
.

Isolated MPI-I/O
Solution on top of MPI-1

Emin Gabrielyan, Roger D. Hersch
École Polytechnique Fédérale de Lausanne, Switzerland

{Emin.Gabrielyan,RD.Hersch}@epfl.ch

SFIO

5th Workshop on
Distributed

Supercomputing:
Scalable Cluster Software

May 23-24, 2001, Sheraton Hyannis, Cape Cod, Hyannis MA



.

no
n-b

loc
kin

g

IREAD
AT
IWRITE

blo
ck

ing

Syn
ch

ron
ism

PositioningREAD
AT
WRITE

READ

WRITE

READ
SHARED
WRITE

IREAD

IWRITE

IREAD
SHARED
IWRITE

READ
AT_ALL
BEG/END
WRITE

C
oo

rd
in

at
io

n

explicit
offsets

individual
file pointers

shared
file pointers

no
n-

co
lle

ct
iv

e
co

lle
ct

iv
e

READ
AT_ALL
WRITE

READ
ALL
WRITE

READ
ORDER.
WRITE

READ
ALL
BEG/END
WRITE

READ
ORDERED
BEG/END
WRITE

MPI-I/O
Access
Operations

The basic set of MPI-I/O interface functions consists of File Manipulation Op-
erations, File View Operations and Data Access Operations. There are three or-
thogonal aspects to data access: positioning, synchronism, and coordination,
and there are 12 respective types of read and of write operations.



.

contiguous in memory

as well as in file

noncontiguous in memory,

contiguous in file

contiguous in memory,

noncontiguous in file

noncontiguous in memory

as well as in file

The file view is a global concept, which interferes with all data access opera-
tions. For each process it specifies its own view of the shared data file: a se-
quence of pieces in the common data file that are visible for the particular
process. In order to specify the file view the user creates a derived datatype,
which defines the fragmented structure of the visible part of the file. Since each
access operation can use another derived datatype that specifies the fragmenta-
tion in memory, there are two additional orthogonal aspects to data access: the
fragmentation in the memory and the fragmentation of the file view.

fr
ag

m
en

ta
tio

n 
in

 th
e 

m
em

or
y

fragmentation of the view of file
contiguous in the file non-contiguous in the file

co
nt

ig
uo

us
 in

 th
e 

m
em

or
y

no
n-

co
nt

ig
uo

us
 in

 th
e 

m
em

or
y

Memory

View

File

Memory

View

File

Memory

View

File

Memory

View

File

File View



.

M
PI

_T
yp

e_
ve

ct
or

(3
,1

,2
,M

PI
_B

Y
TE

,&
T

1)

M
PI

_T
yp

e_
ve

ct
or

(3
,1

,2
,M

PI
_B

Y
TE

,&
T

1)

MPI_Type_struct(2,...,&T3)

M
PI

_T
yp

e_
ve

ct
or

(3
,1

,2
,M

PI
_B

Y
TE

,&
T

1)

M
PI

_T
yp

e_
ve

ct
or

(3
,1

,2
,M

PI
_B

Y
TE

,&
T

1)

MPI_Type_contiguous(2,T1,&T2)MPI_Type_contiguous(2,T1,&T2)

MPI_Type_struct(2,...,&T3)

MPI_Type_contiguous(2,T3,&T4)

Derived Datatype T4

MPI-1 provides techniques for creating datatype objects of arbitrary data lay-
out in memory. The opaque datatype object can be used in various MPI opera-
tions, but the layout information, once put in a derived datatype, can not be de-
coded from the datatype.

T4

Derived Datatypes



.

MPI-I/O Implementation

MPI-I/O Interface

MPI-I/O Implementation

MPI-1 Interface

MPI-1 Implementation

Access to the internal 
operations and data 

structures of the MPI-
1 implementation, in 
order to decode the 

layout information of 
the file view’s derived 

datatype.

MPI-2 operations and the MPI-I/O subset in particular form an exten-
sion to MPI-1. However a developer of MPI-I/O needs access to the
source code of the MPI-1 implementation, on top of which he intends
to implement MPI-I/O. For each MPI-1 implementation a specific
development of MPI-I/O will be required.



.

Reverse Engineering or Memory Painting

The layout information can not be decoded from the datatype, but the behaviour of the da-
tatype depends on the layout. We try to define a special test for a derived datatype, analyse
the behaviour of the datatype and based on it, decode the layout information of the da-
tatype. For example, MPI_Recv operation receives a contiguous network stream and dis-
tributes it in memory according to the data layout of the datatype. If the memory is
previously initialised with a “green colour”, and the network stream has a “red colour”,
then analysis of the memory after data reception will give us the necessary information on
the data layout hidden in the opaque datatype. In our solution we do not use MPI_Send
and MPI_Recv operations, instead we use the MPI_Unpack standard MPI-1 operation to
avoid network transfers and multiple processes usage.

C
on

tig
uo

us
 d

at
at

yp
e

B
uf

fe
r o

f t
he

 si
ze

 o
f t

he
 d

at
at

yp
e 

T
4

D
er

iv
ed

 d
at

at
yp

e 
T

4

B
uf

fe
r o

f t
he

 si
ze

 o
f T

4’
s e

xt
en

t

MPI_Send(source,size,MPI_BYTE,...)

MPI_Recv(destination-LB,1,T4,...)



.

MPI-I/O Interface

MPI-I/O Implementation

Portable MPI-I/O Solution

Memory Painting

MPI-1 Interface

MPI-1 Implementation

Once we have a tool for derived datatype decoding, it becomes
possible to create an isolated MPI-I/O solution on top of any stand-
ard MPI-1. The Argonne National Laboratory’s MPICH imple-
mentation of MPI-I/O is intensively used with our datatype
decoding technique and an isolated solution of a limited subset of
MPI-I/O operations has been implemented.



.

no
n-b

loc
kin

g

IREAD
AT
IWRITE

blo
ck

ing

Syn
ch

ron
ism

PositioningREAD
AT
WRITE

READ

WRITE

READ
SHARED
WRITE

IREAD

IWRITE

IREAD
SHARED
IWRITE

READ
AT_ALL
BEG/END
WRITE

C
oo

rd
in

at
io

n

explicit
offsets

individual
file pointers

shared
file pointers

no
n-

co
lle

ct
iv

e
co

lle
ct

iv
e

READ
AT_ALL
WRITE

READ
ALL
WRITE

READ
ORDER.
WRITE

READ
ALL
BEG/END
WRITE

READ
ORDERED
BEG/END
WRITE

MPI-I/O
Isolation

The basic File Manipulation operations MPI_File_open and MPI_File_close; File View op-
eration MPI_File_set_view and blocking non-collective Data Access Operations
MPI_File_write, MPI_File_write_at, MPI_File_read, MPI_File_read_at are already suc-
cessfully implemented in the form of an isolated independent library. Currently we are work-
ing on the collective counterparts of blocking operations and trying to make use of the
extended two-phase method for accessing sections of out-of-core arrays, on which the ANL
implementation is based.



.

MPI-I/O Interface

MPI-I/O Implementation

Memory Painting

MPI-FCI on Swiss-Tx

Testing Isolated MPI-I/O

Contiguous memory and file
• MPI_File_write: MPI-FCI Ok
• MPI_File_read: MPI-FCI Ok
• MPI_File_write_at: MPI-FCI Ok
• MPI_File_read_at: MPI-FCI Ok

Fragmented memory, contiguous file
• MPI_File_write: MPI-FCI Ok
• MPI_File_read: MPI-FCI Ok
• MPI_File_write_at: MPI-FCI Ok
• MPI_File_read_at: MPI-FCI Ok

Contiguous memory, fragmented file
• MPI_File_write: MPI-FCI Ok
• MPI_File_read: MPI-FCI Ok
• MPI_File_write_at: MPI-FCI Ok
• MPI_File_read_at: MPI-FCI Ok

Fragmented memory and file
• MPI_File_write: MPI-FCI Ok
• MPI_File_read: MPI-FCI Ok
• MPI_File_write_at: MPI-FCI Ok
• MPI_File_read_at: MPI-FCI Ok

The implemented operations of the isolated solution of MPI-I/O are successfully test-
ed with the MPI-FCI implementation of MPI-1 on the Swiss-Tx supercomputer.



.

0

2

4

56

TNET connection ~86MB/s

Routing

3

7

1

PR01

PR00

PR02

PR04

PR06

PR08
PR10

PR12

PR
14

PR
16

PR18

PR20 PR22 PR24
PR26

PR28

PR30

PR32

PR34

PR36

PR38

PR
40

PR
42

PR
44

PR
46

PR
48

PR
50PR

52PR
54

PR56
PR58

PR60

PR62

PR
15

PR13PR11PR09PR07
PR05

PR03

PR01

IO Processor

Compute Processor

0 Switch

PR29

PR27

PR25

PR23
PR21

PR19

PR
17

PR
45 PR

43 PR
41

PR39
PR37

PR35

PR33

PR31

PR63

PR61

PR59

PR57

PR
55

PR
53

PR
51

PR
49

PR
47

PR00

Gateway to the Parallel I/O of the Swiss-T1

At the bottom of the isolated MPI-I/O, we intended to provide as a high per-
formance I/O solution a switching to the Striped File I/O system (SFIO).
SFIO communication layer is implemented on top of MPI-1 and therefore
SFIO is also portable. We measured a scalable performance of the SFIO on
the architecture of the Swiss-Tx supercomputer.



.

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Number of Compute or I/O Nodes

Pe
rf

or
m

an
ce

 M
B

/s

read average read maximum write average write maximum

SFIO on the Swiss-Tx machine

The performance of SFIO is measured for concurrent access from all com-
pute nodes to all I/O nodes. In order to limit operating system caching ef-
fects, the total size of the striped file linearly increases with the number of
I/O nodes up to 32GB. The stripe unit size is 200 bytes. The application’s
I/O performance is measured as a function of the number of Compute and
I/O nodes.



.

Conclusion

• Implementation of blocking collective file access operations.

• Implementation of non-blocking file access operations.

• The remaining File Manipulation Operations.

• Switching to SFIO.

Thank You !

SFIO

Isolated solution automatically gives to every MPI-1 owner an

MPI-I/O, without any requirements of changing, modifying, or

specifically interfering to his current MPI-1 implementation.

Future work


