-
Rings are seriously considering to be used for the
design of the SwissTx-serie parallel computers
(Gruber98).

K-Rings are still not well known graphs. Especially
there is almost no analytic formula allowing to compute
their characteristics (such as the diameter). Because of
their flexibility it is possible to build a lot of, apparently,
different K-Rings but we are still not able to determine
which of those K-Rings correspond to same graphs.
Some work has been undertaken at the mathematical
department of EPFL in order to classify the 2-Rings.
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