May 23-24, 2001, Sheraton Hyannis, Cape Cod, Hyannis MA
5th Workshop on
Distributed
Supercomputing:
shop Scalable Cluster Software

AL R

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE @ %—

e

o I\‘I I\I [
L II I
|
|
I W I WP \ I

|

|
|

%

|.J|.'|'iF]||l'|'.-|| Svstems Laboraton

Isolated MPI-1/0
Solution on top of MPI-1

Emin Gabrielyan, Roger D. Hersch
Ecole Polytechnique Fédérale de Lausanne, Switzerland
{Emin.Gabrielyan,RD.Hersch}@epfl.ch

MPI-1/0
ACCEeSS
Operations

collective

(Coordination)

non-collective

explicit
offsets

The basic set of MPI-1/0 interface functions consists of File Manipulation Op-
erations, File View Operations and Data Access Operations. There are three or-
thogonal aspects to data access: positioning, synchronism, and coordination,

BES/END
IRITE

|READ

ALL

(0)
AI)%/
<

N

|READ

WRITE
individual
file pointers

READ
ALL
BEG/END
WRITE

READ
DRDEREL
BEG/END

WRITE

WRITE Qgé

IREAD

IWRITE

shared
file pointers

_(Positioning)

IREAD
SHARED
IWRITE

and there are 12 respective types of read and of write operations.

g File View
e
£
£
= Memory | | Memory
3 AN _
%g ‘ FView View
= | € _ .
RE | File | |File
<
=
c
> |2
S |
e lc
s |
c|E
2|8
=8 1L | Memory Memory
é ﬁ #View ﬁ (View
>
(@] - .
= | | File | |File
o
(&)
<
@)
c

(fragmentation of the view of file)
contiguous in the file non-contiguous in the file

The file view is a global concept, which interferes with all data access opera-
tions. For each process it specifies its own view of the shared data file: a se-
guence of pieces in the common data file that are visible for the particular
process. In order to specify the file view the user creates a derived datatype,
which defines the fragmented structure of the visible part of the file. Since each
access operation can use another derived datatype that specifies the fragmenta-
tion in memory, there are two additional orthogonal aspects to data access: the
fragmentation in the memory and the fragmentation of the file view.

Derlved Datatypew_Type_contiguous(z,T3,&T4)

MPI_Type_struct(2,...,&T3) MPI_Type_struct(2,...,&T3)

MPI_Type_contiguous(2,T1,&T2)\ [MPI_Type_contiguous(2,T1,&T2)

= = = ~
~ P ~ =
o o3 o o
w— L s Ll — L1 T
S S S S =
o > S > S > 35
>|m| >|m| >|m| S m
sz 42 sg ds
- = o >
s B 5% A2
a <1 a <1 a <)
))) Ss

7
3}
7
3}

Derived Datatype T4 J
RS

MPI-1 provides techniques for creating datatype objects of arbitrary data lay-
out in memory. The opaque datatype object can be used in various MPI opera-
tions, but the layout information, once put in a derived datatype, can not be de-

coded from the datatype.

. /S
[1
1
[1
[1
1

MPI-1/0O Implementation

MPI-1/O Implementation

(Access to the internaﬂ
operations and data
structures of the MPI-
1 implementation, in
order to decode the
layout information of
MPI-1 Interface the file view’s derived

datatype.
_ P)

MPI-1 Implementation

MPI-2 operations and the MPI-1/0O subset in particular form an exten-
sion to MPI-1. However a developer of MPI-1/O needs access to the
source code of the MPI-1 implementation, on top of which he intends
to implement MPI-1/0O. For each MPI-1 implementation a specific
development of MPI-1/0O will be required.

Reverse Engineering or Memory Painting

Derived datatype T4

Buffer of the size of T4’s extent

L =N

A

MPI_Recv(destination-LB,1,T4,...)

Buffer of the size of the datatype T4
Contiguous datatype

MPI1_Send(source,size,MPI_BYTE,...)

The layout information can not be decoded from the datatype, but the behaviour of the da-
tatype depends on the layout. We try to define a special test for a derived datatype, analyse
the behaviour of the datatype and based on it, decode the layout information of the da-
tatype. For example, MPI_Recv operation receives a contiguous network stream and dis-
tributes it in memory according to the data layout of the datatype. If the memory is
previously initialised with a “green colour”, and the network stream has a “red colour”,
then analysis of the memory after data reception will give us the necessary information on
the data layout hidden in the opaque datatype. In our solution we do not use MPI_Send
and MPI_Recv operations, instead we use the MP1_Unpack standard MPI-1 operation to
avoid network transfers and multiple processes usage.

Portable MPI1-1/O Solution

MPI-1/O Implementation

S

Memory Painting

MPI-1 Interface

MPI-1 Implementation

Once we have a tool for derived datatype decoding, it becomes
possible to create an isolated MPI-1/O solution on top of any stand-
ard MPI-1. The Argonne National Laboratory’s MPICH imple-
mentation of MPI-I/O is intensively used with our datatype
decoding technique and an isolated solution of a limited subset of
MPI-1/0 operations has been implemented.

MPI-1/0O

I READ READ
Isolatlon . ALL DRDERELD
BEA/END BEG/END BEG/END
MURITE WRITE WRITE
(¢b]
% READ READ READ
2 JAT_ALL ALL ORDER
3 [wrITE WRITE &\& WRITE
Q
()
i
E
=
= IREAD IREAD
§ SHARED
= IWRITE IWRITE
(D)
=
I8 ,
§ READ READ READ Positionin
< |AT ISHARELD
2 |[WRITE WRITE WRITE
explicit individual shared
offsets file pointers file pointers

The basic File Manipulation operations MPI_File_open and MP1_File_close; File View op-
eration MPI_File_set view and blocking non-collective Data Access Operations
MPI_File_write, MPI_File_write_at, MPI_File_read, MPI_File_read_at are already suc-
cessfully implemented in the form of an isolated independent library. Currently we are work-
ing on the collective counterparts of blocking operations and trying to make use of the
extended two-phase method for accessing sections of out-of-core arrays, on which the ANL

implementation is based.

Testing Isolated MPI-1/0O

| om

Contiguous memory and file

MPI_File_write: MPI-FCI Ok
MPI_File_read: MPI-FCI Ok
MPI_File_write_at: MPI-FCI Ok
MPI_File_read at: MPI-FCI Ok

L

Fragmented memory, contiguous file

MPI1_File_write: MPI-FCI Ok
MPI_File_read: MPI-FCI Ok
MPI_File_write_at: MPI-FCI Ok
MPI_File_read_at: MPI-FCI Ok

Contiguous memory, fragmented file

MPI_File_write: MPI-FCI Ok
MPI_File_read: MPI-FCI Ok
MPI_File_write_at: MPI-FCI Ok
MPI_File read_at: MPI-FCI Ok

MPI-1/O Interface

S

MPI-1/O Implementation

N

Memory Painting

J

| |
Fragmented memory and file

e MPI_File_write: MPI-FCI Ok

* MPI_File_read: MPI-FCI Ok

e MPI_File_write_at: MPI-FCI Ok
* MPI_File_read_at: MPI-FCI Ok

The implemented operations of the isolated solution of MPI-1/O are successfully test-
ed with the MPI-FCI implementation of MPI-1 on the Swiss-Tx supercomputer.

Gateway to the Parallel 1/0O of the Swiss-T1

Compute Processor - o ITNET connection ~86MB/s
. S\ BRI TS [
@SWItCh 2 \’g =& & =] .%7 (PROO) 10 Processor
P NS
¢ Routing \C Y ’Gb >
O
% 'Cbb
1 2 X %6
U
S gé
ol
o)
e
gLee
e N oead
Tedd
c€dd
N
7 = 4 4 reqg
98&7, g
S
6 c%,
G
NG
PN A
NG ¢
p) 2\ X %* &
TAEEEERA
o) g x e T e e

At the bottom of the isolated MPI-1/0O, we intended to provide as a high per-
formance 1/0 solution a switching to the Striped File 1/0 system (SFIO).
SFIO communication layer is implemented on top of MPI-1 and therefore
SFIO is also portable. We measured a scalable performance of the SFIO on
the architecture of the Swiss-Tx supercomputer.

Performance MB/s

SFIO on the Swiss-Tx machine
L
350 -+ -

300 - —

250 - —— —

200 - — —1— F =1

150 - — - |

100 - B

50 . B

0 [
R I IR I I I SR

Number of Compute or 1/0O Nodes

Oread average Oread maximum OJwrite average O write maximum

The performance of SFIO is measured for concurrent access from all com-
pute nodes to all 1/0 nodes. In order to limit operating system caching ef-
fects, the total size of the striped file linearly increases with the number of
I/0 nodes up to 32GB. The stripe unit size is 200 bytes. The application’s
I/0 performance is measured as a function of the number of Compute and
1/0 nodes.

Conclusion

Isolated solution automatically gives to every MPI-1 owner an
MPI-1/O, without any requirements of changing, modifying, or

specifically interfering to his current MPI-1 implementation.

Future work

Implementation of blocking collective file access operations.

Implementation of non-blocking file access operations.

The remaining File Manipulation Operations.

Switching to SFIO.

Thank You !

Al .

{E:EDE%.E POLYTECHNIQUE
DERALE DE LAUSANNE SEi
@ﬁ

——

c ii
0oa

Peripheral Systems Laboratory

