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Abstract

The aim of the Swiss-Tx project was to build, install, test and use high perfor-
mance commodity computers. The biggest machine is the 70 Compaq Alpha pro-
cessors Swiss-T1 machine installed at the EPFL computing centre and running in
production mode since July 2000. This parallel MPI computer is well balanced in
terms of processor speed, memory access, inter-processor communication network,
and I/O capabilities. Due to the high flexibility of the cluster computing approach,
it is today possible to fine tailor cost-effective MPI machines to the needs of real-
life applications in engineering, database, WWW, data mining, or bioinformatics
domains. Results obtained during the Swiss-Tx project are compiled in this paper.
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1 Introduction

Up to now application engineers had to adapt their parallel algorithms to the
computer architectures. The computer manufacturers designed NUMA (Non
Uniform Memory Access) parallel compute servers that include internal com-
munication networks as powerful as possible. The operating system takes care
of the data distribution considering the NUMA distributed memory as a virtu-
ally shared memory architecture. This choice eases use of a parallel computer,
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but its price is a few times higher than for a comparable distributed memory
cluster machine made with commodity parts. If the maximum performance of
a NUMA or of an SMP (Symmetric (Shared) Memory Processors) server is
too small, clustering of servers is necessary, and the virtual shared memory
advantage is lost.

Cluster commodity computers consist of PCs or workstations interconnected
by networks that can be adapted to the needs of the applications. The pro-
grammer has to take care of the data distribution on the different processors
as well as of the inter-processor data transfers by using the message passing
library MPI (Message Passing Interface). Programs written in MPI show best
efficiencies on clusters, and even on NUMA architectures they often run as fast
or sometimes even faster than those using the easier programmable OpenMP
library or threads. With the arrival of the cost-effective cluster machines, MPI
programming could become the preferred parallel processing standard. An
MPI program can easily be ported on other parallel platforms without loss of
efficiency. In addition, cluster computing offers the new opportunity to tailor
computer architecture to the communication needs of applications.

Another advantage of the cluster architecture is its flexibility. A cluster can
grow to thousands of processors, not all processors have to be of the same
type, or they even have not to come from the same computer manufacturer.
Thus, one can start with a small initial configuration and regularly add new
computational modules according to the user needs. These modules include
the most recent technology, the newest, most powerful processors, memory
units, disks, and communication networks. The job distribution is made by a
resource management system running on the frontend on which a user prepares
his job and gets the results back. The most often usage of parallel machines
are data transaction applications such as Web service access, data mining, or
in bioinformatics. In these domains, data distribution and collection have to
be performed in the most efficient manner. Since the communication needs
are small, these domains are predestinated for cluster computers.

A few years ago, EPFL has decided to prepare this new domain of cluster
computing by launching the Swiss-Tx project that aimed at developing a par-
allel computer with commodity components interconnected with a high speed,
low latency communication network [1–4]. These clusters have to fulfil all the
expectations one imposes to parallel machines running in production mode in
a computing centre. The cluster frontend must show high availability, there
must be enough user and application disk space with efficient access capabili-
ties [5,6], the computational unit has to be powerful and usable transparently.
The major result of this project is the 70 Alpha processor Swiss-T1 parallel
computer running in production mode since August 2000 at the EPFL [2].
Its high speed, low latency network, called TNet, with a specially optimised
MPI communication library, comes from Supercomputing Systems [27]. It also
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has a cost-effective, but less powerful, Fast Ethernet communication system
and can operate like a Beowulf [7]. Different user communities have tested the
machine [8–17] and validated the novel computer architecture.

Similar projects have been realised world-wide. Most of them are based on a
pure Beowulf concept. Most closely related to the Swiss-Tx project is the scal-
able computing system C-Plant at Sandia National Laboratories [18] in which
more than thousand Alpha processors are connected by a Myrinet switching
network [19].

This paper starts with the definition of the very useful γ factors that char-
acterise a parallel cluster machine and an algorithm. They enable tailoring of
the computer architecture to the application. More detailed studied on this
subject can be found in [20,21]. The Swiss-Tx project is then presented with a
special emphasis on the 70 Compaq Alpha processors Swiss-T1 cluster running
productively in EPFL’s computing centre.

2 The γ factors

To study tailoring computer architectures to application needs, quantities have
been introduced that relate processor and network performances. The γmac fac-
tor characterises a computer architecture and γalg characterises an algorithm.
Their definitions are:

γmac =
effective processor performance [Mflop/s]

effective bandwidth per processor [Mword/s]
(1)

γalg =
number of operations [Mflops]

amount of data to transfer [Mwords]
(2)

2.1 The γmac factor

The γmac factor indicates how many operations can be executed during the
transfer of one (64-bit word) operand over the network. The value of γmac
depends on the effective performance of a processor which itself depends on
the type and the local implementation of the algorithm. This effective proces-
sor performance depends on the memory access needs of the locally executed
task. For real-life applications RISC processor efficiency is not very high. Typ-
ically, for the most efficient SGI O3K and Compaq Alpha processors average
performances of around 20 to 25% of the peak performance can be measured.
These relatively low efficiencies are directly related to the insufficient memory
bandwidth of a processor. Main memory access should be reduced and access
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of data in cache increased. For instance, matrix operations using the ScaLA-
PACK library [22] can reach up to 90% of the peak performance. These high
efficiencies are due to the special cache optimisation effort made by all the com-
puter manufacturers to reach highest performance in the Linpack benchmarks
that position the computers in the Top500 list [23]. A programmer can profit
from this performance race, and by an intensive use of these library modules
he can develop highly efficient applications. In addition, these programs keep
their efficiencies when they are ported on another computer platform.

The effective bandwidth per processor depends on the bandwidth per link, on
the network topology [2] and on the network protocol. Today, the maximal
bandwidth of a Fast Ethernet is 12.5 MB/s, 100 MB/s on a Gigabit Ethernet,
and is over 200 MB/s on a Myrinet [19] and on a Quadrics network [24] . The
network speed will strongly increase in 2002 by the arrival of new commu-
nication standards such as PCI-X and Infiniband, both increasing the peak
bandwidth by a factor of four or more. For many years, network speed has not
evolved rapidly enough, now, it will increase faster than the processor perfor-
mance. These peak bandwidths cannot always be approached. For instance,
it is known that the effective bandwidth of the Gigabit Ethernet is only a
fraction of its peak performance and its latency is not smaller than the one
of a Fast Ethernet. This is mainly due to the complex TCP/IP protocol. The
Quadrics, Myrinet and TNet networks directly write from memory to mem-
ory, thus reducing the latency by at least a factor of ten with respect to Fast
Ethernet, and reaching effective bandwidths close to peak.

Another important point is the network topology. A detailed study on their
characteristics has been made in [2]. The two most promising network architec-
tures are the Fat Tree as used in the Sierra/Compaq machines with Quadrics
switches, and the Circulant Graph as used in the Swiss-T1.

Typical γmac factors are close to one for the NEC SX-5 vector machine, 8
for an SGI Origin 2000, 100 for a Beowulf with 64 dual processor Pentium
III computers, interconnected with a Fast Ethernet switch. On the Swiss-T1,
γmac is around 40 when using the TNet and 400 when passing the messages
over the Fast Ethernet.

2.2 The γalg factor

In optimised parallel algorithms, the communication needs are minimised. It
is highly recommended to also minimise the number of messages sent such
that the latency in the communication network does not impair the com-
munication speed. Both demands can be satisfied by choosing the standard
communication library MPI, designed for message passing between processors
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in a parallel, distributed memory computer architecture. The programmer
himself has to take care of the data organisation and of the data transfer over
the network. In a cluster computer, there is no single image operating system
that supports data handling as in a NUMA machine. In such a parallel server,
the system considers the memory, in reality physically distributed over all the
processors, as to be one (virtually) shared global memory and it takes care of
data distribution. This facilitates the use of parallel machines, but the over-
all efficiency of the application can suffer. In fact, the system attributes local
memory in priority. However, depending on the memory demands of the co-
users of a NUMA machine, the memory could more and more be attributed
to far away processors. This increases the memory access time by a factor
up to the memory speed over the internal interprocessor network speed. This
factor is typically three and more, and, comparing with MPI implementations
where memory locality is enforced, performance losses of up to a factor of two
can be measured. In addition to this performance loss due to ease of program-
ming, NUMA machines are restricted in the number of virtual shared memory
processors. If this number has to be increased, a NUMA clustering has to be
made that forces its users to switch to MPI programming. It is therefore highly
recommended to design parallel applications for distributed memory cluster
architectures and use the standard MPI communication library.

Shmem is another message passing library available on SGI and Cray comput-
ers. Shmem guarantees high bandwidth, memory locality, a very small latency
and a direct memory to memory message transfer. Its use is simple, but un-
fortunately Shmem is not a standard.

The number of data transfers between processors strongly depends on the
type of algorithms. When studying its dependence on the number of proces-
sors, different considerations have to be made. One can fix the size of the case
and increase the number of processors. One can fix the number of processors
and increase the problem size. One can fix the problem size per processor and
increase the overall problem size and, accordingly, the number of processors.
We opt for the last option, thus we will fix in our considerations the memory
size and increase the size of the case and the number of processors. The γalg
evolution as a function of the number of processors is studied for three applica-
tion types: the so-called “embarassingly parallel” applications, a finite element
approach, and a Fast Fourier Transform (FFT) algorithm for a Car-Parinello
method in material sciences.

2.2.1 “Embarassingly parallel” algorithms

In “embarassingly parallel” algorithms, there is only communication between
a master and a number of slave processors. No inter-processor communication
is needed between the slaves. Examples are database and web transactions or
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sequencing algorithms in genomics and proteomics. In such algorithms, a huge
number of independent transaction-type of cases is sent from a master machine
to the different slave processors and the results are collected. Communication
needs are small and cost effective Fast Ethernet networks are sufficient.

2.2.2 Finite element approach

Finite element approaches based on domain decomposition are typical meth-
ods that are dominated by point-to-point communication between nearest
neighbour subdomains. In a 3D finite element program, the number of oper-
ations is proportional to the total number of mesh points, to the square of
the number of unknowns per mesh point, to the number of non-zero matrix
elements, and to the number of operations per matrix element. The number
of data to be transferred between processors is proportional to the number of
mesh points on a surface, to the number of surfaces, and to the number of
unknowns per mesh point. As a consequence, γalg for a finite element program
is proportional to the number of mesh points in one direction, to the number
of unknowns per mesh point, to the number of non-zero matrix elements, and
to the number of operations per mesh cell, and inversely proportional to the
number of surfaces. If one fixes the local problem size and increases the overall
size and, accordingly, the number of processors, the γalg value remains strictly
constant since all quantities entering γalg are constant. For real-life finite ele-
ment approaches with millions of mesh points and with a few unknowns per
mesh point, this γalg factor reaches quantities of several hundreds. This implies
that such finite element approaches scale well on Beowulf machines and do not
really request high performance network capabilities. If one fixes the problem
size and increses the number of processors, the γalg value decreses with the
volume/surface ratio, or with 3

√
p. If the number of processors is fixed and

the problem size increased, the γalg value is increased with the volume/surface
ratio, or with 3

√
p.

2.2.3 First principles chemistry applications

First principles chemistry applications tackle a class of fundamentally ”en-
tangled” problems, which can be highly communication intensive due to the
underlying quantum formalism. The γalg factor is estimated for a quantum
chemistry application, using a model momentum space algorithm in which
each electron state is expanded on a basis of plane waves. They are easily
evaluated by passing from real to reciprocal space by means of (Fast) Fourier
Transformations (FFT). Energy minimisation algorithms are iterative, and
basically involve dense linear algebra operations such as matrix algebra and
diagonalisations (performed by BLAS and PBLAS subprograms) besides the
mentioned FFTs. We assume the parallelisation strategy to be based on dis-
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tributing the FFT mesh across the PEs. To evaluate the typical communica-
tion workload, data communication is assumed to be represented by 3D-FFTs
per iteration, each involving two point-to-point global communications of the
entire electronic orbital data set. Each orbital is represented on a cubic FFT
mesh of a system dependent variable size. As test cases, we chose a commu-
nication intensive, Fourier dominated problem (128 electron states on a 1123

grid) and a linear algebra dominated problem (432 electron states, on a 1283

grid). Under the hypothesis above, the communications involve 4.3 and 21.8
Gbytes/iteration for the two systems, respectively. To estimate the CPU op-
eration workload, we assume (i) a typical production run on 32 PEs delivering
200 Mflops/PE sustained on the Swiss-T1 machine and (ii) a realistic bench-
mark wall clock time per iteration of 3.8 and 48 seconds for the two systems,
respectively. This leads to 24 · 109 and 300 · 109 floating point operations per
iteration. The final γalg values for the two representative test systems consid-
ered are therefore 45 and 110 (floating point operations per eight-byte word
communicated). FFT demands global communication operations such as all-
to-many operations and, as a consequence, the γalg value is small. This means
that first principles chemistry applications demand very powerful communica-
tion systems. Results for this tough problem are given at the end of this paper.
A similar communication-demanding algorithm is the matrix transposition.

For these algorithms, the γalg value is almost independent of the problem
size and the number of processors. In fact, if the local problem size is fixed
and the number P of processors varies with the overall problem size, the γalg
value varies as log(P ). This implies that γalg increases slightly when the prob-
lem size increases. If the number of processors is fixed and the problem size
increases, γalg slightly increases with log(N), where N corresponds to the num-
ber of Fourier terms. If one fixes the problem size and increases the number
of processors, γalg remains constant.

2.3 Cluster tailoring condition

Let us define the ultimate γ factor and the cluster tailoring condition:

γ = γalg/γmac > 1 (3)

This condition implies that the machine communication has to have a lower
γmac value than γalg of the algorithm. In this case, the network is sufficiently
powerful to not dominate the overall turn-around time. The influence of the
latency time is not included in this condition.

For point-to-point communication dominated algorithms, such as in the finite
element approach, γalg is high, the requested bandwidth of the communication
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network can be small, and, as a consequence, Fast Ethernet switch connections
are of sufficient performance. For global communication operations dominant
algorithms such as the FFT, the communication bandwidth has to be high
and the network topology chosen such that no bottlenecks appear. In this
case, high performance networks like Myrinet, Quadrics, or TNet have to be
chosen.

3 The Swiss-Tx project

3.1 The machines

The Swiss-Tx commodity parallel computer project was a co-operative work
between the academic partners EPFL, ETHZ and CSCS and the industrial
partners Compaq and Supercomputing Systems in Zurich. It aimed at integrat-
ing rack-mount Compaq DS20E Alpha-based shared memory dual processor
computational units. These most powerful individual computers include the
Compaq Tru64 UNIX operating system, Fortran, C and C++ compilers, and
mathematical libraries. All the necessary hardware and software products to
interconnect these computational units and integrate them to become a su-
percomputer have been developed during the project, or have been purchased
on the market from independent software vendors.

During a first step, two prototype machines have been constructed to test the
concept. Then, two now productive parallel clusters have been designed, built
and installed at EPFL. One of them is a 16 processor departmental computer,
the other one is the Swiss-T1.

The Swiss-T1 cluster (see Fig. 1) consists of three different major parts, the 64
processors computational unit, the 4 processors Frontend, and the 2 processors
development unit:

• The computational unit has 32 dual processor Alpha-based DS20E com-
puters with one Gigabyte (1 GB = 109Bytes) of main memory and 18 GB
of disk space and a Compaq Tru64 UNIX operating system. Each proces-
sor runs at 500 MHz, delivering up to two results per cycle. These SMP
computers are interconnected by the fast communication network TNet,
developed by Supercomputing Systems, Zurich, and described later on, and
by Fast Ethernet switches that also connects the computational unit to the
Frontend. MPICH can be used to send messages over the Fast Ethernet. A
specially developed and optimised MPI is used to send messages over the
TNet.
• The Frontend unit consists of two DS20E computers interconnected with

8



a high speed Memorychannel link and running Trucluster UNIX operating
system. Each DS20E sees the RAID disk unit of 300 GB in a fully symmet-
ric manner. If one computer is down, the other takes over its work. This
guarantees a 99.985% availability of the Frontend. Users enter through this
Frontend, prepare their job and submit it to the computational unit by the
GRD/Codine resource management system. The Totalview software can de-
bug parallel jobs that use the MPICH communication library and run over
the Fast Ethernet.
• The development unit is used to test new software before porting it onto

the Frontend and the computational unit.

Fig. 1. The architecture of the Swiss-T1 with its eight 12x12 crossbars and the
Fast Ethernet switch connection. The numbers on the links of the Circulant Graph
network architecture denote the number of data transfers for an all-to-all operation
between the crossbars.

3.2 The TNet network

The TNet network consists of the following components.

• 12x12 crossbar switches with bi-directional link speeds of up to 264 MB/s
• 32-bits / 33 MHz PCI adapters with a maximum bi-directional bandwidth

of 132 MB/s
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• FCI (Fast Communication Interface), a basic, very low, 5µs latency memory-
to-memory data transfer message passing library
• MPI (Message Passing Interface) communication library, based on FCI with

15 µs latency
• Optimal routing table support for point-to-point and multicast operations
• Cosmos network management system

The network topology is based on the Circulant Graph concept with two K-
rings [2]. The first ring connects the crossbars number 1 to 8, in the second
ring every third crossbar is connected. The distance between two crossbars
is one or two. In the case of distance two, four paths are possible between
two crossbars. This gives the possibility to optimise the routing for multicast
operations. For the Swiss-T1, the routing has been optimised for an all-to-all
operation. When sending messages from any crossbar to any other one, the
paths have been chosen in such a way that each link is used at most three
times. The numbers on the links exactly indicate the link occupation for such
an All-to-All operation. The Swiss-T1 machine has been installed at EPFL in
January 2000 and runs in production mode since August 2000. A smaller test
machine, the Baby-T1 with 16 Alpha processors and with one TNet crossbar
switch runs productively as a departmental machine.

3.3 The Software

In the Swiss-T1 machine, all software in the computational commodity unit
DS20E originates from Compaq, all the software needed to connect these units
come from Independent Software Vendors (ISV) or have specially been devel-
oped during the project. The resource management software GRD/Codine,
now made public, distributes the jobs among the DS20E processors. Totalview
enables debugging of the jobs when running the message passing interface
MPICH over the Fast Ethernet. A special Striped File I/O system SFIO [5,6]
has been developed and is available on the Swiss-T1. A great number of user
applications [8–15] were ported to test the parallel cluster and to run produc-
tively on it. The engineering visualisation system Ensight has been ported and
tested [16]. Ensight is able to read data coming from commercial Computa-
tional Fluid Dynamic (CFD) programs such as Fluent [12] and from the data
management system Memcom [17] used in the applications [13,14].

4 Results with the LAUTREC program

Using the Car-Parrinello package LAUTREC [28], on a medium water system,
tests have been performed on different NUMA, MPP and cluster machines.
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They show that up to 16 processors, the Swiss-T1 cluster (1’000 Mflop/s peak
per PE) is about as powerful as the IBM SP3 (1’500 Mflop/s peak per PE)
and the SGI Origin 3K (800 Mflop/s peak per PE) NUMA machines, and
about 70% more powerful than a Cray T3E (1’200 Mflop/s per PE).

We have to mention here that the γalg value of the case is 45, independent of
the number of processors. Thus, the Swiss-T1 with its γmac value of 40 has
just a sufficient communication performance. A Fast Ethernet network with a
much higher γalg value gives very poor performance.

In the case of a non-linear finite element computation reported in [29], ideal
speedups have been observed on up to 64 processors.

5 Conclusions

The emerging cluster computer technology opens the new opportunity to tailor
the computer architecture to the needs of the user applications. This technol-
ogy is highly flexible, reduces the dependence of the customer on a computer
manufacturer. The machines can be upgraded with the newest and most pow-
erful commodity components of the market. The use of MPI gives to a cus-
tomer the opportunity to easily move from one type of processors to another
one without loss of message passing performance. The customer gets more free-
dom in choosing the best suited parallel computer. The cluster architecture can
grow in an inhomogeneous manner. Thus, a customer can immediately profit
from the arrival of new more powerful commodity parts that can be used to
form a new and more powerful cluster unit leaving the old one untouched. Re-
source management systems exist to build inhomogeneous clusters, even with
processors coming from different sources. This enables tailoring the computer
architecture to each individual step of a full application. Due to the use of
commodity components, cluster supercomputers are highly cost-effective. In
addition, old cluster parts can be redistributed as individual workstations and
reused for additional few years.

The Swiss-T1 machine with its Circulant Graph network realised with the high
quality and efficient TNet and operated through a very efficiently implemented
MPI show network characteristics that seem to be sufficiently powerful to run
applications demanding high bandwidth and low latency. The frontend system
has high availability. It enables preparing, testing and submission of jobs and
result diagnostics.

The know-how accumulated in the Swiss-Tx project is being commercialised
within the Start-up Company ClusterSolutions SA recently created in Lau-
sanne [25].
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