
The Vesta Parallel File System

PETER F. CORBETT and DROR G. FEITELSON
IBM T. J. Watson Research Center

The Vesta parallel file system is designed to provide parallel file access to application
programs running on multicomputers with parallel I/O subsystems. Vesta uses a new
abstraction of files: a file is not a sequence of bytes, but rather it can be partitioned into
multiple disjoint sequences that are accessed in parallel. The partitioning—which can also be
changed dynamically—reduces the need for synchronization and coordination during the
access. Some control over the layout of data is also provided, so the layout can be matched
with the anticipated access patterns. The system is fully implemented and forms the basis for
the AIX Parallel I/O File System on the IBM SP2. The implementation does not compromise
scalability or parallelism. In fact, all data accesses are done directly to the I/O node that
contains the requested data, without any indirection or access to shared metadata. Disk
mapping and caching functions are confined to each I/O node, so there is no need to keep data
coherent across nodes. Performance measurements show good scalability with increased
resources. Moreover, different access patterns are shown to achieve similar performance.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures—parallel processors; D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming; D.4.1 [Operating Systems]: Process Management—concur-
rency; D.4.3 [Operating Systems]: File Systems Management; D.4.4 [Operating Systems]:
Communications Management—input/output; E.5 [Data]: Files—organization/structure;
sorting/searching

General Terms: Design, Performance

Additional Key Words and Phrases: Data partitioning, parallel computing, parallel file system

1. INTRODUCTION

The continued improvements in microprocessors and memory systems have
exposed I/O as a major bottleneck [Katz et al. 1989; Patt 1994]. This is true
in both uniprocessor and parallel systems. But I/O in parallel systems is
more challenging, owing to the inherent interactions among multiple
processes in the same job that all perform I/O operations. The Vesta

Parts of this research have appeared at the Scalable High-Performance Computer Conference,
May 1994, and in an IBM T. J. Watson Research Report RC 19898 (88058), Oct. 1994.
Authors’ addresses: P. F. Corbett, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598; email: corbett@ibm.research.com; D. G. Feitelson, Institute of Computer
Science, The Hebrew University, 91904 Jerusalem, Israel.
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1996 ACM 0734-2071/96/0800–0225 $03.50

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996, Pages 225–264.

parallel file system project has focused on designing interfaces and abstrac-
tions to make such interactions manageable, while achieving high effi-
ciency on parallel I/O hardware.
I/O may be done for several purposes, including I/O to a swap device used

to implement virtual memory, I/O to special graphic devices, and I/O to
on-line and off-line persistent storage, typically disks and tapes. Vesta
deals exclusively with persistent on-line storage of files. It is best suited for
short- and medium-term on-line storage of frequently used files, particu-
larly those that must be accessed by parallel applications.
The I/O subsystem architectures of most parallel supercomputers are

remarkably similar [Feitelson et al. 1995a]. A generic configuration is
shown in Figure 1. The nodes of the machine are divided into two sets:
compute nodes and I/O nodes. Compute nodes are used to run user jobs. I/O
nodes contain disks for on-line storage and run the parallel file system.
These nodes constitute a shared resource that is accessible by all the
different jobs running on the compute nodes. Examples of parallel ma-
chines that use this design include the Connection Machine CM-5, the Intel
iPSC and Paragon, and the nCUBE. Other systems, such as the Meiko CS-2
and IBM SP2, have both dedicated I/O nodes and additional I/O devices
connected to the compute nodes. These additional devices are typically used
for swapping and scratch space and for storing operating system files
rather than for persistent storage of application data.
The analogy between dedicated I/O nodes and file servers on a LAN is

obvious. However, there are important differences. LAN file servers typi-
cally operate in a Unix environment and provide the Unix file system
interface, but typically with weaker concurrency semantics than provided
by the base Unix file system [Levy and Silberschatz 1990]. This is perfectly

Fig. 1. Generic multicomputer architecture with parallel I/O.

226 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

adequate for supporting a set of workstations with a conventional Unix
workload, but it is unsuitable for supporting parallel applications. The
problem is that parallel applications involve multiple processes operating
in concert, whereas Unix was originally designed as an environment for
single-process jobs. As a result, most distributed file systems have little or
no provision for coordinating shared file access by multiple cooperating
processes. In fact, the semantics of concurrent access are sometimes left
undefined. For example, NFS [Sandberg et al. 1985] may produce inconsis-
tent results when a file is write-shared by a number of processes. Those file
systems that do provide Unix write-write and read-write sharing semantics
among concurrently executing processes on different nodes implement this
sharing through a costly cache coherence protocol [Nelson et al. 1988].
The inadequacy of current distributed file systems for parallel systems

has led to the design of various parallel file systems [DeBenedictis and del
Rosario 1992; LoVerso et al. 1993; Pierce 1989]. In this article, we describe
the Vesta Parallel File System, first introduced by Corbett et al. [1993a].
Vesta introduces a new abstraction of parallel files, by which application
programmers can express the required partitioning of file data among the
processes of a parallel application. This reduces the need for synchroniza-
tion and concurrency control and allows for a more streamlined implemen-
tation. Also, Vesta provides explicit control over the way data are distrib-
uted across the I/O nodes and allows the distribution to be tailored for the
expected access patterns.
The next section expands on the motivation and guidelines for the Vesta

design. The file abstraction and the Vesta interface are described in Section
3. Section 4 then explains how the file system was implemented on an IBM
SP1 platform. Performance measurements of this system are presented in
Section 5. Finally, the conclusions of the study are drawn in Section 6.

2. MOTIVATION AND GOALS

An application’s interface to a system’s I/O facilities is most often through a
file system. Many multicomputer file systems make use of the parallel I/O
subsystem by declustering files, meaning that the blocks of each file are
distributed across distinct I/O nodes. For example, this is done in Intel’s
Concurrent File System (CFS) [Pierce 1989] and Thinking Machines’ Scal-
able File System (sfs) [LoVerso et al. 1993]. However, this feature is hidden
from the users. The user interface employs the traditional notion of a file
being a linear sequence of bytes (or records), and the mapping to multiple
disks is transparent. Thus users are prevented from tailoring their I/O
patterns to match the available disks. Users may not even know where
block boundaries are, so a small access might require data residing on two
different I/O nodes.
In contrast, the Vesta file system exposes the inherent parallel structure

of files at the user interface [Corbett et al. 1993a; 1993b]. While users do
not have full control over the mapping of data to disks, they are able to
create files that are distributed so as to match their applications. For

The Vesta Parallel File System • 227

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

example, in a matrix-multiply application each compute node only needs to
access a band of rows or columns from each matrix. Vesta allows the files
containing the matrices to be partitioned into such bands. Furthermore, it
is possible to have each band stored on a distinct I/O node. Then each
processor only accesses one I/O node, reducing interference among proces-
sors and fragmentation of the data. Vesta also allows parallel file access
using many different decompositions of the file data: for example, a file
that was stored as a set of rows can also be accessed by column. This does
not require any movement of the data.
The overriding goal of the Vesta file system is to provide high perfor-

mance for I/O-intensive scientific applications on massively parallel multi-
computers. The Vesta design was guided by the following principles:

—Parallelism. The primary vehicle for achieving high performance is
parallelism. The Vesta design conserves the parallelism from the appli-
cation interface down to the disks. This is done by providing a parallel
interface that allows programmers to express the partitioning of file data
among the different processes. This eliminates the need to serialize
accesses. In particular, it is easy to create situations in which multiple
compute nodes access multiple I/O nodes at the same time, independently
of each other and over separate communication channels.

—Scalability. Vesta was originally started as part of the Vulcan project, a
system that was designed to scale up to 32K nodes, a large fraction of
which were to be dedicated I/O nodes. While we later shifted our focus to
more modest sizes, the design still precludes any serial bottlenecks or
centralized lookups in file accesses. Each access is addressed directly to
the I/O node where the required data or metadata reside, with no
node-to-node indirection.1

—Layering. Vesta is a middle layer between applications and disks. As
such, it relies on services provided by lower layers and adds well-defined
functionality in the interface it provides to higher layers. Specifically,
Vesta assumes that lower layers provide reliable message passing among
nodes and reliable storage on each I/O node. This can be accomplished by
using RAID devices in each I/O node independently of other nodes, thus
saving network traffic [Holland and Gibson 1992]. Upon this base, Vesta
adds a layer that provides the notion of parallel files as outlined above.
Vesta, in turn, can serve as the basis for higher-level libraries that will
add additional services, such as collective I/O operations.

In addition, Vesta provides commonly expected services, such as a Unix-
like hierarchical structure of directories, Unix-like permission bits for each
file, and enforcement of space quotas. It also provides some less common
features, including support for files larger than 2GB, asynchronous I/O
operations, and file checkpointing. However, full compatibility with exist-

1PIOFS, which is based on Vesta, has proven to scale well to computers with hundreds of
nodes [Corbett et al. 1995b].

228 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

ing systems was intentionally sacrificed whenever their features contradict
the notion of a parallel interface.

3. ABSTRACTIONS AND INTERFACE

The main innovation in Vesta is the fact that files have a two-dimensional
structure, rather than the conventional one-dimensional sequential model.
The added dimension allows parallel access to be expressed explicitly in
terms of file partitions. These ideas are explained in detail in the first two
subsections of this section. Then an example of using this abstraction to
implement a parallel sorting algorithm is given. Finally, we compare this
approach to other systems.

3.1 The Two-Dimensional Structure of Vesta Files

The system software on parallel supercomputers typically exploits parallel
I/O devices by striping file data across the I/O nodes. Assuming that the
number of I/O nodes is N, block i of the file is located on I/O node i mod N.
Such striping is transparent at the file system interface. It achieves the
goal of parallel access to disks, but hides the details of the striping from the
application. A simple way to provide a parallel view of such a striped file is
to consider the blocks on each I/O node as a separate sequence (Figure 2),
effectively dividing the file into subfiles accessible in parallel by different
processes of a parallel application.
Vesta goes two steps beyond this simple approach. First, it abstracts

away from a direct dependency on the number of I/O nodes. Second, it
allows a variety of partitioned views of any file, in addition to partitioning
according to the physical distribution of data to the I/O nodes. All these
parallel views partition the file into disjoint subfiles, that are typically
accessed by different processes of a parallel application. This guarantees
that the accesses by the different processes are nonoverlapping at the byte
level, and therefore the file system design can be optimized to avoid the
effects of false sharing of data at the block level, while maintaining
consistency of the data. Moreover, it simplifies the programming effort by
allowing each process to access its data directly, without requiring compli-

Fig. 2. A simple way to get a parallel view of a declustered file.

The Vesta Parallel File System • 229

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

cated indexing schemes so as to skip parts of the data that belong to other
processes.
Abstracting away from I/O nodes is done by introducing the notion of

cells.2 It is best to think of cells as containers where data can be deposited,
or alternatively, as virtual I/O nodes that are then mapped to the available
physical I/O nodes. When a file is created, the number of cells it will use is
given as a parameter. If the number of cells is no more than the number of
I/O nodes, then each cell will reside on a different I/O node. If there are
more cells than I/O nodes, the cells will be distributed to the I/O nodes in
round-robin manner. The number of cells therefore sets the maximal
degree of parallelism in access to the file. It is expected that the best
performance will be obtained by having the same number of cells on each
I/O node, but this is not a requirement. Thus it is possible to use a different
number of cells if it is more convenient in terms of program structure or
portability.
Because of the cell abstraction, Vesta files have a two-dimensional

structure. One dimension is the cell dimension, which specifies the paral-
lelism in accessing the data (the “horizontal” dimension). The other dimen-
sion is data within the cells (the “vertical” dimension). In most cases, all
cells will have the same amount of data in them, but this is not a
requirement. The data in each cell are viewed as a sequence of basic
striping units (BSUs). These are used as the basic building blocks for the
partitioning scheme, as explained below. The BSU size can be an arbitrary
number of bytes and should be chosen to reflect the minimal unit of data
access.
The number of cells and the BSU size are the two parameters that define

the structure of a Vesta file. They are defined when the file is created and
cannot be changed thereafter. These parameters are instrumental in calcu-
lating the location of data and therefore must be known before data can be
accessed. As a consequence, applications must obtain the parameter values
before they can access the file. To do so, Vesta introduces a new call named
attach. Every process in the application must attach every file it uses before
it can open the file. The attachment stays valid throughout the execution of
the parallel program or until the file is detached, even if the file is closed.

3.2 Partitioning Files for Parallel Access

The data in cells are viewed as a byte sequence defined in groups of BSUs.
For files that have more than one cell, we have a two-dimensional matrix of
such BSUs. Vesta allows this matrix to be partitioned in much the same
way that two-dimensional arrays are partitioned in High-Performance
Fortran [Loveman 1993]: partitions can correspond to columns (i.e., cells),
to rows (e.g., the first BSU from each cell), or to blocks (e.g., the first 5

2The terminology used here is different from that used in the original Vesta papers [Corbett et
al. 1993a; 1993b], as many people found the original terminology confusing. Thus “physical
partitions” are now called “cells”; “logical partitions” are now called “subfiles”; and “records”
are now called “BSUs.”

230 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

BSUs from the first 3 cells). Each of the partitions is called a subfile. The
open call includes parameters that define a partitioning scheme and
returns a file descriptor that allows access to a single subfile, not to the
whole file.
Two special cases of partitioning correspond to the simple views de-

scribed in Figure 2. It is possible to create a single subfile that spans the
whole file, where data are striped across all the cells in units of one BSU.
This is the preferred approach to creating files that are also accessed from
external file systems or that are the targets of existing applications.
Likewise, it is possible to create a parallel view with subfiles that corre-
spond to cells. If the number of cells is equal to the number of I/O nodes,
this essentially provides an interface with direct mapping to the underlying
hardware.
In general, a Vesta partitioning scheme is defined by four parameters,

Vbs, Vn, Hbs, and Hn, that partition the file into disjoint subfiles, with a
fifth parameter specifying which subfile is being opened. The two parame-
ters Vbs and Hbs define the size of a block of BSUs that serves as the basic
building block of the partitioning scheme. Vbs, which stands for “vertical
block size,” specifies how many consecutive BSUs are taken from each cell,
and Hbs, which stands for “horizontal block size,” specifies how many
consecutive cells are spanned. The other two parameters specify how many
such blocks there are in different subfiles. Vn specifies how many subfiles
are interleaved in the vertical dimension (within each cell), and Hn
specifies how many are interleaved in the horizontal dimension (across
cells). These concepts are illustrated in Figure 3.
To put things on a more solid basis, here are a set of equations that

describe how partitioning is done. Let c be the smallest multiple of Hbs 3
Hn that is larger than or equal to the number of cells, that is,

c 5 num_of_cells

Hbs 3 Hn 3 Hbs 3 Hn.

Then BSU number j in cell number i (where numbering is zero based)
belongs to subfile s 1 t 3 Hn, where

s 5 i mod~Hbs 3 Hn!

Hbs t 5 j mod~Vbs 3 Vn!

Vbs ;
s and t are simply the x and y coordinates on the subfile’s block in the
Hn-by-Vn template. Within that subfile, it is BSU number

F j

Vbs 3 Vn 3
c

Hbs 3 Hn
1 i

Hbs 3 HnG 3 Vbs 3 Hbs

1 ~i mod Hbs! 3 Vbs 1 j mod Vbs.

The Vesta Parallel File System • 231

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

The square brackets are the number of full blocks (each with Vbs 3 Hbs
BSUs) before it in the subfile. This is the sum of two terms: j/(Vbs 3 Vn)
full bands of blocks across all the cells, each with c/(Hbs 3 Hn) blocks,
and then a few more in the same band as the BSU in question. The terms
after the square brackets account for the BSU’s position within its block.
We note in passing, for the benefit of readers familiar with the HPF data

decomposition scheme, that the four parameters used by Vesta have the
same roles as parameters used by HPF. In HPF, the decomposition is done
in two stages. First, a two-dimensional template is created with the
PROCESSORS directive. This is analogous to defining the template of
Vesta subfiles, which is done by the Vn and Hn parameters. In terms of
HPF directives, this is expressed as

!HPF$ PROCESSORS P(Vn, Hn)

The second stage is defining the block size used to distribute the data. This
is done by a DISTRIBUTE directive, which also specifies the template upon
which the data are being distributed. In terms of Vesta parameters, this is
done by Vbs and Hbs as in

!HPF$ DISTRIBUTE D(CYCLIC(Vbs), CYCLIC(Hbs)) ONTO P

Fig. 3. The Vesta file-partitioning parameters. Subfiles are identified by different shades of
gray.

232 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

Handling Awkward Cases. The description so far has focused on the
regular and simple cases. These probably include all of the useful and
understandable variations. It is also possible to define patterns that are
highly irregular, but that must be handled consistently. This subsection
explains what Vesta does in such peculiar cases, even if we do not expect
them to be very useful or common in practice.
First note that c may be larger than the actual number of cells in the file,

but the equation for numbering BSUs in subfiles assumes c cells. Hence if c
is indeed larger than the number of cells, some extra cells are implied. The
extra cells that are added to make the total a multiple of Hbs 3 Hn are
called ghost cells. Naturally, the ghost cells do not contain data. Attempt-
ing to write to an offset in the subfile that falls in a ghost cell will not
produce any effect: Vesta silently copies the data nowhere. Likewise,
attempting to read from an offset in a ghost cell does not cause any change
in the buffer used to receive the data.
The reason for this behavior is that it is convenient for single-program,

multiple-data (SPMD) programs, where each process accesses a different
subfile. In such an environment, Vesta allows all the processes to use
identical code and perform I/O operations that supposedly access the same
amount of data. However, the returned count of how much data was
actually moved will only include real data. Data read from or written to
ghost cells are not counted.
It is believed that most applications will create and manipulate Vesta

files with cells that have equal lengths. However, this is not a prerequisite
for using Vesta. It is certainly possible to create files with cells that have
different lengths, by writing more data into some subfiles. In addition, it is
possible to seek ahead and write some data in some remote location,
leaving a hole in the middle of a cell.
Partitioning files with irregular structures follows the same principle as

partitioning files where Hbs 3 Hn does not divide the number of cells. In
general, subfiles may have holes in them when they include data from both
short and long cells. To distinguish between ghosts and holes: ghosts result
from missing cells in a partitioning, and holes result from missing data at
the end of a cell (compared to other cells in the same subfile). Writing to
such a hole causes it to be filled with valid data. Reading from a hole can
either return a zero-filled buffer, or else it will have no effect. A zero-filled
buffer will be returned if there is some valid data at a further offset in the
cell. No effect will be experienced if the read is from an offset beyond the
end of the cell. In this case, the returned count will indicate that data were
not moved.
The main consequence of allowing holes and ghosts is that it is hard to

find the end of a subfile. For example, if a subfile has a huge hole in it that
results from the subfile containing data from both long and short cells,
reading a small chunk from a hole will return a count of zero, indicating
that no data were actually read. If the subfile is known not to have holes, a
returned count of zero indicates the end of the subfile. But if it does have
holes, a returned count of zero only indicates that this read did not

The Vesta Parallel File System • 233

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

encounter any valid data. This could be because there are no more valid
data (i.e., the end of the subfile was reached), or because this is a hole.
Thus if you want to read the whole subfile, and you do not know how much
data it contains in advance, you need to call the Vesta stat function to find
how much data is contained in the whole file. This is an upper bound on the
size of any particular subfile.

Data Ordering. The most striking consequence of partitioning files is
that the data in a file no longer have a unique sequence. This makes it hard
to interface Vesta with other, traditional file systems. For example, if Vesta
is mounted on a Unix file system, what byte order should sequential Unix
applications see? Obviously, the software used to implement the mounting
can designate a canonical order, e.g., round-robin striping of BSUs across
all the cells. But if data were written into the file in parallel using some
other partitioning scheme, this order might be meaningless.
Not only do data not have a single sequential order, but there are also a

number of possibilities for ordering bytes within a given subfile. An obvious
choice would be column-major ordering, as in Fortran two-dimensional
arrays. In Vesta, column-major would mean that all the bytes in the first
cell spanned by the subfile come first, then all those in the second cell, and
so on. However, this is impractical because cells have unbounded depth, as
opposed to columns in a two-dimensional array that have predefined depth.
If the amount of data in one cell changes because additional data are
written, the offsets of bytes in subsequent cells change. Also, cells can have
different depths, so finding a certain offset into the subfile would require
the current lengths of all cells to be known. The Vesta implementation of
column-major order is therefore qualified by the offset into the subfile and
the amount of data accessed. Essentially, these parameters are used to
identify the data being accessed, using the default Vesta ordering described
below; then this data is reordered in column-major. The example in Figure
4 is for access to 24 BSUs, starting from the beginning of the subfile.
The other obvious choice is row-major, with round-robin interleaving of

BSUs among the cells spanned by the subfile. In this case adding data to
one cell does not cause changes to the offsets in another, so direct access is

Fig. 4. Options for byte ordering with a subfile.

234 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

possible. However, the opportunity for large sequential accesses to disk is
reduced, because striping across I/O nodes is done with a smaller striping
unit.
The default ordering for Vesta is a compromise: it is column-major within

blocks of the partitioning scheme, but row-major among blocks. This is the
ordering described by the equations given above. The obvious drawback of
this ordering is that it does not correspond to the normal orders in
two-dimensional decompositions. Using row-major order instead will only
result in reduced performance in accesses that are smaller than the amount
of data in a band of blocks across all the cells used by the subfile (12 BSUs
in Figure 4). Using column-major may be confusing unless the offsets and
counts are multiples of this size.

3.3 Example: FastMeshSort

There are many possible applications of logical partitioning of files [Nodine
and Vitter 1991; Vitter and Shriver 1990]. One interesting application
which demonstrates the power of dynamically repartitioning files is paral-
lel sorting. We shall use the FastMeshSort algorithm [Corbett and Scherson
1992], which is based on Batcher’s Bitonic Sorting algorithm [Batcher
1968]. The program using Vesta file partitioning is given in Figure 5.
FastMeshSort iteratively sorts short bitonic sequences into successively

longer bitonic sequences. The implementation described here works on a
two-dimensional mesh of records mapped onto a Vesta file with 2n cells.
The cells are of arbitrary but equal lengths. The algorithm employs 2n

compute processes, preferably running on distinct compute nodes. n itera-
tions are performed. In each iteration, the processes each open a subfile of
the file that corresponds to the cell with the same serial number as the
compute process (numbered from 0 to 2n 2 1 within the application) and
then a subfile that includes records that span multiple cells of the file. The
number of cells spanned doubles with each iteration.
The algorithm uses the subroutine Window_Sort(sfd, dir, wndw_siz),

which sorts records in a subfile. The records are sorted within windows of
length wndw_siz, and records are not moved between windows. If wndw_siz
is given as 0, the entire subfile is sorted from beginning to end. The records
are sorted in the specified direction, with DOWN moving the largest records
toward the end of the window, and UP toward the beginning. For example,
if subfile i initially contained records in sequence (3, 4, 1, 6, 2, 5, 8, 7) then
the result of calling Window_Sort(i, DOWN, 4) would be (1, 3, 4, 6, 2, 5, 7,
8), and the result of calling Window_Sort (i, UP, 0) would be (8, 7, 6, 5, 4, 3,
2, 1).
In two dimensions, FastMeshSort works by alternately sorting data

along columns (within cells) and then along rows (across cells). When the
algorithm completes, the sorted file can be read out by concatenating the
cells. The code in Figure 6 uses actual Vesta system calls, but does not
include code for the subroutine Window_Sort, which can use any external
sorting algorithm. Note that the same file can be opened simultaneously by

The Vesta Parallel File System • 235

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

the same process with different logical partitionings. Proper synchroniza-
tion of the processes is necessary to properly execute the algorithm. This
synchronization is performed by a Barrier_Sync function which coordinates
the compute processes. This is not a Vesta function; we assume that it is
provided by a parallel communication library.
Figure 6 shows a simple example of the algorithm with 4 cells of length 8.

The main point of this example is not to demonstrate parallel sorting, but
to show how the parallel file system interface can greatly simplify writing
parallel programs that use file I/O. The single-node code of this fairly
complex parallel algorithm is very compact. The burden of calculating
indices and offsets into one large file to try to achieve some parallel disk
activity is removed from the user. This is the primary difference in the

Fig. 5. Implementation of FastMeshSort using logical partitioning.

236 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

user’s interface between a parallel file system and a conventional file
system.
A more optimal version of this algorithm has been implemented on Vesta,

using the asynchronous I/O facility provided by Vesta. Performance mea-
surements are given in Section 5.6.

3.4 Comparison with Other Systems

The role of a file system is to create the abstraction of files (named
persistent data sets) and to implement this abstraction using available
storage devices. In a parallel system, the features that distinguish one
system from another are the form of the abstraction, the interface used to
access it, and how it is laid out on the parallel hardware.
As for layout, most file systems designed for parallel machines stripe

data transparently across the available I/O devices. Examples include the
Bridge file system [Dibble et al. 1988], Intel’s CFS on the iPSC [Pierce

Fig. 6. Example of using subfiles to implement FastMeshSort on a file with four cells and
eight records in each.

The Vesta Parallel File System • 237

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

1989] and PFS on the Paragon [Intel 1994], the sfs file system on the CM-5
[LoVerso et al. 1993], the nCUBE system software [DeBenedictis and del
Rosario 1992], and the Meiko parallel file system. Unlike Vesta, these
systems do not expose the underlying parallelism explicitly in their inter-
faces, and thereby preclude any optimization of the access patterns from
different processes. Vesta is the only system to date that provides a
measure of support for explicit mapping of data to the hardware. PIOFS,
the parallel file system of the IBM SP2 computer, is based on Vesta and
presents most of the same features as Vesta in its interface (however, the
performance and design discussion in this article should not be inferred by
the reader to necessarily apply to PIOFS) [Corbett et al. 1995b].
Vesta is also unique in terms of the abstraction it provides—the two-

dimensional structure of BSUs within cells. Partitioning is also an innova-
tive feature. The only other systems that have similar functionality are
those that support I/O operations on distributed arrays, including the
nCUBE system software [DeBenedictis and del Rosario 1992] and a couple
of experimental libraries [Bordawekar et al. 1993; Brezany et al. 1992].
However, in these systems the partitioning is limited to the context of a
collective operation that accesses a whole array. Other systems use file
modes to define the semantics of parallel access. Some of the modes
actually create an implicit partitioning, as when different processes access
a sequence of data items in the file in the order of their process IDs. For
example, this feature is available in the Express Cubix model [Salmon
1987] and in Intel’s CFS and PFS. In Vesta, the partitioning is defined in
advance, and then processes can perform independent accesses to any part
of their partition (subfile). The proposed MPI-IO standard is similar to
Vesta in this respect, although the mechanism for expressing partitioning
is quite different [Corbett et al. 1995a].

4. IMPLEMENTATION

File systems are part of the system software and must be matched to
architectural features in order to obtain optimal performance. In the case of
parallel I/O, the main options are attaching disks to the processing nodes or
creating dedicated I/O nodes that are a shared resource and are not used to
run applications. Vesta assumes the latter approach [Feitelson et al. 1993].
It is therefore implemented in two subunits: a client library that is linked
with application code running on the compute nodes and a server that runs
on the I/O nodes.
The capability to perform direct access from a compute node to the I/O

node containing the required data, without referencing any centralized
metadata, is a key feature of the Vesta design. This is achieved by a
combination of means. First, file metadata are distributed among all the
I/O nodes and are found by hashing complete file and Xref (directory) path
names. The file metadata are small and need be accessed by the client only
once when the file is first attached to the application. Thereafter, compute
nodes can identify the I/O nodes which contain accessed data using a

238 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

combination of the metadata they have obtained, parameters of the parallel
view of the file that they are using, and the offset (within the subfile) and
count of data to access. Block lists for the file are maintained on each I/O
node independently for the cells stored on that node. Vesta stripes blocks
across multiple disks at each I/O node transparently to the client. Data are
not cached on compute nodes. This is possible due to the relatively low
latency of the multicomputer’s interconnection network, especially when
compared to disk access times. It is quite likely that higher-level I/O
libraries built on top of Vesta may cache some data locally at the compute
nodes.

4.1 Access to Metadata

Vesta objects include files, cells, and Xrefs (cross-reference lists). These are
not objects in the sense of object-oriented programming, but are simply
logical items stored in Vesta. Xrefs serve in place of Unix directories, as
described below. Each I/O node maintains the Vesta objects residing on
itself in a memory-mapped table. The I/O nodes themselves are logically
numbered in a contiguous integer sequence.

Object IDs. Vesta does not use a name server to locate files, in contrast
with systems like Intel’s CFS [Pierce 1989]. Rather, the full path name of
the file is hashed into a 48-bit value. These 48 bits form the basis for a
64-bit internal ID (Figure 7). Sixteen of these 48 bits are further hashed to
identify the I/O node that serves as a master node for this file. This is more
direct than the two-stage mapping used in VAX clusters, where object
names are hashed to a directory node that may not be the master node
[Kronenberg et al. 1986]. In Vesta, the master node is the locus of the file
object, but not necessarily of any part of the file data. Another 16-bit field
of the original 48 bits is further hashed to find the file in the object table on
the master node.
Each entry in the table contains information such as the 64-bit system-

wide unique ID, the file name, its owner ID, group, and access permissions,
creation, last access, and last modification times, the number of cells, the
BSU size, the base and highest-numbered I/O nodes used, and the current
file status. The cells themselves are allocated in round-robin manner to I/O
nodes starting with the base node and wrapping around to the lowest-
numbered I/O node whenever the maximum node is reached (the base node
can be specified by the user when the file is created, or else it is pseudoran-
domly chosen by the system). The current status indicates whether the file
is attached for read-only access or read-write access, to which parallel

Fig. 7. Structure of the 64-bit internal ID of Vesta objects.

The Vesta Parallel File System • 239

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

program(s), and the current access key(s). Note that the file object does not
include any block list or any direct reference to the data. In this respect it
differs from the traditional Unix inode. Cells and Xrefs also have entries in
the object table, with slightly different data.
If two files or Xrefs with different names happen to hash to the same

48-bit value, this will be detected by the master I/O node that is common to
both (when the second one is created). The master node then uses the
uniquifier field in the ID to distinguish between the two. This field has 7
bits, so up to 128 objects that hash to the same 48-bit pattern can be
tolerated. The hashing algorithm was designed to give a pseudorandom
jump to a different point in the 48-bit space for each small change in the
input, with an average jump length of 24 bits. It was also designed to have
a minimum cycle length that, for any input sequence, is much longer than
the maximum file path length. Pseudorandomness was verified by measur-
ing the statistics of a large file system for a uniform distribution over the
48-bit space, with no frequently occurring patterns. We have checked a file
system with over 150,000 names and found no collisions, and a uniform
distribution of hash values, with no tendency to any particular bit patterns.
Another single-bit field of the 64-bit ID is used to distinguish files from

Xrefs. The last 8 bits are used to number cells of a file on a given I/O node,
starting from 1 (cells share 56 bits of their ID with the file to which they
belong). This field, called the level, is set to 0 in the file object itself and in
all Xref objects. Thus each file can have up to 255 cells on each I/O node.
File and Xref names are stored in a separate string table, indexed by a

field within the object descriptor. This is done to save disk space in the file
system metadata.

Attaching and Opening. In order to access file data, the Vesta client
linked with an application process must know on what I/O node(s) the data
reside. This is calculated based on certain fields in the metadata, notably
the base and maximal I/O nodes, the number of cells, and the BSU size.
This information has to be obtained before the file can be accessed.
Opening a Vesta file is divided into two phases. First, the file is attached

to the application. In this phase the metadata are accessed, and the
required parameters are obtained. This can be done by each application
process individually, or else it is possible to construct a distribution tree
such that only the root attaches the file, and then the obtained data are
shared with other nodes. The latter approach helps to ensure the ultimate
scalability of the file system and is especially suitable for the implementa-
tion of a higher-level library with a collective attach operation.
The second phase is to open a subfile. Opening is a local operation that

does not involve any communication, unless the subfile is being opened
with a shared offset pointer. The main function of the open call is to set the
partitioning parameters that define which subfile is being accessed. Vesta
does not require that all the processes of a parallel job open a file with the
same partitioning parameters. The issue of guaranteeing a consistent
scheme is left to the discretion of the user, or for a higher-level collective

240 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

I/O library. At the Vesta interface, users have full flexibility including the
option to simultaneously use different partitioning schemes for different
processes, even with overlapping subfiles.

Directory Structure. As noted above, Vesta files are accessed directly by
hashing their path names. This is in contrast with the namei function used
to parse path names in Unix systems. Due to the hashing, Vesta does not
need to maintain directories to find files. However, a hierarchical structure
of directories is emulated using Xrefs so as to enable users to organize their
files and list subsets of files. Xrefs simply contain lists of internal IDs of
files and other Xrefs. When a new file is created, it is listed in the Xref that
has the same name except for the last /-separated component. If such an
Xref does not exist, the file creation fails.
Hashing path names is intended to reduce conflicts in access to the top

levels in the directory hierarchy, helping to ensure the scalability of the file
system. This enables very efficient attaching with only one file system
request per file attached, even in very large systems. However, the use of
hashing has the following consequences:

—There is no control over access using directory permission bits, because
access does not go through the directories.

—There are no hard links: files and Xrefs can only have one name. Soft
links could be provided easily, but we did not implement them.

—Renaming a directory is a lot of work, because the path names (and
hashing) of all files and directories below it in the hierarchy change,
requiring relocation of most of their metadata. The cells of files that are
renamed are not moved, even if the file metadata are moved.

—If the configuration changes (i.e., if I/O nodes are added or deleted
permanently, as opposed to transient failures) all objects have to be
relocated.

One alternative is to use a separate name server module, possibly with a
distributed implementation, and normal parsing of the path to look up file
IDs given the full path name of a file.
Another problem with this design is the handling of multiphase opera-

tions (e.g., creating a file, which involves creating a locked file object,
listing it in the appropriate Xref, and then unlocking it). In the current
Vesta implementation, such operations are handled by the client code, and
each phase is a separate request directly to the affected I/O node. This
simplifies the design of the server code, so that I/O nodes are relatively
independent and oblivious of each other. However, it risks leaving the
system in an inconsistent state if the client node crashes in the middle of a
multiphase operation. We correct these infrequently occurring problems
with an fsck utility that is designed to recover the metadata to a consistent
state without discarding valid file data.

The Vesta Parallel File System • 241

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

4.2 Access to File Data

Once a file is attached and opened, a compute node has all the information
required in order to access data. Access is done by providing a byte offset
and a byte count, just as in traditional file systems. The difference is that
the offset is interpreted in the context of a certain specified subfile, rather
than relative to the whole file.
The steps performed in data access are described in Figure 8. First, the

offset into the subfile is obtained if it is shared (step 1). (If not, it is
available in the accessing node’s file table.) Then the offset and count
relative to the subfile are translated into offsets and counts relative to one
or more cells, based on the partitioning parameters given when the file was
opened (step 2). Next, messages are sent to the I/O nodes responsible for
the relevant cells, with requests to access the data in those cells (step 3). If
concurrency control is required, the I/O nodes coordinate the scheduling of
I/O operations (step 4). Finally, the data are accessed (step 5).
It should be noted that all the computations relating to the pattern in

which data are interleaved in and among cells are done at the compute
nodes that perform the access. The I/O nodes only receive requests to access
cells that reside on them. Thus the service provided by I/O nodes is similar
to that in traditional file systems. The main addition is that the data
accessed from each cell may be a strided vector, rather than being contigu-

Fig. 8. The different stages of a file access. Steps 1 and 4 are optional.

242 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

ous, due to being interleaved with other subfiles. All the data in such
vectors are compacted and sent in one message. Thus the total number of
messages per accessed cell is 2 for a read (request from compute node to I/O
node, and then data plus acknowledgment coming back), and 3 for a write
(request followed by data one way and acknowledgment the other way).
A separate request component is generated for each cell accessed, even if

multiple cells reside on the same I/O node. It would be possible to combine
the request components, as well as the data transfers, resulting in mes-
sage-passing overhead that is proportional to the number of I/O nodes
accessed, rather than to the number of cells accessed. However, since the
number of cells per I/O node typically is close to 1, we decided that this
additional complexity was not warranted.
Vesta does not have a separate seek function. Instead, seek is incorpo-

rated into the read and write functions. The reason for this approach is that
when an offset is shared by multiple processes, the interleaving of indepen-
dent seek and access operations may lead to unexpected results. A pure
seek can still be performed by a read of zero bytes. In order to define the
semantics of asynchronous operations, Vesta updates the system’s file
pointer when an I/O operation is initiated, rather than waiting for it to
complete. This risks ending up with an incorrect value if the access does
not complete successfully, but it allows multiple operations (even from
different processes) to proceed in parallel in the normal case. It is not
possible to seek to EOF, because information regarding subfiles’ EOF is not
maintained. Maintaining such information would require extensive com-
munication whenever any subfile in the file is enlarged.
An important difference between Vesta and most distributed file systems

is that file data are not cached on compute nodes. As a result there are no
problems of keeping cached data consistent when some data are replicated
in a number of caches and write accesses are performed. Also, there is no
problem of false sharing at the block level, which is a common occurrence in
parallel I/O workloads [Kotz and Nieuwejaar 1994; Purakayastha et al.
1995]. Caching on compute nodes can still be done by a higher-level library
built above Vesta, based on knowledge that the data are not write-shared.
The price of giving up compute node buffering is that all accesses must

traverse the multicomputer’s network to be serviced by the appropriate I/O
node. Given the tightly coupled architectures of multicomputers, this is not
such a high price. The latency of the network is three orders of magnitude
less than typical disk latencies. The extra network latency can be more
than offset if data sharing among compute processes results in a higher file
buffer cache hit rate at the I/O node [Kotz and Nieuwejaar 1994]. This is
especially true if the I/O nodes are configured with relatively large amounts
of memory. In contrast to Vesta, distributed file systems must cache data at
the client nodes because accessing the servers for every access would result
in intolerable latencies. This is an acceptable solution for distributed file
systems because of the low amount of file sharing among concurrently
executing serial applications.

The Vesta Parallel File System • 243

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

Vesta provides three mechanisms for reducing the detrimental effects of
access latency, including both network and disk latency. The first is the use
of buffer caches on the I/O nodes, as mentioned above. In addition, Vesta
provides two special services at the user interface. One is asynchronous I/O
operations, which allow the application to post an I/O operation and poll or
wait for its completion at some later time. The other is explicit prefetch and
flush operations. This allows required data to be preloaded or marked for
replacement in the buffer caches at the I/O nodes.

4.3 Sharing

File systems are often considered to be a medium that enables sharing of
data among applications. In parallel systems, sharing can also occur among
the processes of a single application. Vesta supports sharing in two main
ways. One is by partitioning the file into disjoint subfiles, that can be
accessed with no synchronization among the sharing processes. The other
is by sharing a subfile.
When a subfile is shared by multiple processes, the subfile pointer can be

maintained in two ways. Each process can have an independent file pointer
into the shared subfile, or else they can share a single pointer. Any
simultaneous combination of shared and private file pointers into the same
subfile is allowed.
When an application process opens a subfile for the first time, it gets a

local and private pointer. This pointer can subsequently be shared with
other processes. When a pointer is shared for the first time, a pseudo-
random I/O node is chosen, and the pointer is moved to that I/O node. The
identity of this node and the pointer’s ID on that node are passed to all
processes that share its use. When a data access based on a shared pointer
is performed, the accessing node first communicates with the I/O node
holding the pointer (step 1 in Figure 8). In this communication, the current
pointer value is returned to the accessing node, and the pointer stored at
the I/O node is incremented by the amount of data to be accessed. Note that
the pointer is incremented before the access is actually performed, so as not
to serialize accesses from different processes. If a read hits EOF, or a write
runs out of disk space, this can lead to the pointer pointing to an offset that
is beyond the end of the subfile.

Concurrency Control. Concurrency control is required in order to ensure
proper semantics if an application’s processes write data to a shared subfile
or to overlapping subfiles using independent offsets. It is also required if an
application interleaves file metadata operations that also affect the file
data, such as resize or delete, with data access requests, or if one applica-
tion writes a file while others read it. Vesta uses a fast token-passing
mechanism among the I/O nodes to guarantee concurrency atomicity of
requests that span multiple I/O nodes and to provide sequential consis-
tency and linearity among requests (step 4 in Figure 8). Concurrency
atomicity implies that data access requests and metadata operations are
sequenced in the same order on all affected cells. It does not imply rollback

244 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

semantics in case of failure. The Vesta algorithm is felt to be superior to
systems like OSF/1 AD, which achieves the same result by passing a token
among the client nodes, serializing the servicing of the requests [Roy 1993],
and superior to the lock-based concurrency control in PIOUS, which re-
quires more messages and is susceptible to deadlock unless deadlock
avoidance measures are taken [Moyer and Sunderam 1995].
Access to data in a file either affects all the file’s cells or a subset (not

necessarily contiguously numbered) of them. Metadata operations, such as
delete, resize, and checkpoint, always affect all the cells of the file. In
general, requests to the same file do not necessarily cover the same subset
of cells and so may cover a different subset of the I/O nodes. We refer to the
part of a data access request that is directed to one cell, as well as the part
of a metadata operation that affects one cell, as a component of that
request. A component is considered to be scheduled once it is known at the
I/O node in what order it should be performed relative to other components
affecting the same file. For each component, it is only necessary to know if
there are any outstanding components that must be performed before it.
Components affecting different files can be performed in any relative order
without any risk of inconsistency.
It is necessary to ensure two properties to guarantee sequential consis-

tency, linearity, and concurrency atomicity of access requests and metadata
operations. First, control must not be returned to the user application until
it is known at the client node that all components of the request have been
scheduled. This ensures that one or more clients cannot issue multiple
asynchronous requests that are improperly interleaved at the I/O nodes.
Note that this enforces a stronger ordering of asynchronous I/O requests
than is enforced by many Unix systems, which do not guarantee that
asynchronous requests are performed in the order issued. Second, the
components of each pair of requests to a file must be scheduled in the same
relative order at each I/O node. Consider two requests, Ra and Rb, to the
same file. On each I/O node, the components of Ra (if there are more than
one) can be scheduled in any order relative to each other, but all of them
must be scheduled either before or after all components of Rb. In addition,
whatever order is established between Ra and Rb must be preserved
between any components of these requests on all the I/O nodes affected by
both requests. Vesta first schedules all requests, and then each server
independently checks for conflicts before issuing the requests to the buffer
cache I/O module in a greedy fashion, enforcing the scheduled order only
where conflicts exist.
The mechanism to determine a schedule is based on tokens that carry

sequence numbers. For each access, a token is passed once from the
lowest-numbered I/O node accessed (where numbering is relative to the
file’s base node) through all intermediate nodes (even if not accessed) to the
highest-numbered node accessed. When the token reaches the last I/O
node, it sends an acknowledgment to the requesting compute node. Control
can then be returned to the application program in the compute node’s
application thread.

The Vesta Parallel File System • 245

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

Each I/O node maintains a set of 64 token buckets, each with an in
counter and an out counter. Each file is assigned to one bucket of the set.
This is done consistently across all I/O nodes by hashing the file ID. At
each I/O node, each token sent is given the current value of the out counter
of the bucket that file is assigned to. This counter is then incremented.
When a node receives a token, it first tries to match the token’s value with
the value of the bucket’s in counter. Tokens that do not match are delayed
until other tokens that should be processed before them arrive. Matching
and relaying tokens is done independently for each bucket, to reduce false
dependencies among accesses to different files. Once a token arrives that
matches the bucket’s in counter, that counter is incremented. (This mecha-
nism is only necessary for networks that may reorder messages between a
pair of nodes).
If the node contains data that are being accessed (as identified by a

bitmap generated in the client and propagated in the token), the access
represented by the token can be scheduled once the token matches the
bucket’s in counter. Scheduling is done by matching the token with
incoming request component messages and entering these request compo-
nents into the scheduled request queue. Request components in this queue
are executed as soon as there are no conflicting requests preceding them in
the scheduled request queue. If the node does not contain such data, the
token is just forwarded to the next node.
Metadata operations are initiated by a token only, with no incoming

message from the client node to match. These operations are scheduled
locally as soon as the token counter matches the appropriate in counter.
They are executed once the scheduled request queue contains no conflicting
accesses to the affected file. This ensures proper interleaving of data access
requests and file metadata requests that affect the file data.
At the application’s discretion, it is possible to turn the concurrency

control off for data accesses, thus eliminating the token-passing overhead.
This is called the reckless access mode, as opposed to the cautious access
mode that uses concurrency control. Reckless mode is useful if the data are
actually not shared, if data are only read but not written, or if all writes to
the data are known to be disjoint, and are otherwise coordinated with reads
and metadata operations performed by the application. In practice, the
overhead for cautious mode is small. Vesta will automatically turn on
concurrency control in cases where different applications are sharing a file,
even when one of those applications has requested that concurrency control
be turned off.

4.4 Structures for Storing Data

As noted above, data are not cached on compute nodes. As a result, the
compute nodes have no knowledge whatsoever about the mapping of data
blocks to actual disks. Block lists for cells are maintained exclusively at the
I/O nodes. All I/O node metadata, including the block lists, are pinned into
memory. For the current Vesta configuration, allowing up to 16K object

246 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

cells (cells, files, or Xrefs) per I/O node, this requires less than 2MB of
physical memory. This is a small fraction of the total memory expected to
be available on typical I/O nodes.
Each Vesta data block is 64KB large. The disk space on an I/O node is

organized by striping such 64KB blocks across all the available disks and
regarding them as a single logical disk indexed by 32-bit logical block
numbers. Thus, the current implementation of Vesta allows byte address-
ing of up to 232116 5 256TB at each I/O node. The block numbers are stored
in block lists, one per cell, indexed by the high-order 48 bits of the 64-bit
file offsets.
In the current Vesta implementation, the block list of each cell is

organized as a 16-ary tree. This tree is balanced rather than skewed, as
opposed to Unix file inode block lists. Each node of the block list tree
contains 256 logical block addresses and 16 child pointers. The block list
nodes are stored in a fixed-size table and are allocated and deallocated to
and from cells as needed. Logical block addresses are translated into a
physical device number and a physical block address by modulo arithmetic.
An example of how a 64-bit cell offset is translated into a block index and
offset is given in Figure 9. As can be seen, the block list tree can be
traversed by doing simple shifts and masks of the cell offset.
Note that this level of mapping just maps cells to a single sequence of

blocks in a logical device, that is mapped by Vesta to the actual devices
available on the I/O node. The disk scheduling is left to lower layers of the
system. In fact, there are two Vesta implementations: the first used
conventional AIX files as disks, and counted on AIX to perform all disk
access and to maintain the buffer cache. The second implementation
includes buffer cache management within Vesta (as described below) and
uses the AIX logical volume layer to perform the actual disk mapping and
access.

Fig. 9. Example of locating a data byte from its 64-bit offset. It turns out to be at offset 9A33
into logical block 0027A30C.

The Vesta Parallel File System • 247

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

4.5 Buffer Cache Management

Blocks that are accessed are kept in a 32MB buffer cache on each I/O node
(the size is a system configuration parameter). An access counter is
maintained for each block. This counter records the number of bytes that
have been read from or written to the block, modulo the block size.3 Two
queues are maintained to determine the replacement priority of blocks in
the buffer cache. Whenever the counter of bytes read or written is less than
the block size, the block is placed on a hold queue. Blocks being held have
low priority for replacement. Blocks that have been entirely read or written
are placed on the replace queue. These blocks have a higher priority for
replacement. When the counter indicates that the whole block was written,
it is written asynchronously to disk. This is known as the WriteFull policy
[Kotz and Ellis 1993]. The block will remain in the cache until its cache slot
is needed by the replacement algorithm. Blocks may move from the replace
queue to the hold queue if they are again fractionally read or written after
they have been completely read or written. This policy is a good heuristic to
apply in the parallel environment, where blocks are not necessarily read or
written sequentially, but they are often completely read or written within a
short time in the aggregate by several processes of a parallel application.
Dirty blocks are also written to disk if a low-water-mark of free buffer slots
is reached, or if load on the node is low, regardless of whether or not they
have been completely overwritten.
The Vesta servers also implement a prefetching mechanism for sequen-

tially accessed data. This is applicable both for reading and for writing in
units smaller than the block size, because then the blocks must be read into
the buffer cache before they can be modified. The sequential access pat-
terns are recognized based on a trace of the last 32 distinct blocks that
were accessed. When a cell block B is accessed, this trace is scanned for cell
blocks B 2 1, B 2 2, and so on down to B 2 8. The prefetch size is then
defined to be the largest n such that blocks B 2 1 through B 2 n were
found in the trace. This causes blocks B 1 1 through B 1 n to be
prefetched. This mechanism increases the prefetching size up to a maxi-
mum of 512KB depending on the length of the previously accessed contigu-
ous data. All the specific values here are parameters of the file system and
can be modified to tune for a particular environment. This scheme auto-
matically reduces the prefetching size if multiple independent files are
being accessed, leading to conflicts in the buffer cache. Therefore, it is a
self-regulating prefetch scheme that heuristically recognizes the aggregate
sequential patterns typical of a parallel I/O workload.

4.6 Additional Services

Checkpointing. One of the unique features of Vesta is the ability to
checkpoint files. Such checkpointing is a component of checkpointing

3Bytes that are written twice will be counted twice, resulting in false assumptions that the
block has been fully written, reducing the effectiveness of the heuristic.

248 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

application state, because when an application is rolled back to a previous
state its open files should also be rolled back to the corresponding state.
Checkpointing is supported by maintaining two versions of each Vesta file:
the active version and the checkpoint version. Write operations can only
affect the active version, whereas read operations can be directed at either
the active or the checkpoint version. Thus it is possible to take a checkpoint
and then copy it to another file in the background, while continuing to
update the active version.
Checkpoints are implemented by keeping double block lists for every cell

in the file. Thus the block lists in the tree described above actually contain
two pointers for each block. Taking a checkpoint consists of simply copying
the active list to the checkpoint list (naturally, care must be taken to
release blocks from a previous checkpoint that is overwritten, and that
outstanding reads against any overwritten checkpoint block are completed
before the checkpoint is allowed to complete). No data are copied, so this is
a very fast operation. After the checkpoint is taken, the active version may
diverge from the checkpoint version whenever new data are written, using
a copy-on-write mechanism. This reduces the disk space needed, because
all those blocks that are not changed are shared by both versions of the file.
Rollback is implemented by copying the checkpoint list onto the active list.

Import and Export. The unique semantics of Vesta files (two-dimension-
al structure with unspecified linear order) imply that they cannot be
accessed directly through a conventional file system interface. In particu-
lar, Vesta is not mountable as a Unix virtual file system. Therefore some
mechanism is needed to transfer files between Vesta and other file systems,
network interfaces, or storage devices.
The model for import and export is that there are certain gateway nodes

that have access both to Vesta and to the external file system (these could
be normal compute nodes). These nodes run a parallel import/export
daemon that can copy data from one file system to the other [Corbett et al.
1995b]. The partitioning parameters used by the daemons to open the
Vesta files determine what part of the data is affected and in what serial
order the data will appear.

5. PERFORMANCE

This section describes performance experiments designed to test Vesta and
the degree to which it utilizes the underlying hardware.

5.1 Experimental Setting

Vesta is implemented on an IBM SP1 platform. This is a distributed-
memory MIMD machine. Each node is functionally equivalent to an IBM
RS/6000 model 370 workstation, rated at 125MFlops peak. The nodes are
connected by a multistage network, with 40MB/sec. duplex links [Stunkel
et al. 1994]. The network adapters use programmed I/O rather than DMA,
so heavy message-passing activity comes at the expense of processing

The Vesta Parallel File System • 249

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

power. The adapters also have limited bandwidth, substantially lower than
the network itself (this has been corrected in the newer SP2 model).
The installation we used for the experiments is a 16-node machine

[Feitelson et al. 1995]. Each node has 128MB local memory and one disk. In
the experiments, we load the test program onto one subset of nodes, which
assume the role of compute nodes. The Vesta server code is loaded onto the
other nodes, which assume the role of I/O nodes. The instantaneous
transfer rate of the disks is 3.0MB/sec., but when various software and
hardware overheads are taken into account (including copying data, sector,
and track overhead for ECC, bad sectors, SCSI command execution, etc.)
this drops to about 2.26MB/sec. for reads and 1.52MB/sec. for writes. These
numbers were measured using a test program that accessed an AIX logical
volume using the same asynchronous I/O calls used by Vesta.
The system software consists of a full AIX running on each node.

Message passing across the high-performance switch is provided by the
EUI-H package (also known as the AIX Message Passing Library prototype/
6000). Loading and executing applications, including setting up the connec-
tion between the test program and the Vesta server, is done by the MPX
package, which we also developed at IBM Research. This allows multiple
clients partitions to connect to the same parallel server.
The results shown are the best measurements we obtained, typically on

an unloaded system. The number of measurements done for each data point
ranged from 2–3 up to about 20, with higher numbers being used mainly in
the case of large access sizes that were expected to drive the hardware to
its limits. In many cases there was only a small (,10%) variance among the
different measurements, but in some cases the variance was significant. In
these cases there was typically a cluster of measurements that gave
near-peak results, while the other measurements were spread relatively
widely down to as low as 15–20% of peak performance. The reason for such
low performance was interference from other jobs and system activity
beyond our control. A characteristic of the SP-1 was that AIX daemons
were run unsynchronized on the multiple different nodes of the computer;
hence, if the AIX scheduler for one of the servers involved in a performance
run decided to run a daemon process during the run, the performance of
that experiment was adversely affected, often dramatically. Detailed anal-
ysis of such phenomena, and indeed of system performance under load
conditions, depends on the specific characteristics of the interfering work-
load. Such analysis is beyond the scope of this article. Complete statistics of
all of the hundreds of experiments are available from the authors.

5.2 Message-Passing Performance

The purpose of this experiment is to characterize the message-passing
performance of Vesta and the additional overhead above that to actually
ship the data across the network. This is done by a set of measurements

250 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

involving one compute node and one I/O node. The following description
matches the order of the graphs in Figure 10 from top-left to bottom-right.4

—piped mp: unidirectional pipelined message passing using EUI-H.
—rd mp and wr mp: message-passing patterns that emulate Vesta read and
write activity, without running any of the actual Vesta code. For reads,
there is a small constant-size request message, and then the data come
back with an acknowledgment in the same message (so the actual
transfer is slightly larger than just the data). For writes, there is a small
constant-size request message; then the data are sent in a second
message, and finally an acknowledgment comes back. These patterns are
exchanged between the two nodes, using the correct sizes for the requests
and the acknowledgment, and the same data sizes as those used above.
Note the added latency for the back-and-forth patterns relative to the
pipelined unidirectional messages shown before.

—mp1cp: Vesta message passing is further characterized by use of I/O
vectors with two-dimensional elements. This allows multiple data ele-
ments that are not contiguous in either the cells or the subfile to be sent
in a single message, but requires an additional copy and degrades the
achieved bandwidth for large data sizes.

—small: the full Vesta code path when reading and writing small files
(16MB) that fit into the buffer cache memory. 1st wr is writing to a new

4When measuring rates, MB/sec. stands for one million bytes per second. When measuring file
and access sizes, powers of 2 are used. Thus a 1K block is 1024 bytes.

Fig. 10. Bandwidth as a function of data size, for message passing and Vesta.

The Vesta Parallel File System • 251

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

file; 2nd wr is overwriting existing data, which hits the buffer cache; and
rd is reading, again from the buffer cache. Both latency and bandwidth
are degraded, partly due to another copy operation.

—big: Vesta on big files (128MB) that do not fit in the buffer cache. Here
bandwidth is limited by the disk. Writes achieve a bandwidth of about
1.5MB/sec., and reads achieve a bandwidth of about 2.2MB/sec., both of
which are the same as the bandwidths achieved by AIX-JFS. It is very
noticeable that the second write of blocks smaller than 64KB achieves
only about half the bandwidth of the first write. This is because the Vesta
block size is 64KB, and writing less than a block requires it to be read off
the disk before being modified.

The results indicate a linear relation between the time of an I/O opera-
tion and the amount of data being accessed, i.e., T 5 C 1 B z n, where C is
a constant overhead per operation, and B is a cost per byte. A least-squares
fit leads to the values for C and B that are shown in Table I.5

5.3 Buffer Cache and Disk Synchronization

One of the effects of the buffer cache is that data can be stored in memory
on the I/O nodes, without any access to the disks. This increases the
effective bandwidth to that of memory transfer, as shown in the previous
section. This is especially relevant for write operations, because write-
behind is always used, whereas reads must go to disk if the data are not
already in the buffer cache. We therefore concentrate on write operations in
this section.
Even when the total amount of data written is larger than the buffer

cache, part of it may be left in memory while the rest is transferred to disk.
The observed bandwidth will therefore be a weighted average of the
memory and disk bandwidths. The model is that if the data set size is less
than or equal to the buffer cache size, it stays in memory. When the data
set size is larger, we need to wait for part of it to be copied to disk to make

5The negative values for C are artifact of doing a least-squares fit of a line with a large slope
and some data points with very large values: a far-out data point which is a bit above the line
pushes the intersection with the y-axis down.

Table I. Parameters in Cost of Operations, in Milliseconds

Operation C B

piped mp 0.067 0.000115
rd mp 0.143 0.000115
wr mp 0.143 0.000116
rd mp1cp 0.139 0.000129
wr mp1cp 0.143 0.000129
rd small 0.353 0.000144
1st wr small 0.489 0.000141
rd big 21.04 0.000489
1st wr big 20.02 0.000658

252 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

room for the rest. Actually, write-back begins immediately, so the smallest
file size where we begin to have to wait for the disk to complete I/O is
somewhat larger than the buffer cache. Denote by t the time to write the
data. Assuming a memory transfer bandwidth of 6.7MB/sec., a disk band-
width of 1.5MB/sec., and a buffer cache of 32MB, the amount of data
transferred out of the compute node is t 3 6.7, and the amount stored in
the I/O node is 32 1 t 3 1.5. By equating the two we get t 5 6.15 seconds,
and the threshold data set size is t 3 6.7 5 41.23MB. Denoting the data set
size by DS, the model for the observed bandwidth is therefore

BW 5 56.7 DS

6.15 1 ~DS 2 41.23!/1.5

if DS # 41.23MB

otherwise.

This approaches the disk bandwidth of 1.5MB/sec. for large data sets. As
shown in Figure 11, it is in excellent agreement with the measurements
(using writes of 64KB each).
To avoid measuring the effect of deferred write-behind, all subsequent

measurements include a call to the Vesta sync function, so that all data are
actually transferred to disk. Such calls were also used in the disk access
measurements in the previous sections, but not in the buffer cache access
measurements.

Fig. 11. Write bandwidth as a function of data set size.

The Vesta Parallel File System • 253

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

5.4 Parallel Access and Scalability

The purpose of this experiment is to demonstrate and quantify the perfor-
mance impact of parallel I/O. This is done by accessing different numbers of
I/O nodes and measuring the resulting bandwidth.
In order to allow parallel use of all the I/O nodes, a separate buffer is

used to access each one, and the I/O operations are done asynchronously.
The file size is also increased in proportion to the number of I/O nodes. The
results are shown in Figure 12. It is apparent that the bandwidth scales
with the number of I/O nodes used, up to the limit set by the compute
node’s network adapter. For writes an inversion is observed for small
access sizes. The cause of this inversion is unknown. In the second write,
access sizes smaller than 64KB achieve about 0.9MB/sec. per I/O node
accessed, because the data have to be read off disk before being modified.
Above 64KB, writes achieve about 1.5MB/sec. per I/O node accessed. Reads
achieve about 2.1MB/sec. per I/O node accessed. It is interesting to note
that, given enough I/O nodes, writes actually achieve a higher bandwidth
than reads. This might be because the compute node’s network port is used
more efficiently when data are being transmitted, as the compute node has
the initiative. When data are being received, messages from the different
I/O nodes conflict in the communications network when they converge on
the compute node [Brewer and Kuszmaul 1994; Torrellas and Zhang 1994].
A drawback of this experiment is the limited bandwidth of the network

adapter of the single compute node. This prevents checking scalability
beyond about six I/O nodes. To address this issue, we conducted another
experiment where the whole system was scaled. Based on the results in
Figure 12, we chose a ratio of three I/O nodes for each compute node. With
this ratio, the adapter bandwidth is sufficient for both reads and writes.
The results of this experiment are shown in Figure 13, where an access size
of 64KB is used. The aggregate bandwidth of the system scales linearly
with system size.

5.5 Orthogonal Logical Views

A major feature of Vesta is the ability to partition a file and access it in
various ways. Two experiments were designed to compare the performance
of different access patterns. The first is based on a single compute node
that stripes data across cells in different ways. The second compares the
performance of parallel accesses to subfiles that correspond to cells with
the performance of parallel accesses to subfiles that span multiple cells.
In the first experiment, one compute node and four I/O nodes are used. A

file with one 128MB cell on each I/O node is created. The basic striping unit
is set to one fourth of the access size in each measurement, which changes
from 256 bytes to 1MB. Three access patterns are compared: using a
striping unit of one BSU (so each access covers all four I/O nodes), using a
striping unit of four BSUs (each access is contained in a single cell, but
successive accesses hit all cells in a cyclic pattern), and using a striping
unit of 128MB (so each cell is completely accessed before the next one).

254 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

Fig. 12. Bandwidth as a function of access size and number of I/O nodes, for multiple
asynchronous accesses.

The Vesta Parallel File System • 255

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

The results are shown in Figure 14. The curves for writing are for the
first write, to avoid the update effect for small sizes. When the cells are
accessed sequentially, the bandwidth is essentially that of a single disk
(write bandwidth is higher than 1.5MB/sec. because we only sync to disk
after writing the whole file, not after each cell). When each access is striped
across all four I/O nodes, the bandwidth is quadrupled due to the parallel-
ism.
The most interesting case is the cyclic pattern, where each access is to a

different I/O node. Given that synchronous I/O operations were used, one
might expect the bandwidth to be that of a single disk. However, the results
indicate that the bandwidth is typically much higher. This is a result of the
buffer cache management. Writes achieve a higher bandwidth due to the
use of write-behind. This allows the actual disk access to be overlapped
with access to subsequent I/O nodes and effectively leads to parallel usage
of the disks. Reads also achieve a higher bandwidth than a single disk, due
to read-ahead. Again, this overlaps the prefetch disk operations with access
to other I/O nodes, so when the data are actually requested they are
already in memory. However, if the request is for more than the amount
prefetched, the request is delayed until the missing data are obtained. This
is the reason for the drop in performance when the access size is above
512KB.
The second experiment is designed to investigate what happens when

multiple compute nodes actually access disjoint subfiles simultaneously.
This experiment is constructed as follows. Four compute nodes and four I/O

Fig. 13. Bandwidth as a function of system size, using a constant ratio of compute nodes to
I/O nodes.

256 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

nodes are used. A file with four cells is created, with one cell on each I/O
node. The size of the file is 512MB (i.e., 128MB per I/O node). The whole
file is written twice and read, as in previous experiments. However, in this
case the file is first partitioned into four disjoint subfiles, and each compute
node accesses one of these subfiles. All four compute nodes synchronize at
the end, to ensure that the measurement reflects the slowest compute node
(this is equivalent to the “minimum sustained aggregate rate” in the
terminology of French et al. [1993]). In each case, the file is created with a
BSU that is one fourth of the access size.
The pattern of writing and reading the file is repeated twice. In the first

case, each subfile corresponds to a separate cell. In the second, subfiles are
striped across cells (Figure 15). The results are shown in Figure 16. When
each compute node accesses a separate cell, the results are essentially the
same as in Figure 10 (one compute node to one I/O node) multiplied by 4.
When the access is striped across cells, the effective access size to each cell
is one fourth the access size from the compute node (because each access is
divided among the four cells). Therefore we would expect the bandwidth
observed for accesses of b bytes using striping to be roughly the same as
that for accessing b/4 bytes from a single cell. The results are actually
better: when accessing b striped bytes, the observed bandwidth is that of
accessing b/ 2 bytes from a single cell. This indicates that a large part of the
overhead is global overhead for each operation and does not depend on the
data transfer size.
It is instructive to compare our results for Vesta with measurements

done with other parallel file systems. The only other system that provides

Fig. 14. Bandwidth as a function of access size for different access patterns, with a single
compute node and four I/O nodes.

The Vesta Parallel File System • 257

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

data decomposition like Vesta is the nCUBE system [DeBenedictis and del
Rosario 1992]. Detailed measurements of various access patterns are
presented in del Rosario et al. [1993]. These measurements indicate that
when an access includes transposition (e.g., access by rows to data that are
stored by columns) the degradation in performance can be very large. Their
proposed solution is to use two-phase access. For example, a two-phase
read is implemented by first accessing the disks in parallel and reading the
data as they are stored and then using message passing among the
compute nodes to redistribute them as desired. Vesta achieves the same
effect more directly, and without requiring extra buffers and copying on the
compute nodes. Data are read off the disk and cached in the memory of the

Fig. 16. Bandwidth as a function of access size for different partitioning schemes, with four
compute nodes and four I/O nodes.

Fig. 15. Two ways to partition a Vesta file: Subfiles correspond to cells, or they are striped
across cells.

258 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

I/O nodes and then redistributed when sent from the I/O nodes to the
compute nodes.
Another problem in supporting data decomposition occurs when the

accesses from the different processes are not part of the same collective I/O
operation. In Vesta, processes define the subfile that they wish to access
when it is opened, and then each process can access its subfile asynchro-
nously, i.e., without coordination with other processes. As a result, requests
may arrive at the I/O nodes in an arbitrary order. In particular, the order of
requests may be different from the sequential order of data on the disk,
leading to excessive seeking. Our results indicate that the Vesta buffer
cache management algorithms are effective in overcoming out-of-order
requests. Writes that arrive out of order are buffered and written later by
the write-behind mechanism. Read requests that arrive out of order are
nevertheless recognized as sequential in the aggregate and thereby activate
the prefetching mechanism. The prefetching reads the data off disk sequen-
tially, so when the requests actually arrive they are satisfied from memory.
To summarize, our results indicate that the Vesta buffer cache manage-

ment is an important contributor to performance. This corroborates inde-
pendent studies that anticipated the advantages of caching based on
analysis of applications [Kotz and Nieuwejaar 1994; Miller and Katz 1991].
It also shows that, with regular access patterns, all processes benefit from
the prefetching, thus refuting the anxiety raised by Kotz and Ellis [1990]
regarding this issue.

5.6 Performance of Sorting Application

Synthetic benchmarks that gauge a system’s peak performance are impor-
tant, but they do not provide a full picture. It is also important to
investigate the degree to which applications can translate the performance
figures into real benefits. We use the FastMeshSort out-of-core sorting
algorithm, described in Section 3.3, as an example.
The results are shown in Figure 17. The file being sorted had one million

integer records. This file was small enough that it would always be resident
in the I/O node buffer cache, even on one I/O node. Therefore, no superlin-

Fig. 17. Speedup and timing for FastMeshSort on eight compute nodes and different
numbers of I/O nodes.

The Vesta Parallel File System • 259

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

ear speedup effects were expected. Four versions of the program were
tested, with different sizes for the basic blocks of data that are loaded into
memory for sorting. The smaller the block size, the more iterations that are
needed to complete the sorting and the more I/O intensive the application
becomes. The case of 512 elements in the block is very I/O intensive and
exhibits excellent speedup as more I/O nodes are added. When larger block
sizes are used, the speedup is somewhat smaller. Note that the speedups
are taken relative to the execution with a single I/O node, for the same
application.
While the speedup results are very promising, they do not tell the whole

story. The total time required to sort the file is actually more important.
These data are also shown in Figure 17 (right) and indicate that the version
with the largest block size (16K) is the most efficient. This means that for
this specific application, it is better to use large block sizes, despite the fact
that the speedup with added I/O nodes is then smaller. It does not mean
that the parallel I/O provided by Vesta is useless; on the contrary, the
results show that doubling the number of I/O nodes used provides a larger
benefit than doubling the block size. Furthermore, it is not always possible
to modify the compute-to-I/O ratio of an application, as it is done here by
changing the block size. Parallel I/O can almost always improve the
performance of the I/O component of an application. If this component is
small, parallel I/O will not help, as a result of Amdahl’s law. But if the I/O
component is large, as it is for the 512-element blocks in FastMeshSort,
then parallel I/O provides very significant benefits.

6. CONCLUSIONS

The Vesta parallel file system has introduced a new approach to parallel
I/O that embodies a significant departure from previous systems. At the
basis of this approach is the explicit recognition of the two-dimensional
structure of Vesta files, where one dimension represents the parallelism
while the other represents sequential data as in conventional systems. On
top of this structure, Vesta introduces the notion of partitioning the data in
various ways to map the application’s access pattern to the layout of the
data on the parallel I/O hardware.
The system contains 67 functions for metadata access and manipulation,

file access, data access, Xref operations, import from and export to external
systems, and system administration [Corbett and Feitelson 1994]. All but
two (prefetch and flush) are fully implemented on an IBM SP1 multicom-
puter, using the EUI-H message-passing library and the MPX job control
facility. The system provides the base technology for the AIX Parallel I/O
File System for the IBM SP2 and its successors [Corbett et al. 1995b].

6.1 Lessons Learned

Our experience in designing and implementing Vesta, and in trying to
establish support for its ideas, has taught us many important lessons. Here

260 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

are some ideas about what we might do differently if we were to design
another parallel file system.
A major problem in the Vesta design was the decision to sacrifice Unix

compatibility. While this opened the door to innovative ideas relating to
abstractions and interface design, it reduced the system’s appeal to real
users who were more interested in getting real work done. Indeed, a
significant part of the effort in creating the AIX Parallel I/O File System
product was devoted to coupling the Vesta implementation with a Unix file
system interface, to allow the system to be part of a conventional Unix file
system [Corbett et al. 1995b]. This allows users to access files as if they
were normal sequential files, using a set of default layout parameters. Only
users that actually want to invest the effort need know about the option to
partition files and control the layout. In retrospect, we feel that the
decision was the correct one in the context of a research project, but that we
could have demonstrated many of the concepts of parallel I/O under an
extended Unix interface. Taking this approach would have led to an easier
effort to produce a product file system.
At a more detailed technical level, there are a number of things that

might be done differently. One is the use of a name server rather than the
hashing scheme used in Vesta. Given that the largest computers Vesta will
ever be run on have several hundreds of nodes, and that most of these
computers have only tens of nodes, a centralized name server would suffice.
Such a design would break the Vesta server into two more manageable and
largely independent modules.
Another possible change would be to add collective I/O operations at the

low-level user interface. In Vesta, we decided to make the lowest-level
functions independent, meaning that each process could call the functions
with no implied coordination or temporal alignment with other processes.
Collective operations, where a set of processes participate and synchronize
with each other, were left for higher-level libraries. The problem with this
approach is that if accesses from the different processes are interleaved at
the I/O nodes, important semantic information (that could be used to
optimize the disk accesses) is lost. The system can make up for this to some
degree by using appropriate prefetching and write-behind with the buffer
cache, as done in Vesta. However, optimizations based on explicit informa-
tion about how accesses from the different nodes interact should be
considered [Kotz 1994; Patterson and Gibson 1994].
In Vesta, file data are only cached at the I/O nodes, to obviate the issue of

maintaining coherence of a distributed cache. A recent study of application
I/O behavior shows that this may be an overly restrictive solution. Specifi-
cally, limited client-side caching can be highly beneficial for access patterns
involving many small operations and does not require any measures for
coherence if the data are only being read [Kotz and Nieuwejaar 1994]. In
Vesta, this can be extended to writing as well, if the processes are writing
to disjoint subfiles. The subfiling interface of Vesta provides important
information to the file system that will allow it to make decisions about
caching of data at the clients.

The Vesta Parallel File System • 261

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

Vesta is vulnerable to client failures when multiphase operations are
performed, because it trusts the client to complete all phases of the
operation. A better design would be to spawn off a server thread that will
take care of all the phases and limit the interaction with the client to a
single back-and-forth message pattern. This was not done in Vesta because
the environment we worked in did not support threads, and the alternative
would have resulted in greatly increased complexity of the server code.
Finally, a major problem has been understanding the behavior of the

system. Few of the performance experiments worked as expected the first
time around. Understanding the system’s behavior would have been easier
had we placed more monitoring hooks in the code and had we had an
environment that supported convenient debugging and observation of par-
allel programs. A small step in this direction was our use of the Vulcan
terminal I/O facility [Feitelson 1994], which was available as part of the
virtual-vulcan uniprocessor environment when we started the implementa-
tion.

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of Jean-Pierre
Prost, Sandra Johnson Baylor, Yarsun Hsu, Marc Snir, Tony Bolmarcich,
and Julian Satran to the total effort related to the Vesta project at IBM
Research.

REFERENCES

BATCHER, K. E. 1968. Sorting networks and their applications. In the AFIPS Spring Joint
Computer Conference. AFIPS, Montvale, N.J., 307–314.

BORDAWEKAR, R., CHOUDHARY, A., AND DEL ROSARIO, J. M. 1993. An experimental perfor-
mance evaluation of Touchstone Delta Concurrent File System. In the International Confer-
ence on Supercomputing. ACM, New York, 367–376.

BREWER, E. A. AND KUSZMAUL, B. C. 1994. How to get good performance from the CM-5 data
network. In the 8th International Parallel Processing Symposium. IEEE Computer Society
Press, Los Alamitos, Calif., 858–867.

BREZANY, P., GERNDT, M., MEHROTRA, P., AND ZIMA, H. 1992. Concurrent file operations in a
high performance FORTRAN. In Supercomputing ’92. IEEE Computer Society Press, Los
Alamitos, Calif., 230–237.

CORBETT, P., FEITELSON, D., FINEBERG, S., HSU, Y., NITZBERG, B., PROST, J.-P., SNIR, M.,
TRAVERSAT, B., AND WONG, P. 1995a. Overview of the MPI-IO parallel I/O interface. In the
IPPS ’95 Workshop on I/O in Parallel and Distributed Systems. IEEE Computer Society,
Washington, D.C., 1–15.

CORBETT, P. F. AND FEITELSON, D. G. 1994. Vesta File System programmer’s reference,
version 1.01. Res. Rep. RC 19898 (88058), IBM T. J. Watson Research Center, Yorktown
Heights, N.Y.

CORBETT, P. F. AND SCHERSON, I. D. 1992. Sorting in mesh connected multiprocessors. IEEE
Trans. Parallel Distrib. Syst. 3, 5 (Sept.), 626–632.

CORBETT, P. F., BAYLOR, S. J., AND FEITELSON, D. G. 1993a. Overview of the Vesta parallel
file system. In Proceedings of the IPPS ’93 Workshop on I/O in Parallel Computer Systems.
IEEE Computer Society, Washington, D.C., 1–16. Reprinted in Comput. Arch. News 21, 5,
7–14.

CORBETT, P. F., FEITELSON, D. G., PROST, J.-P., ALMASI, G. S., BAYLOR, S. J., BOLMARCICH, A. S.,
HSU, Y., SATRAN, J., SNIR, M., COLAO, R., HERR, B. D., KAVAKY, J., MORGAN, T. R., AND

262 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

ZLOTEK, A. 1995b. Parallel file systems for the IBM SP computers. IBM Syst. J. 34, 2,
222–248.

CORBETT, P. F., FEITELSON, D. G., PROST, J.-P., AND BAYLOR, S. J. 1993b. Parallel access to
files in the Vesta file system. In Supercomputing ’93. IEEE Computer Society Press, Los
Alamitos, Calif., 472–481.

DEBENEDICTIS, E. AND DEL ROSARIO, J. M. 1992. nCUBE parallel I/O software. In the 11th
International Phoenix Conference on Computers and Communications. IEEE Computer
Society Press, Los Alamitos, Calif., 117–124.

DEL ROSARIO, J. M., BORDAWEKAR, R., AND CHOUDHARY, A. 1993. Improved parallel I/O via a
two-phase run-time access strategy. In Proceedings of the IPPS ’93 Workshop on I/O in
Parallel Computer Systems. IEEE Computer Society, Washington, D.C., 56–70. Reprinted in
Comput. Arch. News 21, 5, 31–38.

DIBBLE, P. C., SCOTT, M. L., AND ELLIS, C. S. 1988. Bridge: A high-performance file system
for parallel processors. In the 8th International Conference on Distributed Computer
Systems. IEEE Computer Society Press, Los Alamitos, Calif., 154–161.

FEITELSON, D. G. 1994. Terminal I/O for massively parallel systems. In the Scalable
High-Performance Computer Conference. IEEE Computer Society Press, Los Alamitos,
Calif., 263–270.

FEITELSON, D. G., CORBETT, P. F., BAYLOR, S. J., AND HSU, Y. 1993. Satisfying the I/O
requirements of massively parallel supercomputers. Res. Rep. RC 19008 (83016), IBM T. J.
Watson Research Center, Yorktown Heights, N.Y.

FEITELSON, D. G., CORBETT, P. F., AND PROST, J.-P. 1995. Performance of the Vesta parallel
file system. In the 9th International Parallel Processing Symposium. IEEE Computer
Society Press, Los Alamitos, Calif.

FRENCH, J. C., PRATT, T. W., AND DAS, M. 1993. Performance measurement of the Concur-
rent File System of the Intel iPSC/2 hypercube. J. Parallel Distrib. Comput. 17, 1–2
(Jan./Feb.), 115–121.

HOLLAND, M. AND GIBSON, G. A. 1992. Parity declustering for continuous operation in
redundant disk arrays. In the 5th International Conference on Architectural Support for
Programming Language and Operating Systems. ACM, New York, 23–35.

INTEL. 1994. Paragon User’s Guide. Order no. 312489003. Intel Supercomputer Systems
Division, Mount Prospect, Ill.

KATZ, R. H., GIBSON, G. A., AND PATTERSON, D. A. 1989. Disk system architectures for high
performance computing. Proc. IEEE 77, 12 (Dec.), 1842–1858.

KOTZ, D. 1994. Disk-directed I/O for MIMD multiprocessors. In the 1st Symposium on
Operating Systems Design and Implementation. USENIX Assoc., Berkeley, Calif., 61–74.

KOTZ, D. AND ELLIS, C. S. 1993. Caching and writeback policies in parallel file systems. J.
Parallel Distrib. Comput. 17, 1–2 (Jan./Feb.), 140–145.

KOTZ, D. AND NIEUWEJAAR, N. 1994. Dynamic file-access characteristics of a production
parallel scientific workload. In Supercomputing ’94. IEEE Computer Society Press, Los
Alamitos, Calif., 640–649.

KOTZ, D. F. AND ELLIS, C. S. 1990. Prefetching in file systems for MIMD multiprocessors.
IEEE Trans. Parallel Distrib. Syst. 1, 2 (Apr.), 218–230.

LEVY, E. AND SILBERSCHATZ, A. 1990. Distributed file systems: Concepts and examples. ACM
Comput. Surv. 22, 4 (Dec.), 321–374.

LOVEMAN, D. B. 1993. High performance Fortran. IEEE Parallel Distrib. Tech. 1, 1 (Feb.),
25–42.

LOVERSO, S. J., ISMAN, M., NANOPOULOS, A., NESHEIM, W., MILNE, E. D., AND WHEELER, R.
1993. sfs: A parallel file system for the CM-5. In Proceedings of the Summer USENIX
Conference. USENIX Assoc., Berkeley, Calif., 291–305.

MILLER, E. L. AND KATZ, R. H. 1991. Input/output behavior of supercomputing applications.
In Supercomputing ’91. IEEE Computer Society Press, Los Alamitos, Calif., 567–576.

NELSON, M. N., WELCH, B. B., AND OUSTERHOUT, J. K. 1988. Caching in the Sprite network
file system. ACM Trans. Comput. Syst. 6, 1 (Feb.), 134–154.

The Vesta Parallel File System • 263

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

NODINE, M. H. AND VITTER, J. S. 1991. Large-scale sorting in parallel memories. In the 3rd
Symposium on Parallel Algorithms and Architectures. IEEE Computer Society Press, Los
Alamitos, Calif., 29–39.

PATT, Y. N. 1994. The I/O subsystem: A candidate for improvement. Computer 27, 3 (Mar.),
15–16.

PATTERSON, R. H. AND GIBSON, G. A. 1994. Exposing I/O concurrency with informed
prefetching. In the 3rd International Conference on Parallel and Distributed Information
Systems. IEEE Computer Society Press, Los Alamitos, Calif., 7–16.

PIERCE, P. 1989. A concurrent file system for a highly parallel mass storage subsystem. In
the 4th Conference on Hypercubes, Concurrent Computing and Applications. Vol. 1. 155–160.

PURAKAYASTHA, A., ELLIS, C. S., KOTZ, D., NIEUWEJAAR, N., AND BEST, M. 1995. Character-
izing parallel file-access patterns on a large-scale multiprocessor. In the 9th International
Parallel Processing Symposium. IEEE Computer Society Press, Los Alamitos, Calif.

ROY, P. J. 1993. Unix file access and caching in a multicomputer environment. In the
USENIX Mach III Symposium. USENIX Assoc., Berkeley, Calif., 21–37.

SALMON, J. 1987. CUBIX: Programming hypercubes without programming hosts. In Hyper-
cube Multiprocessors 1987, M. T. Heath, Ed. SIAM, Philadelphia, Pa., 3–9.

SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D., AND LYON, B. 1985. Design and
implementation of the Sun network filesystem. In Proceedings of the Summer USENIX
Technical Conference. USENIX Assoc., Berkeley, Calif., 119–130.

STUNKEL, C. B., SHEA, D. G., GRICE, D. G., HOCHSCHILD, P. H., AND TSAO, M. 1994. The SP1
high-performance switch. In the Scalable High-Performance Computer Conference. IEEE
Computer Society Press, Los Alamitos, Calif., 150–157.

TORRELLAS, J. AND ZHANG, Z. 1994. The performance of the Cedar multistage switching
network. In Supercomputing ’94. IEEE Computer Society Press, Los Alamitos, Calif.,
265–274.

VITTER, J. S. AND SHRIVER, E. A. M. 1990. Optimal disk I/O with parallel block transfer. In
the 22nd Annual Symposium on the Theory of Computing. ACM, New York, 159–169.

Received April 1995; revised April 1996; accepted May 1996

264 • Peter F. Corbett and Dror G. Feitelson

ACM Transactions on Computer Systems, Vol. 14, No. 3, August 1996.

