
TNet: A Reliable System Area Network

A major departure from traditional VO systems, TNet is a new system area network designed
to s"pp0rt current and future needs for reliable, efficient communications among processors
and peripherals. It is an extensible hardware-software layer that allows very large
configurations by logically and physically isolating processor buses from VO buses. TNet
features wormhole routing, packet-switched transfers, and point-to-point links.

he rapid pace of CPU performance
enhancements has far exceeded per-
formance advances in 110 architec-
ture. As a result, systems cannot take

full advantage of available processing power. To
close the gap, new system designs must transi-
tion from being processor centric to I/O centric.
The TNet (Trusted Ketwork) architecture results
from taking a fresh look at the requirements for
supporting scalable I/O systems in future gen-
erations of C P U .

TNet is not a direct replacement for any exist-
ing type of local area network or I/O bus. It is a
new interconnection layer, a system area net-
work (SAN), which provides common hardware
and software services to processor and I/O
nodes. By connecting all devices through this
common I/O layer, the devices inherit TNet fea-
tures that allow on-line service of peripherals;
isolation and containment of faults; a common
I/O programming model; and common I/O con-
figuration and error management. TNet links
extend within a system cabinet through back-
plane connections, or between cabinets through
external cables. This flexibility allows systems
with hundreds of processors and thousands of
I/O devices.

The TNet SAK also provides inter-CPU com-
munications for distributed memory niulticom-
puting. The links are logically similar to LAN
connections, but the low latency in both hard-

Robert W. Horst

Tandem Computers
lncorporated

ware and software means that multiple-CPU
tems behave much more like massively parallel
processing systems than LAN-connected clusters.
TNet interprocessor communication (11'0 capa-
bility can be used for single-system-image par-
allel processors, such as the Tandem Nonstop
systems,' as well as other loosely coupled
processor clusters.

Designers typically structure existing multiple
processor clusters around a group o f worksta-
tions connected through a high-speed LAN, ;is
shown in Figure 1 (next page). This design's main
problem is that hardware and software latencies
may be so large that the system devotes a high
percentage of CPU cycles to servicing the LAYu.

To send a message between processors, hard-
ware must arbitrate for two buses on each sys-
tem and may have to copy data several times at
each end. Software requires several context
switches and interrupts to set up and perform
the transfer. Latency for a single message can
grow to many milliseconds.

The TNet cluster (Figure 2) directly addresses
latency problems. TNet provides routing and
addressing to allow any CPU t o communicate
with any other CPU or I/O controller in the net-
work. TNet nodes can read and write portions o f
each other's memories without requiring software
execution at the remote node. The cluster uses
TNet addresses as virtual I/O addresses for auto-
matic scatter-gather capability when accessing

0740-7475/95/$04.00 Q 1995 IEEE February 1995 37

I I I ylT.q"(q
controller controller

Disks EtLernet 1
U

I Hiah-latencv network, heavv software orotocol I
PCI Peripheral Component Interconnect r SCSl Small Computer System Interface

Figure 1. CPU cluster connected with a typical high-speed LAN.

TNet system area network U I

controller controller

Disks

interface controller controller interface

VME

interface controller controller interface

I VME

1 - I -
VME Virtual Memory Extended (bus)
ATM Asynchronous Transfer Mode

Figure 2. CPU cluster connected w i t h the TNet system area network.

By connecting all 110 devices and
CPUs through the same intercon-
nection layer, hardware can support
direct connections between CPUs,
from any CPU to any I.iO device, or
between I/O devices. This capabili-
ty supports either shared-disk or
shared-nothing database systems.' In
a shared-nothing database, such as
Tandem Nonstop SQI,. the net-
worked disk connections are bene-
ficial in allowing load balancing by
reassigning disk ownership without
requiring disk connection recabling.

Direct periplieral-tc)-peripheral
communication gives TNet-based
systems unique capabilities in multi-
media applications. A CPU may set
up a large transfer between comtnu-
nications and disk controllers. but the
data can flow directly between the
controllers without passing through
main memory. This improves the
performance of the transfer. con-
serves memory bandwidth, and
reduces CPU cycles.

TNet supports dual paths to every
node through a pair of independent
X and Y subnetworks, making the
network fully fault tolerant. In nor-
mal operation, TNet spreads traffic
across the two networks, hut either
one can take over the load after a fail-
ure. TNet-based systema never pass
packets between networks, prevent-
ing errors or congestion on one net-
work from affecting the other.

Designing TNet
The architecture o f Figure 2

requires the network implenienta-
tion to have certain characteristics:
scalability, high performance, low
cost, and reliability. It was natural to
look for an existing standard bus or
network to fit this architecture, but
we found nothing that met all the
requirements. This forced 11s into the

consecutive virtual addresses, which are scattered in physi-
cal memory. Translating TNet addresses to physical address-
es also protects main memory from errant I/O devices. The
CPU must set permission bits in the TNet address translation
table permitting access to a portion of memory.

difficult job of designing a completely new network.
Scalability is a criticdl requirement for commercial systems

to provide smooth growth for customers as their computing
requirements grow. The need for growth dictatcd a network
instead of a bus, because a network can provide additional

38 /€€E Micro

system bandwidth for each added node. Point-to-point links
are also beneficial in containing and isolating hardware and
software faults, and networks do not have the severe length
restrictions of shared buses.

High performance is always an important consideration
in designing system interconnections. Performance analysis
must consider the link bandwidth, communications latency,
and software overhead. Software overhead often dominates
performance, and hardware must facilitate short software
path lengths wherever p ~ s s i b l e . ~ In commercial systems,
short messages and I/O transfers are common, and the archi-
tecture must not penalize short message latency even if a
long transfer is currently in progress. Designing for short
latency imposes requirements such as short packet sizes and
efficient interrupt handling.

The new interconnection network must be simple and of
low cost to be incorporated into all CPU and I/O compo-
nents of the system. The interface logic must be simple
enough to allow several network interfaces on a single appli-
cation-specific integrated circuit. This leaves enough room for
the other logic the ASIC must perform. Also, interface costs
must not preclude the attachment of low-cost peripherals.

An interconnection network for systems with hundreds of
nodes or more must have built-in reliability. Errors must be
detected as they happen, and the network must continue
operation in spite of failures. The existing literature on fault-
tolerant interconnection networks often fails to consider
faults encountered in real implementations, such as clocking
and power faults. In addition, many subtle fault modes in
the addressing and control logic cannot be modeled by sim-
ply considering link failures. For instance, the network must
prevent faults from causing misaddressed packets and
deadlocks.

A network also must handle the stale packet problem.
When an error occurs, packets in transit may be stuck some-
where in the network. If there is no way to remove these
stale packets, they can show up later and disrupt operation
after the system recovers from the original problem.

During our investigation, we considered many existing
and proposed standard networks. Fibre channel' has very
good performance on long sequential transfers, but its laten-
cy on short packet-switched (class 2) transfers could not meet
our requirements. Asynchronous Transfer Mode (ATMI5 was
far too costly, given the large number of network attach-
ments required in a system area network. The scalable coher-
ent interface (SCII6 had a design center for handling cache
coherence traffic, and as a result its cost and complexity
exceeded our acceptable limits. Designed as an I/O bus
replacement, the P1394 serial link's' performance and scal-
ability do not meet high-end system requirements.

Although none of these networks were viable for the sys-
tem area network itself, SAN-connected controllers may-
support them to satisfy open-interconnection requirements.

Commanddata %r
4

Clock

, Command/data

'9
I L

Figure 3. TNet byte-serial data links.

I Table 1. Command and data symbol encoding.

I CD8 CD7 CD6 Function

0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
1 1 1

Command
Error
Error
Error

Data <7:6> = 00
Data <7:6> = 01
Data <7:6> = 10
Data <7:6> = 11

TNet implementation
In the end, the only reasonable choice was to design a

new network to satisfy the unique requirements of the SAN.
The requirements dictated a wormhole-routed, packet-
switched, and point-to-point network designed with special
attention to reducing latency and assuring reliability.

Physical layer. Figure 3 illustrates the physical connec-
tions of each TNet link. The links have independent trans-
mit and receive channels, each with a nine-bit command/
data (CD) field plus a clock. The CD field provides 256 data
symbols plus up to 20 command symbols. The links use coni-
mand symbols for link-level flow control as well as for ini-
tialization and error signaling. Encoding commands and data
into the same lines reduces pin count and improves control
logic fault detection.

Table 1 shows the 8B/9B code for symbol encoding. The
code uses three bits to distinguish between a command and
four groups of data symbols. The four data symbol groups,
plus the remaining six bits, encode the 256 data symbols. A
different code in the upper three CD hits selects the com-
mand symbols.

A 3-of-6 code (in which all valid symbols have exactly
three Is and three Os) over the remaining six CI) hits repre-
sents the commands. This code detects all unidirectional
errors as well as any odd number of errors in the lower six
CD bits. The three error codes separate the data symbols

February 1995 39

from the command symbols by a minimum Hamming dis-
tance of two. This prevents any single fault from turning a
command symbol into a data symbol, or vice versa.

m e t links use source clocking, with the clock sent through
similar delay paths as the data. This makes it easier to scale
the system to higher frequencies, and avoids the perfor-
mance losses of asynchronous networks that slow down as
handshake signals become longer.

Figure 4 shows the TNet port implementation. Intercabinet
links use differential emitter-coupled logic drivers to drive
up to 20 meters of cable. Single-ended CMOS buffers drive
local backplane TNet connections. Each TNet interface uses
a pair of FIFO buffers for clock synchronization and flow
control. The synchronizing FIFO buffer takes in CD symbols
from the source clock and sends them out synchronously to
the receiver's clock.

TNet port logic uses the elastic FIFO buffer to queue data
symbols and support link-level flow control. Congestion in
the network may limit the retrieval rate of data symbols from
the elastic FIFO buffer. When the FIFO buffer begins to fill,
it sends out a signal instructing flow control logic to return
a Busy command symbol to the sender. When the sender
receives the Busy symbol, it stops sending data symbols and
instead sends Fill symbols (that are discarded by the receiv-

Packet
data

88/98 Transmit \

er) until it receives a Ready symbol.
When a long cable connects the sender and receiver, there

can be a significant time lag between the time the receiver
FIFO buffer begins to fill, and the time the sender actually
stops sending data symbols. This time lag dictates the mini-
mum size of the elastic FIFO buffer. In the first implementa-
tion, a 20-meter cable transferring at 50 Mbytes/second
requires less than 32 bytes of elastic FIFO buffer, including
internal pipeline delays. The elastic FIFO buffers have at least
64 bytes of storage to satisfy this requirement, as well as to
provide extra storage for improved link usage.

Future adapters may extend TNet distances through seri-
al fiber optics. This conversion is relatively straightforward
because all control functions, including flow control and
interrupts. communicate through the same CD symbols.

Packets and transactions. Figure 5 shows the TNet pack-
et formats. Packets consist of an %byte header, optional 32-
bit address, variable-size data payload. and a cyclic
redundancy check. The header specifies destination and
source node identification, data length, and which operation
to perform. Operations include Read Request, Read
Response, Write Request, Write Response, and Unacknowl-
edged Write. A single packet's maximum payload is 64-bytes
to reduce worst-case latencies. Restricting the packet length

' Receive C\mphmniTinn 98/88 Elastic
Packet

Flow
control

Commands

Commands I I Busy i
Flow

control

Transmit
control

Packet
data

Cabinet / c a b l e T i n e t A B

Figure 4. TNet port implementation and flow control.

40 IEEE Micro

also improves fairness in link usage. and reduces storage
requirements.

The TNet address is a 32-bit window into the destination's
address space. The interface to the destination CPU or I/O
device provides mapping and validation hardware translat-
ing this virtual TNet address to the appropriate physical mem-
ory address. Typically, I/O devices use one-to-one mapping,
but because TNet node identifications differ for each I/O
bus, each I/O node has its own independent 32-bit address
space. CPUs have an address validation and translation table
(AV") to map the virtual TKet address space to the proces-
sor's physical address space.

Performing both read and write functions allows a node
to either push or pull data across the network. The pull capa-
bility, which is missing from most LANs, reduces the num-
ber o f handshakes required for buffer management. When
reading data from a remote node, the pull capability elimi-
nates the context switch and software execution otherwise
required at the remote node. The support of both read and
write functions also allows I/O device traffic to be forward-
ed to host memory; hardware thus handles the TNet trans-
fers transparently.

Packet routing. Figure 6 shows a block diagram of a TKet
router ASIC. The first generation uses 6x6-port routers and
makes routing decisions using a programmable routing table.
The table selects an output port based only on the destind-
tion identification of the incoming packet. Routers have FIFO
buffers on the inputs, logic for arbitration and flow control,
a routing table implemented in RAM, and a crossbar switch.
The service processor can modify routing tables t o configure
or reconfigure the network.

TNet uses wormhole routing to reduce latency to 300 ns
o r less. As the first bytes of a packet arrive at a router, it uses
a portion of the destination identification to address the rout-
ing table. The table specifies the output port number of the
packet's destination. If that port is busy. or if the input port
loses arbitration, additional bytes of the packet continue t o
accumulate in the elastic FIFO buffer. Link-level flow control
prevents packet loss despite momentary congestion in the
network.

In addition to link-level flow control, end-to-end flow con-
trol prevents nodes from injecting more packets into the net-
work than can be handled efficiently. This is accomplished
by requiring a positive acknowledgment for every packet
sent. (The Unacknowledged Write is an exception. However,
it is only used for maintenance subsystem functions and in
special situations where higher level protocols support recov-
ery o f dropped packets.) Some nodes support multiple out-
standing requests allowing multiple packets in trarlsit to a
destination before acknowledging the first one. In all cases,
nodes must guarantee enough buffer space to accept the
maximum outstanding packets from all possible sources.
End-to-end flow control prevents saturating the network to

Read Request

Read Response

. .
Write Request WI .
Write Response

4

H 8-byte header
20-bit destination ID
20-bit source ID
4-bit transaction type
&bit data length
4-bit transaction ID
1 -bit primarylalternate path
1 -bit acklnack
1 -bit requesffresponse
5 bits reserved

A 4-byte TNet address
D 0-64-byte data
C 4-byte CRC of H; and A and D

if the packet has A and D fields

Figure 5 . TNet read and write transactions.

FlFOs

r - - l AMration

t

rigure o. I Ne1 rourer.

the point where added requests co~ild actually tJc.cre;i.se nrt-
work throughput (similar t o virtual memory tlirasliing). CI'L
nodes use main memory to buffer incoming packets, effec-
tively giving unlimited buffer storage. IiO no& interfaces

February 1995 41

RlSC CPU

System bus Interrupt

Main memory

1 AVT table I

4 4

validation and

c * TNet links

Figure 7. TNet processor interface.

have a small number of hardware packet buffers; a control-
ling CPU manages their use.

Deadlock avoidance. In wormhole-routed networks,
congestion can force a packet to wait until the router sends
the packets ahead of it. If the network is configured with
loops in the connection graph, congestion may block several
packets, with each packet waiting for ;I link currently used
by another blocked packet. A reliable network must either
avoid this type of deadlock, or detect and break deadlocks
when they occur.

TNets avoid deadlocks by disallowing configurations with
circular dependencies and requiring end nodes to accept
incoming packets even if their outbound links are busy.
Many topologies. such as tree networks, need no modifica-
tion because they are inherently cycle free. Selectively dis-
abling certain paths in the router will support topologies with

We have not included virtual channelsH3 as a way to avoid
deadlocks because the small benefit in configuration flexi-

cycles.

bility did not justify the added complexity and additional
buffer space required. Disabling selected paths does not
unduly burden the anticipated topologies for TNet networks,
and yields design area substantially smaller than a virtual
channels design.

Processor interface. Figure 7 shows a diagram of the
TNet processor interface (TPI) ASIC. This ASIC provides con-
nections between the CPU and memory. and between the
TNet ports and memory. The TPI also performs CPU initial-
ization and controls interrupt queuing and deliver)i.

The TNet system implementation allocates a portion of
main memory for use by the processor interface to reduce the
amount of required on-chip memory. Main memory contains
packet buffers, the large AVT table, and interrupt queues.

When an inbound redd or write request packet arrives at
the processor interface, the interface must validate and trans-
late the virtual TNet address by looking it up in the AVT table.
Each AVT entry includes the physical address translation,
permission bits indicating whether the CPU permits read or
write access, and the identification of the TNet node allowed
to use this entry. A small hardware cache for AVT entries
eliminates memory AVT table access for many inbound pack-
ets. Some programmers at first objected to setting up AVT
entries for every transfer. However, they soon grew to appre-
ciate the automatic scatter-gather capability that this struc-
ture provides. In many cases, this capability can eliminate
an entire data copy and the associated latency.

IiO devices generate interrupts by sending standard write
packets to CPU addresses that the AVT table translates into
interrupt requests. When an interrupt packet arrives, a spe-
cial AVT entry directs the packet to one of four priority inter-
rupt queues in main memory.

The interrupt packet includes the node number of the
device requesting the interrupt, and may contain other inter-
rupt status information. This interrupt payload eliminates the
need for several more round-trip transfers between the CPU
and I/O controller to acquire status.

To support efficient message passing, the processor inter-
face ASIC has a block transfer engine (BTE) that the proces-
sor can program to send short or long messages through a
sequence of chained TNet packet transfers. Programmers
can prebuild BTE descriptors in main memory and initiate
them by writing to a hardware register in the interface.

The TNet implementation does not currently support
memory-mapped I/O because we thought it was the wrong
model for coping with increasing I/O latency. As CPU speeds
increase, both due to faster cycle times and more instruction
issues per cycle, each noncached load can easily waste tens
to hundreds of instruction cycles even when accessing a
“local” 1 / 0 bus that may in reality be many microseconds
away. The processor interface instead assumes a DMA model
where the processor can accomplish useful work while wait-
ing for transfers to complete. Even for short transfers, the

42 \E€€ Micro

added overhead required to program the BTE is small con-
pared to the time when the processor \vould otherwise stall.

Bus interface. Figure 8 shows a block diagram of the
TNet bus interface (TH) ASIC. The TU1 translates transfers on
the standard bus into TXet read or write transactions that
travel through TNet links t o main memory.

Different versions of the bus interface logic support inclus-
try standard buses such as \'ME and the peripheral compo-
nent interconnect (PCI). o r microprocessor buses such as
that o f the Motorola 68040 chip.

Each TBI chip supports an independent 110 bus. Each sys-
tem may have inany TBIs to support several identical or dif-
ferent 1,'O buses. Each srandard bus typically has from one
t o four rittai-hed peripheral controllers. TNet links eliminate
the length and loading restrictions that would occur if all
devices connected to the same bus. The individual buses
also have much better fault isolation and containment.

Another benefit of this structure is that most standard buses
are not split-transaction buses; therefore, once a device
requests a memory read, it can initiate no other transactions
until the read data returns. By implementing multiple 110
buses (each controlled by a TBI), many reads can simulta-
neously wait for data t o be returned.

I/O programming exploits the DMA CdpabihtieS of new
peripheral 1/0 chips. The programming model assumes that
the speed of the 1 / 0 device itself controls and paces most
input and output processing. For inbound data (such as read-
ing from disk), the I/O controller generates m e t write trans-
actions t o place the data directly in the requesting CPll's
memory. In the outbound direction, the I/O controller
requests data using a TNet Read request. The CPU node then
responds with the data as part of a Read-Response packet.
In Ixch directions, processor-interface hardware handles the
transfers between the TNet and main memory without
involving the CPU. All devices can simultaneously have DMA
translers in progress without burdening the CPL with sup-
porting a multithreaded DMA controller.

Topologies. Users can configure TNet routers in many
topologies including hypercubes, meshes, and trees. System
clusters will generally use different topologies in different
places. For instance, it may be advancdgeous to use a tree
for I;O connectivity, but connect the I.'O trees and CPUs
together in a hypercube.

The requirements of a network used t o construct large
clusters o f processors and peripherals may change over time.
During a system's lifetime, users may add many devices and
add or remove links to help balance network use. We intend-
ed t o design a network that was not restricted to a fixed
topology. but could grow and atlapt as needed. Our design's
flexible, six-port router ASIC allows use of many different
networks to satisfy system requirements.

Error detection, isolation, and recovery. One of the
primary distinguishing characteristics of the TNet design is its

$. TNet link

TNet interface

*32-bit bus (VME, Motorola 68040, PCL, ...)

Figure 8. TNet bus interface.

focus on reliability. N o 110 system ran work reliably if errors
go undetected o r if the system cannot isolate the cause of
the errors. Point-to-point TNet links make fault isolation
much easier than in a sharecl-bus I/O system.

Error checkers detect single-bit errors on command or data
hits either through the packet CRC o r through command
symbol encoding. These codes also detect multiple-bit burst
errors. The CRC covers all header bytes, providing protection
t o address as well as data errors. The CRC gives enrl-to-end
protection of packets, because the routers do not modify or
regenerate :I packet's CRC as it passes through.

Checking tlie CRC code at each router crossing enhanct.~
fault isolation. The TNet interface appends a command syni-
bol to every packet. Normally the appended symbol is "this
packet good," indicating that CRC was good when it left the
1,revious routing level. If :I TNet interface detects faulty CRC
anywhere along the path, it changes the symbol t o .'this pack-
et bad." The maintenance subsystem uses this information to
isolate exactly which link o r router stage introduced the error,
even if the error was transient and nonrepeatable.

The AVT table also plays an important role in assuring that
laulty I/O controllers do not corrupt memory. AVT entries
are programmed to grant access rights for a range of meni-
ory pages or for as little as a single byte. This fault contain-
ment isolates problems to a single controller instead of the
entire I/O system. This is especially important in I/O, because
the system vendor has little control over the hardware and
software quality of third-party peripheral suppliers.

Fault recovery is the responsibility of higher level soft-
ware. Software retries 110 errors, and may retry them through
an alternate path if available. Systems designed with multi-

February 1995 43

Processor
interface

Processor
interface

TNet links to
other CPUs

TNet links to
other CPUs

TNet IOC
TNet links to TNet links to

TNet IOC

TNet IOC

I \Router
TNet IOC

I interface I I interface

I
Figure 9. Typical system architecture using TNet.

ple subnetworks provide complete fault tolerance in the I/O
system. TNet I 1 0 adapter cards optionally connect t o two
independent networks allowing continued operation despite
the loss of one entire network.

Bounded worst-case latencies. A tnajor design goal was
to provide worst-case latencies below a reasonable value (a
few milliseconds). This is important for fault-tolerant systems
because it allows designers to set low values for timeout coun-
ters and thus reduce fault recovery tinie. Any network with
un1)oundecl latencies will occasionally hit an error and cause
some form of hardware o r software retry. As such a netw-ork
hecwmes congested. the chance for those retries increases,
and then the retries themselves increase network traffic even
more. This can cause a runaway situation that is extremely dif-
ficult t o model or prove bounded.

We designed TNet explicitly to avoid
delays that have no provable upper
bounds. TNet cloes not use asynchronous
handshake signals, as distinguishing
between faulty links and slow hand-
shakes can be difficult. It also does not
use adaptive routing i,ecause many of
those algorithms can loop indefinitely
looking for possible paths. In addition,
we designed routers with duplicated and
compared state machines to prevent
erratic o r erroneous operation.

System architecture
Figure 9 shows a typical system archi-

tecture that can be implemented using a
TNet SAN. Ilual-ported processor inter-
faces connect to redundant Xand Ysub-
networks. Spare TNet links can connect
many CPLJs. The system provides 110
controller (IOC) slots for storage. com-
munications, or TNet router expansion.

I/O expansion is provided by an
unbalanced tree connecting local TNet
I/O controller slots and TNet cable con-
nections t o remote peripheral cabinets.
Dual-port connections t o the I/O slots
assure connectivity during failures o r
reconfigurations o f one network. Storage
interfaces provide dual paths to tlie disks
and allow disk mirroring across inde-
pendent Small Computer System
Interface (SCSI) buses.

THE TNET SYSTEM AKEA4 NETWOKK is ;I major del’ar-
ture from traditional I/O systems. yet supports standard 110
buses and high-level programming models. It is noteworthy
not only for its wide range of features but also for features
that were consciously left out for simplicity ancl low cost.

Simplicity allows low-cost ASICs with multiple TNet ports
for configuration flexibility and fault tolerance. We designed
the network without niemorymapped I/O. virtunl channels.
liardw-are retry, or adaptive routing t o lower costs m:ithout
sacrificing our primary gods.

TNet represents a new layer of h:irdware architecture. This
layer solves tlie prohlems of I/O extensibility and allows a
uniform programming niodel optimized for intelligent
peripheral controllers. The network supports message pass-
ing within CPI: clusters, as w-ell as CPr-I/O and even 110-

44 I€€€ Micro

110 transfers. The emphasis o n fault detection, isolation, and
repair allows TNet t o provide a solid foundation for build-
ing reliable systems.

TNet is currently the tyasis for several future systems devel-
opment projects. We are continuing t o evolve the architec-
ture and programming model for use in different
applications. The flexible network topology gives us many
options in building parallel systems, and we have begun
research projects t o study the best ways to optimize large
TNet configurations. We expect to build many future gener-
ations o f TNet-based systems. C

Acknowledgments
Many talented engineers codevelopecl the TNet architec-

ture, and I thank all the team members for their creativity
and hard work. In particular, special thanks go to Dav-e
Garcia, Ilavirl Sonnier. and William Watson who rnade key
contributions t o the architecture, and t o Bill Baker. Bill
Bunton, Rich Cutts. Dan Fowler. John Krause, and Stephen
Low who were instrumental in developing the first TNet con-
ponrnts and systems.

References
1 .

2.

3 .

4.

5.

6.

7.

8.

9.

J. Bartlett et al., “Fault Tolerance in Tandem Computer Systems,”
Reliable Computer Systems, D.P. Siewiorek and R.S. Swarz, eds.,
Digital Press, Bedford, Mass., 1992, pp. 586-648.
D. DeWitt and J. Gray, “Parallel Database Systems: The Future
of High-Performance Database Systems,” Comm. ACM, Vol.
35, No. 6, June 1992, pp. 85-98.
V. Karamcheti and A.A. Chien, “Do Faster Routers Imply Faster
Communication?,” Parallel Computer Routing and Communi-
cations, K. Bolding and L. Snyder, eds., Springer-Verlag, New
York, 1994, pp. 1-1 5.
T.M. Anderson and R.S. Cornelius, ”High-Performance Switch-
ing with Fibre Channel,” Digest of Papen Compcon 1992, IEEE
Computer Society Press, Los Alamitos, Calif., 1992, pp. 261-268.
D.J. Greaves et al., ”Design and Implementation of an ATM
Backbone Ring,” Digest of Papers Compcon 1992, CS Press,

Scalable Coherentlnterface (SO), ANSI and IEEE Std 1596-1 992,
IEEE, Piscataway, N.J., 1992.
M. Teener, “A Bus on a Diet-The Serial Bus Alternative: An
Introduction to the P1394 High Performance Bus,”Digest of
Papers Compcon 1992, CS Press, 1992, pp. 316-321.
W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,“ /€E€ Trans. Com-
puters, Vol. C-36, No. 5, May 1987, pp. 547-553.
W.J. Dally, ”Virtual-Channel Flow Control,” Proc. 17th Ann.
Symp. Computer Architecture, CS Press, 1990, pp. 60-68.

1992, pp. 255-260.

Robert Horst is a technical director at
Tandem Lahs where l ie lids contrilxitecl to
the architecture and design cif five gener-
ations of fault-tolerant parallel computer
systems. His technical interests include
interconnection networks, computer archi-
tecture, fault-tolerant computing. and

wafer scale integration.
Horst received a BS in electrical engineering from Hradley

University. Peoria. Illinois, and an M S in electrical engineer-
ing ;ind PhD in computer science from the linivrrsity o f
Illinois at Ilrbana-Champaign. He is a memi,er o f the IEEE
Computer Society and the ACM. and holds LO U S patents.

Readers may reach the author at Tandem Computers [nc.,
10555 Ridgev-iew Court, LOC 100-27, Cupertino, CA 9SOl.’t;
horst_bob@tandeni.com.

Reader Interest Survey
Indicate your interest in this article b y circling the ‘ippropriate
number on the Reader Service Card.

High 154 Low 162 Medium 16.3

February 1995 45

mailto:horst_bob@tandeni.com

