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Abstract

Many scientific applications that run on today’s multiprocessors, such as weather forecast-
ing and seismic analysis, are bottlenecked by their file-I/O needs. Even if the multiprocessor
is configured with sufficient I/O hardware, the file-system software often fails to provide the
available bandwidth to the application. Although libraries and enhanced file-system interfaces
can make a significant improvement, we believe that fundamental changes are needed in the
file-server software. We propose a new technique, disk-directed I/0, to allow the disk servers to
determine the flow of data for maximum performance. Our simulations show that tremendous
performance gains are possible both for simple reads and writes and for an out-of-core appli-
cation. Indeed, our disk-directed 1/O technique provided consistent high performance that was
largely independent of data distribution, obtained up to 93% of peak disk bandwidth, and was
as much as 18 times faster than the traditional technique.

1 Introduction

Scientific applications like weather forecasting, aircraft simulation, molecular dynamics, remote
sensing, seismic exploration, and climate modeling are increasingly being implemented on massively
parallel supercomputers [Kot96a]. Each of these applications has intense [/O demands, as well as
massive computational requirements. Recent multiprocessors have provided high-performance 1/0
hardware [Kot96b], in the form of disks or disk arrays attached to I/O processors connected to the
multiprocessor’s interconnection network, but effective file-system software has lagged behind.
Today’s typical multiprocessor has a rudimentary parallel file system derived from Unix. While
Unix-like semantics are convenient for users porting applications to the machine, the performance is

often poor. Poor performance is not surprising because the Unix file system [MJLF84] was designed
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Figure 1: A typical MIMD multiprocessor, with separate compute processors (CPs) and 1/O processors
(TOPs). Disks attach only to IOPs, which run the file system code. Applications run only on the CPs.

for a general-purpose workload [OCHT85], rather than for a parallel, scientific workload. Scientific
applications use larger files and have more sequential access [MK91, GGL93, PP93, PP94]. Parallel
scientific programs access the file with patterns not seen in uniprocessor or distributed-system
workloads. Although there seems to be a wide variety of access patterns [NKPT96, CACR95,
SACRI6], we have noticed many patterns accessing small, discontiguous pieces of the file in several
types of strided pattern [NK96b, NKP+96]. Finally, scientific applications use files for more than
loading raw data and storing results; files are used as scratch space for large problems as application-
controlled virtual memory [CK93, WGWR93, BPJ94, Kv95]. In short, multiprocessors need new
file systems that are designed for parallel scientific applications.

In this paper we describe a technique, disk-directed I/0, that is designed specifically for high
performance on parallel scientific applications. It is most suited for MIMD multiprocessors that
have no remote-memory access, and that distinguish between I/O Processors (IOPs), which run the
file system, and Compute Processors (CPs), which run the applications. Figure 1 shows such an
architecture. The IBM SP-2, Intel iPSC, Intel Paragon, KSR /2, Meiko CS-2, nCUBE/2, Thinking
Machines CM-5, and Convex Exemplar all use this model. The architectures of the Paragon,
the CS-2, and the SP-2 allow [OPs to double as CPs, although they are rarely so configured.
Furthermore, our technique is best suited to applications written in a single-program-multiple-
data (SPMD) or data-parallel programming model. With our technique, described below, CPs
collectively send a single request to all IOPs, which then arrange the flow of data to optimize disk

performance.



We begin by advocating that parallel file systems support non-contiguous and collective data
requests. Then, in Sections 3 and 4, we consider some of the ways to support collective I/O and
our implementation of these alternatives. Section 5 describes our micro-benchmark experiments,
and Section 6 examines the results. We look at some possible interfaces in Section 7, and consider
some generalizations of disk-directed I/O in Section 8. We contrast our system to related work in
Section 9, and mention some existing implementations in Section 10. We summarize our conclusions

in Section 11.

2 Collective I/0

Consider programs that distribute large matrices across the processor memories, and the common
task of loading such a matrix from a file. From the point of view of a traditional file system,
each processor independently requests its portion of the data, by reading from the file into its local
memory. If that processor’s data is not logically contiguous in the file, as is often the case [NKP196],
a separate file-system call is needed for each contiguous chunk of the file. The file system is thus
faced with concurrent small requests from many processors, instead of the single large request that
would have occurred on a uniprocessor. Indeed, since most multiprocessor file systems decluster file
data across many disks, each application request may be broken into even smaller requests, which
are sent to different IOPs.

The problem here is that valuable semantic information has been lost. The application pro-
grammer knows that the entire matrix is to be transferred between the file and the multiple CP
memories, but is forced by the traditional interface to break that transfer into a series of small,
contiguous requests from each CP. Two important pieces of semantic information have been lost
in the translation: that each request is actually part of a larger data transfer, and that all the CPs
are cooperating in a collective request.

It is sometimes possible to rewrite the application to avoid making tiny, discontiguous requests,
particularly if you understand the application and the I/O system well [AUB*T96]. Unfortunately,
such a rewrite is often difficult, forcing the application programmer to consider issues like buffering,
asynchronous I/0, prefetching, and so forth, that are better left to the file system. In this paper we
demonstrate a file-system technique that can provide near-optimal I/O performance to applications,
by allowing applications to request transfers that 1) involve non-contiguous subsets of the file, and
2) involve all CPs in a collective operation.

Fortunately, there are a few file-system interfaces that allow non-contiguous transfers.



Vesta [CF96] and the nCUBE file system [DdR92] support logical mappings between the file and pro-
cessor memories, defining separate “subfiles” for each processor. The Galley [NK96a] file system’s
nested-batched interface allows the programmer to specify strided, nested-strided, or list-oriented
data transfers. The low-level interface proposed by the Scalable-1/O (SIO) Initiative [CPD*96]
provides a subset of Galley’s capability.

There are also a few systems that support a collective-1/0 interface, in which all CPs cooperate
to make a single, large request. Data-parallel languages, such as CM-Fortran for the CM-5 and
C* [MHQ94], have a collective I/O interface by definition. The emerging MPI-I0 standard includes
some collective I/O support [CFF196, MPI96], as does the SIO interface [CPD196]. Finally, there
are several libraries for collective matrix I/0 [GGL93, KGIF94, BAC93, BBSt94, CWS*96, TG96,
I'N96], and at least one for more complex data structures [GSG95].

These interfaces lay the groundwork for non-contiguous, collective I/O transfers. Although we
return to the interface issue in Section 7, this paper focuses on a high-performance implementation

technique to make the best of the information provided through the interface.

3 Collective-I/O implementation alternatives

In this paper we consider collective-read and -write operations that transfer a large matrix between
CP memories and a file. The matrix is stored contiguously within the file, but the file is declustered,
block by block, over many I0Ps and disks. The matrix is distributed among the CPs in various
ways, but within each CP the data is contiguous in memory. We discuss three implementation

alternatives: a traditional parallel file system, two-phase I/O, and disk-directed 1/0.

Traditional parallel file system. This alternative mimics a “traditional” parallel file system
like Intel CF'S [Pie89], with IOPs that each manage a cache of data from their local disks. The
interface has no support for collective /0, or for non-contiguous requests. Thus, the application
must make a separate request to the file system for each contiguous chunk of the file, no matter
how small. Figure 2a shows the function called by the application on the CP to read its part of a

file, and the corresponding function executed at the IOP to service each incoming CP request.

Two-phase I/O. Figure 2b sketches an alternative proposed by del Rosario, Bordawekar, and
Choudhary [dBC93, TCB*96], which permutes the data among the CP memories before writing

or after reading. Thus, there are two phases, one for I/O and one for an in-memory permutation.
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The permutation is chosen so that each CP makes one, large, contiguous, file-system request.
The two-phase-1/O authors call this a “conforming” distribution; the file is logically broken into

approximately equal-sized contiguous segments, one for each CP.

Disk-directed I/0. Here, the collective request is passed on to the IOPs, which then arrange
the data transfer as shown in Figure 2c. This disk-directed model puts the disks (IOPs) in control
of the order and timing of the flow of data. Disk-directed I/O has several potential advantages over

two-phase 1/0:

e The I/O can conform not only to the logical layout of the file, but to the physical layout on
disk. Furthermore, if the disks are actually redundant disk arrays (RAIDs), the I/O can be

organized to perform full-stripe writes for maximum performance.

e The disk I/O and the permutation overlap in time, rather than being separated into two

phases, so the smaller of the two (usually the permutation) takes effectively no time.

e There is no need to choose a conforming distribution. The choice is difficult, and is dependent

on the file layout, access pattern, access size, and cache-management algorithm.

o The IOPs are aware that the CPs are involved in a collective request, and can work to
minimize the elapsed time of the entire request. Secondary goals often implemented in a
traditional IOP’s cache-management and disk-scheduling policies, such as fairness to all CPs,
may be abandoned. (The optimal (but unfair) schedule for some access patterns is to service

one CP’s request in its entirety, before the other CPs are serviced at all.)
o [OP prefetching and write-behind require no guessing, and thus make no mistakes.

¢ Buffer management is perfect, needing little space (two buffers per disk per file), and capturing

all potential locality advantages.
e No additional memory is needed at the CPs for permuting data.

e Each datum moves through the interconnect only once in disk-directed 1/0, and typically

twice in two-phase I/0.
¢ Communication is spread throughout disk transfer, not concentrated in a permutation phase.

e There is no communication among the IOPs and none, other than barriers, among the CPs.



Disk-directed 1/O has several additional advantages over the traditional parallel file system:
e There is only one I/0 request to each IOP, reducing overhead.

e Disk scheduling is improved, by sorting the block list for each disk (Figure 2c), rather than

dynamically scheduling a relatively small number of “current” requests.

e There is no need for the file-system code on the CPs to know the pattern of data declustering

across disks, allowing more complex declustering schemes to be implemented.

A note about the barriers in Figure 2c. The cost of the barriers themselves is negligible compared
to the time needed for a large I/O transfer. For some applications, the waiting time at the first
barrier may be a concern if the preceding computation is poorly balanced across CPs. If so, the
programmer may consider using non-collective disk-directed I/0, in which each process makes its
own individual disk-directed request to the IOPs. The cost of unsynchronized requests may be
much larger than the saved synchronization overhead, however, particularly when the 1/0-access

pattern exhibits fine-grained interprocess spatial locality.

4 Evaluation

We implemented a traditional parallel file system, a two-phase-1/0 system, and a disk-directed-1/0
system on a simulated MIMD multiprocessor (see below). In this section, we describe our simulated
implementation.

Files were striped across all disks, block by block. Each IOP served one or more disks, using one
I/O bus. Each IOP had a thread permanently running for each local disk, that controlled access
to the disk device. The disk thread communicated with threads representing CP requests through

a disk-request queue.

Message-passing and DMA. Since we assumed there was no remote-memory access, we had to
depend on message passing for data transfer. We did assume, however, that the network interface
had a direct-memory access (DMA) capability. Our implementation used DMA to speed message
passing in several ways. Each message was encoded so that the DMA interrupt handler on the
receiving processor could quickly decide where to deposit the contents of the message. For requests
to the IOP, it copied the message into a free buffer, and woke a sleeping thread to process the buffer.

Part of each request was the address of a reply action, a structure on the CP which contained the



address where a reply could be written, and the identity of a thread to wake after the reply arrived.
The TIOP included this reply-action address in its reply to a request, for the CP’s interrupt handler
to interpret.

In some situations we used “Memget” and “Memput” messages to read and write the user’s
buffer on the CPs. Every recipient CP provided a base address to its message-passing system, so
that the requester only referred to offsets within each CP’s buffer. Memput messages contained
data, and returned only an acknowledgement. Memget messages contained a reply-action address,
and returned a reply containing the requested data. It was possible to dynamically “batch” small
Memput and Memget requests, to combine many individual data transfers into larger group trans-

fers.!

Two-phase I/O. Our implementation followed the pseudo-code of Figure 2b. We chose the same
conforming distribution used by the two-phase I/O authors (actually, a row-block distribution,
because we store matrices in row-major order) [TCB*96]. Thus, the application made only one,
large, contiguous file-system request to each CP. The data was permuted after reading, using
Memputs, or before writing, using Memgets. When the matrix-element size was smaller than the
maximum message size, we allowed the Memput and Memget requests to be batched into group
requests. This decision nearly always led to better performance, although it was up to 5% slower
in some cases [Kot96¢].

As in a real two-phase-1/0 implementation, the code is layered above a traditional file system;

we use the traditional parallel file system described below.

Disk-directed I/O. Each IOP received one request, which was handled by a dedicated thread.
The thread computed the list of disk blocks involved, sorted the list by location, and informed
the relevant disk threads. It then allocated two one-block buffers for each local disk (double
buffering), and created a thread to manage each buffer. While not necessary, the threads simplified
programming the concurrent activities. These buffer threads repeatedly transferred blocks using
Memput and Memget messages to move data to and from the CP memories, letting the disk thread
choose which block to transfer next. When possible the buffer thread sent concurrent Memget or
Memput messages to many CPs. When the matrix-element size was smaller than the maximum
message size, we allowed the Memput and Memget requests to be batched into group requests.

This decision always led to better performance [Kot96c].

!We used a fairly naive approach, with good results [Kot96c]. There are more sophisticated techniques [DO96].



Traditional parallel file system. OQOur code followed the pseudo-code of Figure 2a. CPs did
not cache or prefetch data, so all requests involved communication with the IOP. The CP sent
concurrent requests to all the relevant IOPs, with up to four outstanding requests per disk, per
CP, when possible. Most real systems are much less aggressive. Based on our experiments, four
outstanding requests led to the fastest file system [Kot96¢]. Note that the CP file-system code could
only make multiple outstanding requests to the same disk when presented with a large (multi-stripe)
request from the application.

Each IOP managed a cache that was large enough to provide two buffers for every outstanding
block request from all CPs to all local disks, one for the request and one for the corresponding
prefetch or write-behind request, using a total of eight buffers per CP per disk. More buffers would
not have been helpful, because of the lack of temporal locality in our test workload. The cache
used an LRU-replacement strategy, prefetched one block ahead after each read request, and flushed
dirty buffers to disk when they were full (i.e., after n bytes had been written to an n-byte buffer,
though not necessarily in order [KE93]). New disk requests were placed into a per-disk priority
queue using the Cyclical Scan algorithm [SC090], and withdrawn from the queue by the disk thread
when it completed the previous request. This algorithm was nearly always faster than a First-Come
First-Served algorithm; in one case it was 16% slower [Kot96c].

We transferred data as a part of request and reply messages, rather than with Memget or
Memput. We tried using Memgets to fetch the data directly from the CP buffer to the cache buffer,
but that was usually slower, and never substantially faster [Kot96¢c]. We nonetheless avoided most
memory-memory copies by using DMA to move data directly between the network and the user’s
buffer or between the network and the IOP’s cache buffers, if possible. At the IOP, incoming write
requests containing the data to write were assigned to an idle thread, with the message deposited
in the thread’s stack until the thread determined where in the cache to put the data. Later, the
thread copied the data into a cache buffer.

While our cache implementation does not model any specific commercial cache implementation,
we believe it is a reasonable competitor for our disk-directed-1/O implementation. If anything, the
competition is biased in favor of the traditional parallel file system, leading to a conservative

estimate of the relative benefit of disk-directed 1/0, due to the following simplifications:

e The total cache provided, eight buffers per CP, per disk, per file, grows quadratically with
system size and is thus not scalable (disk-directed I/O only needs two buffers per disk per

file). This size is quite generous; for example, there is 64 MB cache per IOP per file, for IOPs



with 2 local disks in a system with 512 CPs and an 8 KB block size.?

e The static flow control resulting from our limiting each CP to four outstanding requests per
disk (made possible by our large cache) saved the extra latency and network traffic of a

dynamic flow-control protocol.

o We assumed that write requests from different CPs would not overlap, avoiding the need to
ensure that writes were performed in the same relative order at all IOPs. Although valid for
all of the access patterns in our experiments, a real system would have extra overhead needed

to guarantee proper ordering, or a flag like Vesta’s reckless mode [CF96].

o We arranged for the application program to transfer the largest possible contiguous pieces of
the file, within the constraints of the specified access pattern, rather than to access individual
matrix elements. For most access patterns this arrangement led to much better performance.
Although this optimization seems obvious, a surprising number of applications read contigu-
ous data in tiny pieces, one by one, when a single large contiguous request might have served

the same purpose [NKP*96].

4.1 Simulator

The implementations described above ran on top of the Proteus parallel-architecture simula-
tor [BDCWO1], which in turn ran on a DEC-5000 workstation. We configured Proteus using the
parameters listed in Table 1. These parameters are not meant to reflect any particular machine,
but a generic machine of 1994 technology.

Proteus itself has been validated against real message-passing machines [BDCW91]. Proteus
has two methods for simulating the interconnection network: an exact simulation that models
every flit movement, and a modeled simulation that uses stochastic techniques to estimate network
contention and its effect on latency. Both methods assume that each processor has a deep hardware
FIFO for incoming messages. To reduce the effect of this assumption, we added flow control to
limit our use of this FIFO.

We compared the effect of the network model on a subset of our experiments, some with
thousands of tiny messages, and some with many large messages, and found that the results of each
experiment using the modeled network differed from the same experiment using the exact network

by at most 5.4%, and typically by less than 0.1%. Thus, our experiments used the modeled network.

2Throughout this paper, for both rates and capacities, KB means 2'° bytes and MB means 2%° bytes.
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Table 1: Parameters for simulator. Those marked with a * were varied in some experiments. Memput
and Memget times are measurements from our code.

MIMD, distributed-memory 32 processors
Compute processors (CPs) 16 *

I/0O processors (I0Ps) 16 *

CPU speed, type 50 MHz, RISC
Disks 16 *

Disk type HP 97560
Disk capacity 1.3 GB

Disk transfer rate
File-system block size
I/O buses (one per IOP)
I/0O bus type

I/O bus peak bandwidth

2.11 MB/s, for multi-track transfers
8 KB

16 *

SCSI

10 MB/s

Interconnect topology
Interconnect bandwidth

Interconnect latency
Routing

6 X 6 torus

200 x 10° bytes/s
bidirectional

20 ns per router
wormbhole

Memput call
Memput handler
Memput return

46-56 cycles
91 cycles 4+ 1 cycle/word
72 cycles + thread wakeup

Memget call
Memget handler
Memget return

51-66 cycles
103 cycles + background DMA
58 cycles 4+ 1 cycle/word + thread wakeup

We added a disk model, a reimplementation of Ruemmler and Wilkes’ HP 97560 model [RW94].
We validated our model against disk traces provided by HP, using the same technique and measure

as Ruemmler and Wilkes. Our implementation had a demerit percentage of 3.9%, which indicates

that it modeled the 97560 accurately [KTR94].

5 Experimental Design

We used the simulator to evaluate the performance of disk-directed 1/0, with the throughput for
transferring large files as our performance metric. The primary factor used in our experiments
was the file system, which could be one of four alternatives: the traditional parallel file system,
two-phase 1/0 layered above the traditional parallel file system, disk-directed, or disk-directed
with block-list presort. We repeated our experiments for a variety of system configurations; each
configuration was defined by a combination of the file-access pattern, disk layout, number of CPs,

number of IOPs, and number of disks. Each test case was replicated in five independent trials, to

11



account for randomness in the disk layouts, disk initial rotational positions, and in the network.
The total transfer time included waiting for all I/O to complete, including outstanding write-behind

and prefetch requests.

The file and disk layout. Our experiments transferred a one- or two-dimensional array of
records. Two-dimensional arrays were stored in the file in row-major order. The file was striped
across disks, block by block. The file size in all cases was 10 MB (1280 8-KB blocks). While 10 MB
is not a large file, preliminary tests showed qualitatively similar results with 100 and 1000 MB files
(see page 26). Thus, 10 MB was a compromise to save simulation time.

Within each disk, the blocks of the file were laid out according to one of two strategies: con-
tiguous, where the logical blocks of the file were laid out in consecutive physical blocks on disk,
or random-blocks, where blocks were placed at random physical locations. We used the same set
of five layouts (one for each trial) for all random-blocks experiments. A real file system would
be somewhere between the two. As a validation, however, we experimented with a compromise
random-tracks layout. In this layout, we chose a random set of physical tracks, and placed blocks
consecutively within each track. We found our results to be qualitatively similar, and quantitatively

between the contiguous and random-blocks layouts, so we only treat the two extremes here.

The access patterns. Qur read- and write-access patterns differed in the way the array elements
(records) were mapped into CP memories. We chose to evaluate the array-distribution possibilities
available in High-Performance Fortran [HPF'93], as shown in Figure 3. Thus, elements in each
dimension of the array could be mapped entirely to one CP (NONE), distributed among CPs
in contiguous blocks (BLOCK; note this is a different “block” than the file system “block”), or
distributed round-robin among the CPs (CYCLIC). We name the patterns using a shorthand
beginning with r for reading an existing file and w for writing a new file; the r names are shown in
Figure 3. There was one additional pattern, ra (ALL, not shown), which corresponds to all CPs
reading the entire file, leading to multiple copies of the file in memory. Note that rb and wb are
the “conforming distributions” used by two-phase I/O. Table 2 shows the exact shapes used in our
experiments. A few patterns are redundant in our configuration (rnn = rn, rnc = rc, rbn = rb)
and were not actually used.

We chose two different record sizes, one designed to stress the system’s capability to process

small pieces of data, with lots of interprocess locality and lots of contention, and the other designed

12



HPF array-distribution patterns
0 0j]1]12]3 0[1|2|3]0[1|2
NONE (rn) BLOCK (rb) CYCLIC (rc)
cs=8 cs=2 cs=1,s=4
NONE NONE
NONE BLOCK CYCLIC
NONE 0 0 0 0
(rnb) 1 (o) 714 1
(rnn) cs=2 2 cs=1 2 2
=64 _
cs s=8 3 s=4 3 3
0 ol (of 0] (O
BLOCK| O 1 BLOCK [ 1| f1] |2 |2
BLOCK 1 BLOCK CYCLIC
NONE
2 (rbb) (rbc)
(rbn) =1 121121 .02] ]2
cs= 16 cs=4| 2 3 - 3[ (3] |3 [3
s=8 s=2
0 0 1 0f1foj1jojafol1
CYCLICT 1 cveuic 213 cvcLic [2[3l2]sl213[2]3
NONE 2 0 o0f1foj1jojafo]1
o 3 BLOCK 3 CYCLIC 3t taiots
=g 0 (rcb) [ 1 (rec) [ol1fof1folafoTs
> 1 cs=4 | 2 3 cs=1 [2]13[213]2{3]2]3
§=32 2 s=16 |0 1 s=2 10 [0]2]o]a]o]a]o]2
3 2 3 213[2131213[213
Figure 3: Examples of matrix distributions, which we used as file-access patterns in our experi-
ments. These examples represent common ways to distribute a 1x8 vector or an 8x8 matrix over
four processors. Patterns are named by the distribution method (NONE, BLOCK, or CYCLIC)
in each dimension (rows first, in the case of matrices). Each region of the matrix is labeled with
the number of the CP responsible for that region. The matrix is stored in row-major order, both
in the file and in memory. The chunk size (cs) is the size of the largest contiguous chunk of the
file that is sent to a single CP (in units of array elements), and the stride (s) is the file distance
between the beginning of one chunk and the next chunk destined for the same CP, where relevant.
The actual shapes used in our experiments are listed in Table 2.

to work in the most-convenient unit, with little interprocess locality or contention. The small
record size was 8 bytes, the size of a double-precision floating point number. The large record
size was 8192 bytes, the size of a file-system block and cache buffer. These record-size choices are
reasonable [NKP196]. We also tried 1024-byte and 4096-byte records (Figure 13), leading to results
between the 8-byte and 8192-byte results; we present only the extremes here.

In the traditional-system case, recall that the application makes file-system requests for whole

chunks, which may be much larger than individual records (Table 2).
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Table 2: Summary of file-access patterns (smaller examples of these patterns are shown in Figure 3). We

list only the read patterns here. All numbers are for a 10 MB file distributed over 16 CPs. Two-dimensional

matrices are stored in the file in row-major order. A dash (-) indicates “not applicable.” Chunks and strides

are given in records, not bytes (for 8-byte records, notice that 1 K record is one block). The rcc pattern has

two different strides.

Record Chunk
Pattern Row Column size size Stride Same
name distribution distribution (bytes) Rows Cols (records) (records) as
ra ALL - - - - 1280 blocks -
rn NONE - - - - 1280 blocks -
rb BLOCK - 8 1310720 - 80K -
rc CYCLIC - 8 1310720 -1 16
rnn NONE NONE 8 1280 1024 1280 K - rn
rnb NONE BLOCK 8 1280 1024 64 1K
rnc NONE CYCLIC 8 1280 1024 1 16 rc
rbn BLOCK NONE 8 1280 1024 80 K - rb
rbb BLOCK BLOCK 8 1280 1024 256 1K
rbc BLOCK CYCLIC 8 1280 1024 1 4
rcn CYCLIC NONE 8 1280 1024 1K 16 K
rcb CYCLIC BLOCK 8 1280 1024 256 4 K
rcc CYCLIC CYCLIC 8 1280 1024 1 4, 3K+4
rb BLOCK - 8192 1280 - 80 -
rc CYCLIC - 8192 1280 -1 16
rnn NONE NONE 8192 40 32 1280 - rn
rnb NONE BLOCK 8192 40 32 2 32
rnc NONE CYCLIC 8192 40 32 1 16 rc
rbn BLOCK NONE 8192 40 32 80 - rb
rbb BLOCK BLOCK 8192 40 32 8 32
rbc BLOCK CYCLIC 8192 40 32 1 4
rcn CYCLIC NONE 8192 40 32 32 512
rch CYCLIC BLOCK 8192 40 32 8 128
rce CYCLIC CYCLIC 8192 40 32 1 4, 100
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6 Results

Figures 4 and 5 show the performance of the three techniques. Each figure has two graphs, one for
8-byte records and one for 8192-byte records. All experiments used 16 CPs, 16 disks, and 16 TOPs.
Because the ra pattern broadcasts the same 10 MB data to all 16 CPs, its apparent throughput
was inflated. We have normalized ra throughput in all of our graphs by dividing by the number of
CPs.

Figure 4 displays the performance on a random-blocks disk layout. Four cases are shown for each
access pattern: traditional parallel file system (TPFS), two-phase I/O (2PI0), and disk-directed
I/O (DDIO) with and without a presort of the block requests by physical location. Note that the
disks’ peak multi-track transfer rate was 33.8 MB/s, but with a random-blocks disk layout it was
impossible to come close to that throughput. Throughput for disk-directed 1/O with presorting
consistently reached 6.3 MB/s for reading and 7.3 MB/s for writing. In contrast, TPFS throughput
was highly dependent on the access pattern, was never faster than 5 MB/s, and was particularly
slow for many 8-byte patterns. Cases with small chunk sizes were the slowest, as slow as 0.8 MB/s,
due to the tremendous number of requests required to transfer the data. As a result, disk-directed
I/O with presorting was up to 8.7 times faster than the traditional parallel file system.

Figure 4 also makes clear the benefit of presorting disk requests by physical location, an op-
timization available in disk-directed I/O to an extent not possible in the traditional parallel file
system or in two-phase 1/O. Even so, disk-directed 1/O without presorting was faster than the
traditional parallel file system in most cases. At best, it was 5.9 times faster; at worst, there was
no noticeable difference. Disk-directed 1/O thus improved performance in two ways: by reducing
overhead and by presorting the block list.

Figure 4 demonstrates the mixed results of two-phase I/O. It was slower than the traditional
parallel file system for most patterns with 8-KB records, though only by 1-3% (16% for ra), because
it did not overlap the permutation with the I/0. It did substantially improve performance (by as
much as 5.1 times) on small-chunk-size patterns. Two-phase /O matched the performance of disk-
directed 1/O without presorting in most patterns, although disk-directed 1/O was still about 20%
faster in ra and some 8-byte cyclic patterns, because it could overlap the costly permutation with
the disk I/O. With disk-directed I/O’s additional advantage of presorting the block list, it was
41-79% faster than two-phase I/0O.

To test the ability of the different file-system implementations to take advantage of disk layout,

15



a) 8-byte records b) 8192-byte records
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Figure 4: Two graphs comparing the throughput of disk-directed I/O (DDIO) to that of two-phase
I/O (2PI0) and the traditional parallel file system (TPFS), on a random-blocks disk layout. ra
throughput has been normalized by the number of CPs. Each point represents the average of five

trials of an access pattern (maximum coefficient of variation (cv) is 0.042, except for 0.25 on 8-byte
wc on TPFS).

16



and to expose other overheads when the disk bandwidth could be fully utilized, we compared the
two methods on a contiguous disk layout (Figure 5). I/O on this layout was much faster than on
the random-blocks layout, by avoiding the disk-head movements caused by random layouts and by
benefiting from the disks” own read-ahead and write-behind caches. In most cases disk-directed I/0
moved about 31.4 MB/s, which was a respectable 93% of the disks’ peak multi-track transfer rate
of 33.8 MB/s. The few cases where disk-directed I/O did not get as close to the peak disk transfer
rate were affected by the overhead of moving individual 8-byte records to and from the CPs. (In our
earlier results [Kot94], the performance was worse: the “batched” Memput and Memget operations

used here improved performance by 10-24% on these patterns [Kot96c].)
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a) 8-byte records b) 8192-byte records
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Figure 5: Two graphs comparing the throughput of disk-directed 1/O (DDIO), two-phase 1/0
(2PI0), and the traditional parallel file system (TPFS), on a contiguous disk layout. Note that
“DDIO” and “DDIO sort” are identical here, because the logical block numbers are identical to the
physical block numbers, so the sort is a no-op. ra throughput has been normalized by the number
of CPs. Fach point represents the average of five trials of an access pattern (maximum cv is 0.090,
except for 0.32 on 8-byte wc on TPFS). Note that the peak disk throughput was 33.8 MB/s.
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Discussion. The traditional parallel file system was often unable to obtain the full disk band-
width, and had particular trouble with the 8-byte patterns. Although there were cases where the
traditional parallel file system could match disk-directed 1/0, disk-directed I/O was as much as
18.1 times faster than the traditional parallel file system. The traditional parallel file system had

several difficulties:

e When the CPs were using patterns with 8-byte chunks (rc, rbc, rce, we, wbe, and wee), many
IOP-request messages were necessary to transfer the small non-contiguous records, requiring
many expensive [OP-cache accesses. It could have been worse: the cache successfully caught
the interprocess spatial locality of these patterns; if the CPs had been poorly synchronized

the cache would have thrashed.

e When the CPs were active at widely different locations in the file (e.g., in rb, rbb, rbc,
or rcc, with 8 KB records), there was little interprocess spatial locality. In the contiguous
layout, these multiple localities defeated the disk’s internal caching and caused extra head
movement, both a significant performance loss. Fortunately, disk scheduling and the ability
to request up to four blocks per CP per disk allowed the rb pattern (which transfers data
in large chunks) to avoid most of this problem [Kot96¢]. In doing so, it used a schedule
that allowed some CPs to progress much more quickly than others; this is an example of an
instance where load imbalance and service that is unfair to some CPs can lead to much better

collective performance.

o Patterns reading medium-sized chunks (rbb, rbc, rcc with 8 KB records) were slow because
the application made only one request at a time (to each CP), and the small chunk size
prevented the CPs from issuing many requests to the IOPs. The IOPs’ disk queues thus had
few requests, and thus the disk was forced to seek from one region to another. The same
patterns, when mapped onto a larger file (1000 MB), had large chunks, and thus were able

to fill the disk queues and realize the full bandwidth (not shown).

The corresponding write patterns (wbb, wbc, wcc), however, were more successful. The IOP
caches were large enough (4 MB) to hold most of the file (10 MB). The numerous small CP
writes completed quickly, filling the cache and thus filling the disk queues, leading to a disk
schedule nearly as efficient as that used in disk-directed I/O. This effect would be negligible

in a huge file.
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e The high data rates of the contiguous disk layout expose the cache-management overhead in

the traditional parallel file system, particularly in the access patterns with small chunks.

Two-phase I/O usually helped avoid the worst troubles of the traditional parallel file system,

particularly for small records. It had several problems of its own, however:

¢ Despite making larger requests to the file system, it could not make large enough requests to
the IOPs to fill the disk queues as well as disk-directed 1/0, so it was less able to optimize

the disk accesses in the random-blocks layout.

e The additional permutation step prevented it from matching disk-directed I/O performance
in most patterns, even with 8192-byte records and a contiguous layout. Indeed, the cost of
the permutation occasionally resulted in lower throughput than traditional caching, even for

8-byte records.

Disk-directed 1/O was not perfect, of course. Note that disk-directed I/O chose the same
(optimal) disk schedule for all access patterns. Thus, any difference in performance between two
access patterns was due to the time spent delivering the data to CPs when reading, or gathering
the data from CPs when writing. IOP double-buffering allowed this communication to overlap the
I/O. The I/O time was sufficiently high in the random-blocks layout to cover the communication
overhead of all access patterns. The I/O time was low in the contiguous layout, but still large
enough to cover the communication time in most access patterns. The patterns with 8-byte chunks
(rc, rbe, ree, we, wbe, and wece), however, required a lot of communication and computation from
the IOP, which became the limiting factor in the performance.

Indeed, in one case (8-byte rbc in the contiguous layout), disk-directed I/O was 8% slower than
two-phase I/0. In this situation, where communication was the limiting factor, the optimal 1/0
pattern was not the optimal communication pattern. The optimal I/O pattern read the file from
beginning to end, which meant that the rows of the matrix were read in increasing order. In our
rbc distribution (see Figure 3 and Table 2) this ordering meant that the IOPs were communicating
with only four CPs at a time, leading to network congestion. In the two-phase-I/O permutation
phase, however, all sixteen CPs were communicating simultaneously, with less congestion. The
solution would be to have each IOP rotate its I/O list by a different amount, so as to start its I/O
pattern at a different point, costing one disk seek but staggering the communications and reducing

congestion.
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Summary. The above results give a rough picture of the kind of performance improvements
possible in a workload that reads and writes matrices in files. To summarize, consider the ratio of
the throughput offered by disk-directed I/0, or two-phase I/0, to that offered by the traditional
parallel file system on particular access pattern. A ratio greater than one indicates that the method
was faster than the traditional parallel file system on that access pattern. We summarize that
“improvement factor” across all access patterns, looking at the minimum, geometric mean [Jai9l,

page 191], and maximum:

Method ‘ minimum geometric mean maximum
DDIO 1.00 1.69 18.10
2PI10 0.44 1.24 17.83

Here “DDIO” includes only cases with the block-list pre-sort, as that is its intended usage. We can
see that although DDIO sometimes makes no difference (ratio 1.00), it is on average 69% faster,
and was up to 18 times faster. Although two-phase I/O was also about 18 times faster on one case
(8-byte wbc), it was otherwise no more than 8.24 times faster, sometimes much slower than the

traditional parallel file system, and only 24% faster on average.
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6.1 Sensitivity

To evaluate the sensitivity of our results to some of the parameters, we independently varied the
number of CPs, number of IOPs, number of disks, file size, and record size. It was only feasible
to experiment with a subset of all configurations, so we chose a subset that would push the limits
of the system by using the contiguous layout, and exhibit most of the variety shown earlier, by
using the patterns ra, rn, rb, and rc with 8 KB records. ra throughput was normalized as usual.
Since the conclusions from two-phase /O were nearly always the same as those from the traditional
parallel file system, we plot two-phase I/O only where the conclusions differ from the traditional
parallel file system.

We first varied the number of CPs (Figure 6), holding the number of IOPs and disks fixed, and
maintaining the cache size for the traditional parallel file system at eight buffers per disk per CP.
It may seem unusual to consider a configuration with fewer CPs than IOPs. Most multiprocessors
are shared, however, so it is not unlikely for an application to occasionally run on a small subset
of CPs, while accessing files that are declustered across the larger, complete set of IOPs.

Most cases were unaffected; the most interesting effect was the poor performance of the tradi-
tional parallel file system on the rc pattern. Recall that in the traditional parallel file system all
the parallelism is generated by the CPs, either from splitting large requests into concurrent smaller
requests, or from several CPs making concurrent requests. With 1-block records and no buffers at
the CP, each file-system call could only use one disk, and then with only one outstanding request.
With fewer CPs than IOPs, the full disk parallelism was not used.

Unlike in our other variations, below, two-phase I/O behaved quite differently from the tra-
ditional parallel file system. Results from the contiguous layout are shown in Figure 7. Similar
results were found with random-blocks layout (not shown). As with the traditional parallel file
system, the rb throughput was unaffected by the number of CPs. Since rb was the I/O access
pattern always used by two-phase I/0, the reduced throughput seen for ra, rn, and rc was due
entirely to slowness in the permutation. With one CP, the permutation was local to one CP, and
was thus fairly fast (it would have matched rb if the code were changed to test for this special case,
avoiding the permutation). Otherwise, the permutation throughput steadily improved for rn and
rc, as more CPs provided more CPUs, memories, and network interfaces for moving the data. The
normalized permutation throughput decreases for ra, due to increasing contention in this all-to-all

permutation (recall that for ra the amount of data moved increases with the number of CPs).
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Throughput of TPFS and DDIO, varying number of CPs

I I I I I I I I
35 - Max bandwidth = 33.8 .
. & &% & — 8
30 Y |
DDIO ra <—
2 | X DDIO rn +— _
X DDIO rb 88—
90 L - DDIO rc =— |
MB/s . TPFS ra < -
TPFS rn + -
I5F TPFS rb ‘O -
X TPFS rc X -
10 - —
5F i
0 | | | | | | | |
0 2 4 6 8 10 12 14 16

Number of CPs

18

Figure 6: A comparison of the throughput of disk-directed I/O (DDIO) and the traditional
parallel file system (TPFS), as the number of CPs varied, for the ra, rn, rb, and rc patterns
(ra throughput has been normalized by the number of CPs). All cases used the contiguous disk

layout, and all used 8 KB records. See Figure 7 for 2P10 results.
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Figure 7: A comparison of the throughput of two-phase I/O (2P10) and the traditional parallel
file system (TPFS), as the number of CPs varied, for the ra, rn, rb, and rc patterns (ra
throughput has been normalized by the number of CPs). All cases used the contiguous disk

layout, and all used 8 KB records. See Figure 6 for DDIO results.
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We then varied the number of IOPs (and SCSI busses), holding the number of CPs, number
of disks, and total cache size fixed (Figure 8). Performance decreased with fewer IOPs because
of increasing bus contention, particularly when there were more than two disks per bus, and was
ultimately limited by the 10 MB/s bus bandwidth. Indeed, with 2 IOPs the traditional parallel file
system was 13% faster than disk-directed 1/O in the rn and rc patterns, due to a subtle imple-
mentation issue (disk-directed I/O used 50% more bus transactions; when the bus was congested,

the extra delay slowed down the file system).

Throughput of TPFS and DDIO, varying number of IOPs
40 T T T T T T T T
Max bandwidth
35 _
30 -
DDIO ra <—
25 - DDIO rn —+—
DDIO rb &—
MB/s 20 DDIO rc <— 4
TPFS ra < -
15 | TPFS rn + - _|
TPFS rb O -
5 — —
0 | | | | | | | |
0 2 4 6 8 10 12 14 16 18
Number of IOPs
Figure 8: A comparison of the throughput of disk-directed I/O (DDIO) and the traditional
parallel file system (TPFS), as the number of IOPs (and busses) varied, for the ra, rn, rb,
and rc patterns (ra throughput has been normalized by the number of CPs). All cases used the
contiguous disk layout, and all used 8 KB records. The maximum bandwidth was determined by
either the busses (1-2 IOPs) or the disks (4-16 IOPs).

We then varied the number of disks, using one IOP, holding the number of CPs at 16, and
maintaining the traditional-system cache size at eight buffers per CP per disk (Figures 9 and 10).
Performance scaled with more disks, approaching the 10 MB/s bus-speed limit. The traditional
parallel file system had particular difficulty with the rb and ra patterns. The large chunk sizes
in these patterns sent a tremendous number of requests to the single IOP, and it appears that

throughput was degraded by the overhead on the IOP CPU.
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Throughput of TPFS and DDIO on contiguous layout, varying number of disks
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Figure 9: A comparison of the throughput of disk-directed I/O (DDIO) and the traditional parallel
file system (TPFS), as the number of disks varied, for the ra, rn, rb, and rc patterns (ra
throughput has been normalized by the number of CPs). All cases used the contiguous disk
layout, and all used 8 KB records. The maximum bandwidth was determined either by the disks

(1-4 disks) or by the (single) bus (8-32 disks).

Throughput of TPFS and DDIO on random-blocks layout, varying number of disks
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Figure 10: Similar to Figure 9, but here all cases used the random-blocks disk layout. DDIO used
the block-presort.
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In most of this paper we simulate 10 MB files. To examine the effect of this choice, Figures 11
and 12 compare throughputs for files 10 and 100 times larger. Though the maximum throughputs
were reached with files 100 MB or larger, we chose 10 MB for simulation efficiency. The relative
order of test cases remained the same. The maximum throughput attained was 33.5 MB/s, which

is 99% of the peak disk-transfer bandwidth.
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Throughput of TPFS and DDIO on contiguous layout, varying file size
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Figure 11: A comparison of the throughput of disk-directed I/O (DDIO) and the traditional
parallel file system (TPFS), as the file size varied, for the ra, rn, rb, and rc patterns (ra
throughput has been normalized by the number of CPs). All cases used the contiguous disk
layout, and all used 8 KB records.

Throughput of TPFS and DDIO on random-blocks layout, varying file size
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Figure 12: A comparison of the throughput of disk-directed I/O (DDIO) and the traditional
parallel file system (TPFS), as the file size varied, for the ra, rn, rb, and rc patterns (ra
throughput has been normalized by the number of CPs). All cases used the random-blocks disk
layout, and all used 8 KB records. Here, disk-directed 1/O includes a presort; similar conclusions
were obtained without the presort.
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In this paper we focus on 8- and 8192-byte record sizes. Figure 13 shows the effect of other
record sizes in situations where the record size was expected to make the most difference: in the
traditional parallel file system on rc, using both contiguous and random-blocks layouts. This plot
justifies our focus on the extremes; 8-byte records limited throughput through excessive overhead,
while 8192-byte records reduced overhead and exposed other limits (here, the disk bandwidth in

the random-blocks layout).
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Figure 13: The throughput of the traditional parallel file system on rc patterns of various record
sizes, for both the contiguous and random-blocks layouts.

Summary. These variation experiments showed that while the relative benefit of disk-directed
I/0 over two-phase 1/O or the traditional parallel file system varied, disk-directed I/O consistently
provided excellent performance, almost always as good as the traditional parallel file system, often

independent of access pattern, and often close to hardware limits.
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7 Interfaces for disk-directed I/0

There are two interfaces that are important to consider when implementing a disk-directed 1/0 sys-
tem: the application programmer’s interface (API), and the internal CP-IOP interface. Although
we do not propose any specific interfaces in this paper, it should be possible to use any of several

existing interfaces in the construction of a disk-directed I/O system.

7.1 Application-programmer’s interface (API)

The interesting characteristic of an API is its capability to specify which parts of the file are desired,
and how the data is distributed among the CPs’ buffers. Perhaps the most common behavior is to
collectively transfer a data set that is contiguous within the file, but distributed among processor
memories in some interesting way. There are at least three fundamental styles of API for parallel
I/0, each of which provides a different kind of solution to this problem.

The first style allows the programmer to directly read and write data structures such as matrices;
Fortran provides this style of interface, as do many libraries [GGL93, KGF94, BBST94, SCJ*95,
TCB*96]. Some object-oriented interfaces go even further in this direction [KS96, KGF94, SCJ*95].
As long as your data structure can be described by a matrix, and the language or library also
provides ways to describe distributed matrices, this interface provides a neat solution.

The second style provides each processor its own “view” of the file, in which non-contiguous
portions of the file appear to be contiguous to that processor. By carefully arranging the processor
views, the processors can use a traditional I/O-transfer call that transfers a contiguous portion of
the file (in their view) to or from a contiguous buffer in their memory, and yet still accomplish a
non-trivial data distribution. The most notable examples of this style include a proposed nCUBE
file system [DdR92], Vesta [CF96], and MPI-IO [MPI96].

The third style has neither an understanding of high-level data structures, like the first, nor
per-process views of the file, like the second. Each call specifies the bytes of the file that should
be transferred. This interface is common when using the C programming language in most MIMD
systems, although many have special file-pointer modes that help in a few simple situations (Intel
CFS [Pie89] and TMC CMMD [BGST93], for example). None of these allow the processor to make
a single file-system request for a complex distribution pattern. More sophisticated interfaces, such
as the nested-batched interface [NK96b], can specify a list, or a strided series, of transfers in a
single request. This latter interface is perhaps the most powerful (efficient and expressive) of this

style of interface.
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Any of the above interfaces that support collective requests and can express non-trivial dis-
tributions of data among the processor memories, would be sufficient to support disk-directed
I/O. These include (at least) HPF and other SPMD languages, the nested-batched inter-
face [NK96b] with collective extensions, Vesta [CF96], MPI-IO0 [MPI96], and most of the matrix
libraries [GGL93, KGF94, BBS194, SCJ*T95, TCB*96].

7.2 CP-IOP interface

Once the application programmer has expressed the desired data transfer, how do the compute pro-
cessors communicate that information to all of the IOPs, and how do the IOPs use the information
to arrange the data transfer?

In the experiments of Section 5, all of the possible data-distribution patterns (e.g., block-cyclic)
were understood by the IOPs, so the CPs needed only to request a particular distribution pattern
and to provide a few parameters. A more realistic system should be more flexible: it should support
the common matrix distributions easily, and it should support arbitrary distributions and irregular
data structures.

Fortunately, several compiler groups have developed compact parameterized formats for describ-
ing matrix distributions [BMS95, TBC94]. This compact description of the distribution pattern,
generated by a compiler or a matrix-support library, can be passed to the IOPs. A few calculations
can tell the IOP which file blocks it should be transferring, and for each file block, the in-memory
location of the data (CP number and offset within that CP’s buffer).

To support complex or irregular distributions, each CP can send a single nested-batched re-
quest [NK96b] to each TOP. Such requests can capture complex but regular requests in a compact
form, but can also capture completely irregular requests as a list. These compact requests can
be easily converted into a list of blocks, for I/O, and later used for mapping each block into the
in-memory location (CP number, CP offset) of the data [Kot95b].

The combination of the compact parameterized descriptions for common matrix distributions,
and the fully general nested-batched interface [NK96b], are sufficient to efficiently support disk-
directed 1/0.

8 Expanding the potential of Disk-Directed I/0

The idea of disk-directed I/O can be expanded to include several other interesting possibili-

ties [Kot95a]. Assuming some mechanism exists to run application-specific code on the IOPs,
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the IOPs could do more with the data than simply transfer it between CP memories and disk.

Data-dependent distributions. In some applications, the data set must be divided among the
CPs according to the value of the records, rather than their position in the file. Using a traditional
file system, it is necessary to use a two-phase I/O approach. The CPs collectively read all of the
data into memory. As each record arrives at a CP, the CP examines the record, determines the
actual destination of that record, and sends the record to the appropriate destination CP. By
moving this distribution function to the IOPs, the data could be sent directly to the destination
CP, halving the total network traffic (for experimental results, see [Kot95a]). Unless the additional
work overloads the IOPs, reduced network traffic would lead to better throughput in systems with

slow or congested networks.

Data-dependent filtering. Some applications wish to read a subset of the records in a file,
where the subset is defined by the value of the data in the records, rather than their position in
the file. Using a traditional file system, the CPs must read all of the data, and then discard the
undesired records. By moving this record-filtering function to the IOPs, undesired records would
never be sent to CPs, reducing network traffic (for experimental results, see [Kot95a]). In systems

with slow or congested networks, that lower traffic would lead to better throughput.

9 Related work

Disk-directed I/O is somewhat reminiscent of the PIF'S (Bridge) “tools” interface [Dib90], in that
the data flow is controlled by the file system rather than by the application. PIFS focuses on
managing where data flows (for memory locality), whereas disk-directed I/O focuses more on when
data flows (for better disk and cache performance).

Some parallel database machines use an architecture similar to disk-directed I/O, in that certain
operations are moved closer to the disks to allow for more optimization. By moving some SQL
processing to the IOPs, one system was able to filter out irrelevant tuples at the IOPs, reducing
the data volume sent to the CPs [BP88].

Some matrix-I/0 libraries significantly improve performance by changing the underlying matrix
storage format [KGF94, SS93, SW94, TG96]. These libraries could use a disk-directed file system
to obtain even better performance, transparently to the end user.

The Jovian collective-1/O library [BBST94] tries to coalesce fragmented requests from many CPs
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into larger requests that can be passed to the IOPs. Their “coalescing processes” are essentially a
dynamic implementation of the two-phase-I/O permutation phase.

Transparent Informed Prefetching (TIP) enables applications to submit detailed hints about
their future file activity to the file system, which can then use the hints for accurate, aggressive
prefetching [PGGT95]. Aggressive prefetching serves to provide concurrency to disk arrays, and
deeper disk queues to obtain better disk schedules. In this sense TIP and disk-directed 1/O are
similar. TTP, however, has no explicit support for parallel applications, let alone collective I/0O, and
thus would need to be extended. Furthermore, once an application provides hints to TIP it uses
the traditional file-system interface, retaining the overhead of processing many tiny requests. The
application requests /O in the same sequence, limiting the potential for reordering within the disk
queues due to limited buffer space. Finally, TIP offers no benefits for writing, only for reading.

Our model for managing a disk-directed request, that is, sending a high-level request to all
10Ps which then operate independently under the assumption that they can determine the neces-
sary actions to accomplish the task, is an example of collaborative execution like that used in the
TickerTAIP RAID controller [CLVW94].

Finally, our Memput and Memget operations are not unusual. Similar remote-memory-access
mechanisms are supported in a variety of distributed-memory systems [WMR*94, CDG193,
HDH*194].

10 Implementations of disk-directed I/O

The original appearance of this research in 1994 [Kot94] inspired several other research projects.

ENWRICH [PEK96] uses our simulator to investigate the viability of CP caching in write-
only access patterns. In ENWRICH, CPs using a traditional application interface accumulate
small writes in local buffers, then use disk-directed 1/O to collectively flush the buffers when they
become full.

The Panda library for collective matrix /O uses a variant of disk-directed 1/O they call server-
directed I/0 [SCJT95, CWST96]. Panda is implemented on top of a traditional Unix file system,
so they cannot obtain information about the physical disk layout to use in their preliminary sort.
Otherwise, Panda’s technique is like ours. Results from their implementation on an IBM SP-2
validate the benefits of disk-directed I/O over a non-collective, client-directed approach.

The Galley parallel file system [NK96a] provides a compromise interface: it has no collective

requests, but it has structured requests that allow strided chunks of the file to be transferred in a
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single request. The implementation essentially uses a non-collective version of disk-directed 1/0: a
single complex request is sent from each CP to the IOP in the form of a list of contiguous chunks
to be transferred from that IOP’s disk to that CP. The IOP converts the list of chunks into a list
of blocks. First, it checks the cache to transfer any data that needs no disk I/O. Then it passes
a list of block-transfer requests to the disk thread, which sorts them into a disk schedule based on
the disk layout. As the disk works through the schedule, it sends data to (or fetches data from) the
CP. Notice that if many CPs are simultaneously requesting complementary chunks from the file, as
one would expect in a collective operation, their requests will dynamically meet each other in the
cache and the disk queue. (Note that it is important for the CPs to be approximately synchronized
in their file-access patterns, to avoid cache thrashing.) The performance is often similar to that of

a pure disk-directed I/O implementation [NK96a)|.

11 Conclusions

Our simulations show that disk-directed 1/O avoided many of the pitfalls inherent in the traditional
system, such as cache thrashing, extraneous disk-head movements, extraneous prefetches, excessive
request-response traffic between CP and [OP, inability to use all the disk parallelism, inability to use
the disks’ own caches, overhead for cache management, and memory-memory copies. Furthermore,
disk-directed 1/O was able to schedule disk requests across the entire access pattern, rather than
across a smaller set of “current” requests. As a result, disk-directed I/O could provide consistent
performance close to the limits of the disk hardware. Indeed, it was in one case more than 18
times faster than the caching method, despite the fact that our caching implementation included
simplifying assumptions that should overestimate its performance. Finally, the performance of
disk-directed 1/O was nearly independent of the distribution of data to CPs.

Our results also show that while two-phase I/O could substantially improve performance over
the traditional parallel file system, it could also reduce performance. Furthermore, it was often
unable to match the performance of disk-directed I/0, largely because it did not overlap the I/0O
with the permutation.

As presented here, disk-directed I/O would be most valuable when making large, collective
transfers of data between multiple disks and multiple memories, whether for loading input data,
storing result data, or swapping data to a scratch file in an out-of-core algorithm. Indeed, the
data need not be contiguous [Kot95a], and the Galley results show that the interface need not be

collective [NK96a]. The concept of disk-directed I/O can also be extended to other environments.
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Our Memput and Memget operations would be easily implemented on a shared-memory machine
with a block-transfer operation, for example. Although our patterns focused on the transfer of 1-d
and 2-d matrices, we expect to see similar performance for higher-dimensional matrices and other
regular structures. Finally, there is potential to implement transfer requests that are more complex
than simple permutations, for example, selecting only a subset of records whose data values match
some criterion, or distributing records to CPs based on their value, rather than file position.

Our results emphasize that simply layering a new interface on top of a traditional file system
will not suffice. For maximum performance the file-system interface must allow CPs to make large,
non-contiguous requests, and should support collective-I/O operations. The file-system software
(in particular, the IOP software) must be redesigned to use mechanisms like disk-directed 1/0.
Nonetheless, there is still a place for caches. Irregular or dynamic access patterns involving small,
independent transfers and having substantial temporal or interprocess locality will still benefit
from a cache. The challenge, then, is to design systems that integrate the two techniques smoothly.
Despite not having explicit support for collective /0O, the Galley Parallel File System [NK96a] is
one such system; its disk-directed approach to serving complex requests from individual CPs leads

to excellent performance under many collective access patterns.

Future work

There are many directions for future work in this area:
e design an appropriate collective-1/O interface,
e integrate with 1/0-optimizing compilers [CC94, TCB*96],
e optimize concurrent disk-directed activities, and

e explore the possibility of “programmable” TOPs [KN96].
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Availability

The full simulator source code is available at http://www.cs.dartmouth.edu/research/starfish/.
The disk-model software can be found via the WWWwW at URL
http://www.cs.dartmouth.edu/cs_archive/diskmodel.html. Many of the references be-

low are available at http://www.cs.dartmouth.edu/pario.html.
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