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Abstract

In order for I/O systems to achieve high performance in
a parallel environment, they must either sacrifice client-side
file caching, or keep caching and deal with complex co-
herency issues. The most common technique for dealing
with cache coherency in multi-client file caching environ-
ments uses file locks to bypass the client-side cache. Aside
from effectively disabling cache usage, file locking is some-
times unavailable on larger systems.

The high-level abstraction layer of MPI allows us to
tackle cache coherency with additional information and co-
ordination without using file locks. By approaching the
cache coherency issue further up, the underlying I/O ac-
cesses can be modified in such a way as to ensure access
to coherent data while satisfying the user’s I/O request. We
can effectively exploit the benefits of a file system’s client-
side cache while minimizing its management costs.

1 Introduction

Caching is a good way of hiding the inherent mechani-
cal limitations of disks, latencies, and bottlenecks, but when
hurled into a parallel environment, client-side file caching
brings its own rather complex problems. Presently, high
performance I/O systems either completely avoid imple-
menting client-side caches, or use locking systems to ensure
correct file data is always manipulated. While not unique to
parallel environments, client-side file cache coherency is a
much more complex problem than in distributed and inde-
pendent environments. In parallel environments, the per-
formance boost that client-side file caches provide is more
critical and concurrent file access is not unusual.

We investigate a new means of ensuring safe access to

client-side file caches in parallel environments where multi-
ple clients may be access the same file at the same time. By
using the high level information that an API like MPI can
provide, we can more efficiently manage cache coherency
and hence lower the costs of caching. At the same time,
all this should be possible with minimal user interaction or
code modification.

In section 2 and 3 we describe the benefits and challenges
of caching and the relevant I/O semantics. Then we will se-
lectively describe the ROMIO implementation of MPI-IO
as it pertains to the file consistency problem in section 4.
In section 5 we describe a couple of simple intuitive solu-
tions and move on to our idea of persistent file domains in
section 6. In section 7 we present performance results gath-
ered on ASCI Cplant at Sandia National Laboratory, and in
section 8 we offer our conclusions and touch on areas for
future research.

2 Cache Coherency

The basic cache coherency problem is ensuring globally
accessible data is up-to-date when used. If there were no
cache, data would always be up-to-date, but caching gen-
erally increases performance. In file systems, caching can
mask the latency of accessing a local or even remote disk by
allowing for quicker reads and writes. Another optimiza-
tion made possible by client-side caching is write-behind in
which write data is buffered in the cache while computation
continues. For local file systems, caching masks the poor
latency and throughput involved with mechanical disk ac-
cess speed, and there are no coherency issues since only the
one local process uses the system.

Distributed file systems use caching to hide the latency
and bandwidth of the network. With caching in a distributed
environment, there can be multiple cached copies of data,
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but normal usage in such an environment is such that files
are not usually operated on concurrently. A distributed file
system really just needs to be able to let one client at a time
cache file data. A typical solution distributed file systems
use to deal with cache coherency is periodic checks with a
central server to find out if some cached file is needed by an-
other process. Since checks are only periodic, cached data
can sometimes be in an incoherent state. The frequency
of the checks determines the probability that data is stale.
More frequent checks will lower that probability, but in-
crease overhead associated with the constant checking. It
is not unusual for a distributed file system to relax seman-
tics to allow for intermittent incoherence to avoid the over-
head of keeping to a strict set of semantics. Expiring leases
can also be used to ensure only one client at a time has file
data cached. A more significant issue in distributed envi-
ronments is the coherency of directory caches.

In a parallel environment, there are often many more
clients than there are I/O servers. Client-side caching can
not only provide cached data quicker, but it also reduces the
load on and contention for the I/O server resources. Paral-
lel environments are similar to distributed ones in that there
are multiple clients accessing a single file system. In a par-
allel environment however, many processes will work on a
single problem and concurrently access an output or input
file. Allowing a single client at a time to access and cache
a file is unreasonable. Maintaining a client-side cache in a
parallel environment is far more challenging than doing it
in a distributed one. In a distributed environment, multiple
copies of cached data on clients is somewhat avoidable, but
in a parallel environment, there is no way around it. En-
suring that cached data on each node is safely accessed is
not easy, and to date, there are no elegant solutions to this
problem. IBM’s General Parallel File System (GPFS) uses
its distributed lock manager to enforce cache coherence [1].
Though overhead of the lock manager may be minimal de-
pending on the computing environment, locking could po-
tentially serialize what may otherwise be safe concurrent
file access. On NFS, ROMIO uses byte range file locks
to bypass the client-side cache. Not only does this intro-
duce the potential for serializing file access, but the client-
side cache is rendered useless along with all its performance
benefits.

3 I/O Semantics

Consistency semantics dictate how strictly cache co-
herency should be enforced. Under POSIX specifica-
tions [6], newly written data should always be sequentially
consistent and visible to all processes after a write routine
has returned. Writes are also atomic, meaning a read should
never return partially written data, a write has either com-
pleted or not started. MPI semantics are slightly more re-

laxed in that sequential consistency is guaranteed only un-
der certain conditions and data needs to be visible to only
the processes in the communicator group at the completion
of a write. MPI guarantees sequential consistency if any of
the following conditions exist:

• Atomic mode is explicitly set by the user

• All I/O operations are non-concurrent

• All I/O operations are non-conflicting

Since POSIX consistency semantics are more stringent than
MPI semantics, it would seem that a file system adhering
to the POSIX semantics would not need additional support
in the MPI-IO implementation to support MPI semantics.
Since MPI-IO allows access to multiple noncontiguous re-
gions of a file in one I/O call, MPI semantics require a step
beyond what POSIX alone provides. This issue is further
discussed by Liao et al. in [7]. MPI also requires that upon
write completion, new data must be visible to all processes
within the same communicator group.

4 ROMIO Collective I/O Implementation

ROMIO [9] is an implementation of the I/O functions of
the MPI-2 standard, and is developed at Argonne National
Laboratory. ROMIO will run on any file system for which
there exists a working Abstract Device (ADIO) implemen-
tation. ROMIO presently supports a mix of commonly used
local, distributed, and parallel file systems including SGI’s
XFS, IBM’s PIOFS, Intel’s PFS, NFS, and the Parallel Vir-
tual File System. Since an ADIO layer is implemented for
each individual file system, it can take advantage of any ad-
vanced features a specific file system may provide.

4.1 Data Sieving

The data sieving optimization, presented by Choudhary
et al. [2, 11], operates on large contiguous sections of a file
to fulfill several requests at a time. The reduced the number
of I/O requests sent to the file system results in less accu-
mulated request overhead. A data sieving read will read a
large contiguous section of the file to satisfy a number of
noncontiguous requests and discard the unused data. If the
aggregate access of a write is non-contiguous, a data siev-
ing write must first read the contiguous section of the file
to modify and then write back the entire section. The un-
derlying file system is required to support locking to ensure
correctness in a data sieving write.

4.2 Two-phase I/O

ROMIO uses a technique called two-phase I/O [10] to
perform collective I/O operations. In two-phase I/O, a des-
ignated subset of processes partition I/O responsibilities for
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Figure 1. Aggregate access region illustrated.

a file among themselves. These processes are called ag-
gregators. The ROMIO implementation bases this division
on the very first file offset and very last file offset of the
collective access shown in Figure 1. This aggregate access
region of a collective I/O call is divided and I/O respon-
sibility for each partition doled out to each process. This
way, each of these file domains is �AAR

N �, where AAR is the
size of the aggregate access region and N is the number of
processes. By evenly splitting the aggregate access region,
I/O is heuristically balanced over the different aggregating
processes. The first thing a collective read or write routine
does is partition the aggregate access region. Then in the
case of a collective read, each process reads data within its
assigned region (file domain) using the data sieving tech-
nique and distributes this data to the appropriate processes
that actually requested the data. In ROMIO, the actual reads
are done using the data sieving technique described in sec-
tion 4.1 above. ROMIO’s collective I/O routines use a de-
fault buffer size of 4 MB for buffering the underlying con-
tiguous I/O. The data sieving buffer used in the collective
routines is referred to as the collective buffer. ROMIO will
try to read up to 4 MB of a file before trying to copy data
between the collective I/O buffer and the user’s memory.
Under a collective write, each process will need to first ex-
change the data to be written before writing the data to their
respective file domains. Without locking or any explicit
cache management, the file state may not be consistent.

While the file consistency issue remains fundamentally
the same with respect to two-phase I/O, the details are a lit-
tle more complex since the process making a read request
may not actually do its own I/O. Take this simple example in
illustrated in Figure 2. Figure 2 presents two logical views
of the file from each clients perspective. The upper file rep-
resentation is the file data in the application’s memory. The
second view indicates what sections of the file are cached in
the client-side file cache. Assuming there are two processes
available, p0 will be responsible for I/O in the the first half
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�����������
�����������
�����������
�����������

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

b.

c.
p0

p0 p1

p1

cached file cached file

a.
p0 p1

user’s view of file

�����������
�����������
�����������
�����������

������
������
������
������

�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����

�����������
�����������
�����������

�����������
�����������
�����������

�����
�����
�����

�����
�����
�����

0

0 0

1

1 10 0

0

0 0

1 1

11

0

1 1

0 10

0

1

1

Figure 2. Example file consistency problem
with collective I/O. In a., the entire file is col-
lectively read. In b., the first half of the file is
collectively written, and in c., the entire file is
collectively read again.
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of the file, and p1 for the second half, 2a. Note that p0 has
cached the first half of the file, and p1 the second. Each pro-
cess will then set a new interleaved view of and performa a
collective write. In Figure 2b each process tries to write its
rank in an interleaved pattern of two integers each to the
first half of the file. The new set of file domains reflects the
new access pattern, and assigns I/O for the first two integers
to p0, and the second two integers to p1. After exchanging
the appropriate data, the correct data is written to both the
caches and to disk. The last collective read is the same as the
first, and after the new file domains are assigned, p0 read its
file domain from its client-side cache where the last half is
already stale, see Figure 2c. This behavior violates both se-
quential consistency and visibility rules of MPI. Since each
process is trying to write exclusive regions in the collective
write, the data must be sequentially consistent whether or
not atomic mode has been explicitly set. This illustrates the
file consistency problem using collective I/O.

5 Intuitive Solutions

While locking is used by ROMIO and GPFS to side step
cache coherency issues, a solution without locking is prefer-
able. File locking itself incurs a high enough cost that some
large scale systems sacrifice file locking altogether. Without
locking, there are a couple intuitive file consistency solu-
tions that revolve around circumventing the client-side file
cache. The obvious drawback to this is the loss of any per-
formance benefits client-side caching provids. Reads and
writes will always have to go over the network to the server
for data. Write-behind, a file system optimization that will
let several smaller write requests accumulate before actu-
ally sending the data to the network, cannot work without a
cache to buffer the write data.

One technique for dealing with cache coherency prob-
lems, lets the application developer explicitly invalidate
and synchronize the client-side cache on demand. This
functionality is relatively easy to implement and is already
in place on Sandia National Laboratory’s NFSv2 variant
ENFS. Invalidating the client-side cache prior to every read
guarantees that stale data is never retrieved by ensuring no
data at all is read from the cache. Synchronizing the client-
side cache after every write ensures modified data is written
all the way to disk. Following this scheme, MPI consistency
semantics can be guaranteed. With the ability to manually
invalidate the client-side cache, this job could be left to ap-
plication developers, or perhaps more desirable, it could be
incorporated into an MPI-IO implementation. Cached data
will never be read, and data will always be written all the
way out to disk, keeping file data consistent.

Another simplistic option would be to completely dis-
able client-side caching behavior of the file system. This in
and of itself is a significant burden, and would adversely af-
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Figure 3. Example file consistency problem
solved with persistent file domains.

fect performance on the entire system regardless of whether
or not any concurrent I/O is actually being performed. On
parallel file systems like PVFS that don’t include client-side
caching, cache consistency problems do not exist.

6 Persistent File Domains

On a file system that does non-coherent client-side
caching, file inconsistencies in ROMIO’s collective I/O im-
plementation stem from changes in the aggregate access re-
gions and therefore file domains, between collective read
and write calls. By making sure file domains remain the
same, or persist, over a number of collective I/O routines,
each aggregator is guaranteed to access only the latest data.
In essence, each process is given exclusive access to its own
file domain. Any data within the process’s file domain that
it has cached must be coherent since no other process is al-
lowed to modify that data directly. In Figure 3 the same ex-
ample as in Figure 2 is used, but this time using persistent
file domains (PFDs). The file domains used in Figure 3a
are used in the rest of the collective I/O operations, and the
data read at the end of Figure 3 is now the same as the data
residing on disk.

The original ROMIO two-phase implementation deter-
mines file domains by dividing the aggregate access region
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Figure 4. Assignment methods for persistent
file domains given an aggregate access pat-
tern and 4 processes.

by the number of aggregating processes with the intent of
balancing I/O. Using this technique, one would hope that all
available aggregators will be doing approximately the same
amount of actual I/O. Given the noncontiguous and regu-
lar nature of the I/O access patterns scientific applications
use [12], this heuristic should work well enough and will be
considered the ideal I/O balancing scheme for the remain-
der of this paper. With this balancing scheme in mind, PFDs
should not out perform file domains instantiated on a per
collective I/O call with respect to actual I/O since they are
not allowed to adapt to the access region of each individual
I/O call. PFDs do allow MPI applications to safely lever-
age the performance benefits of the underlying file system’s
client-side caching. This is where the advantage of PFDs
lies. So we are accepting a potentially less than optimal I/O
balance for safe use of the cache. Mileage on this tradeoff
is application dependent. This leaves the implementation
choice of how to assign PFDs such that I/O responsibility is
at least somewhat balanced.

6.1 User Specified Striped File Domains

By assigning PFDs based on a fixed PFD size, different
access patterns can be specifically accommodated. The per-
sistent file domain size passed down by the user through an
MPI File Hint is used to cyclically assign PFDs to aggre-
gating processes, figure 4. Using this technique, a user
can optimize the persistent file domain size according to
the application’s file access pattern. To optimize the PFD
assignments, one should try to minimize the number of
I/O-communication phases while using as many aggregat-
ing processes available to do equal amounts of I/O in each

collective call. The main drawback to this method is the
user must have some idea of what kind of access pattern
the application has, and what the appropriate PFD size is.
A PFD size that is too large may result in unbalanced I/O
where some processes may not have to do any I/O while
only a few must carry the burden. A PFD size that is too
small will probably even the distribution of I/O responsibil-
ities, but will generate more I/O-communication phases and
I/O requests. As long as the file access pattern remains con-
sistent, the performance of the specified PFD size should
remain consistent as well.

6.2 File Size Based File Domains

Rather than evenly dividing the aggregate access region
among processes, the entire file itself could be divided, Fig-
ure 4. File size based PFD sizes allows the user to concen-
trate more on the application task, but the file domain sizes
may not always balance the I/O responsibilities of each pro-
cess well. For collective operations that span a relatively
large percentage of the file, file size based persistent file
domain sizes should perform well unless the file gets very
large and the file domain size gets larger than the collec-
tive buffer size. A collective operation that spans a rela-
tively small portion of the file will result in less available
processes actually being used to do I/O.

A file size based file domain assignment scheme is the
most natural extension of the original 2-phase I/O imple-
mentation in ROMIO. While very easy to implement in
ROMIO using the existing infrastructure, using such a sim-
plistic implementation presents a couple of interdependent
problems. How is the size of the file found at run time, con-
sidering a file may be newly created or appended to? Since
the original file domains in 2 phase I/O did not exist outside
of a single collective call, this was not an issue. Basically,
the user in this case would have to provide additional infor-
mation; Namely the largest size a file would reach within an
open/close session (i.e. the life time of PFDs). Since these
demands on the user were deemed unreasonable, this im-
plementation was used as a proof-of-concept to show PFDs
would indeed solve the file consistency problem. Instead
we opted to use the implementation of striped file domains
in section 6.1 to achieve file size based file domains.

By leveraging the striped file domains implementation,
we can emulate the file size based file domains of the initial
simplistic implementation, while retaining the more flexible
attributes of the striped implementation. In this assignment
strategy, a PFD size is determined based on the impending
file size during the first collective I/O call. The impending
file size is used because an collective write call could create
or otherwise alter the size of the file. The PFD size is the
impending file size divided by the number of aggregating
processes. This way, the user does not need to know ex-
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actly how large the file will be in advance since the striped
assignment will allow for any later appending to the file.

6.3 Aggregate Access Region (AAR) Based File
Domains

AAR based PFDs, like file size based PFDs relieve the
application developer from having to manually calculate an
optimal PFD size. Additionally, AAR based PFDs should
accommodate a larger variety of access patterns than file
size based PFDs. Both calculate a PFD size at run-time
during the first collective I/O call. The difference is that in
this assignment strategy, PFD size is size of the AAR of the
first collective I/O call divided by the number of aggregating
processes, Figure 4. In doing this, we aim to achieve the I/O
balancing advantages of the original ROMIO implementa-
tion, while guaranteeing safe cache access. I/O should re-
main balanced unless there is substantial variation in the
access patterns of subsequent collective I/O calls, since the
persistent file domains will have only been optimized for the
initial access pattern. This last shortcoming leads to seem-
ingly paradoxical dynamic PFDs.

6.4 Dynamic Persistent File Domains

Not every collective I/O call within an open/close session
may have the same or similar access patterns. Typically, a
change in the memory datatype or file datatype indicates a
change in the file access pattern. In dynamic PFDs, this
event triggers a recalculation of PFD sizes based on the lat-
est access pattern. Before these new file domains can be
safely used however, data in the cache must first be synchro-
nized and invalidated to avoid the possible use of stale data
from the old file domains. Whenever a collective I/O call or
a new filetype is set, the new memory datatype or filetype
is checked against the previous memory or file datatype. In
this way, changes in the file access pattern can be accommo-
dated. Datatype comparison can become rather expensive,
so it is best if the application just didn’t change its access
patterns much.

7 Performance Implications

We ran several applications to illustrate the impact of
PFDs on performance. The first is an artificial access
pattern that should, by design, benefit from cached data.
The second application models the I/O requirements of a
computational flow problem from the NAS Parallel Bench-
marks, and the last simulates the check-pointing I/O behav-
ior of the University of Chicago’s ASCI FLASH code. The
basic labeling convention is as follows:

• 64K uses a 64KB PFD size

• 4MB uses a 4MB PFD size

• fsize uses a calculated PFD size based on file size

• AAR uses a calculated PFD size based on the aggre-
gate access region

• no caching invalidates the cache before every read and
synchronizes the file after every write, thereby bypass-
ing the client-side cache

• intelligent uses a user specified PFD size aimed at
matching the access pattern (sliding window applica-
tion only)

7.1 Machine Configuration

All of our tests were run on ASCI Cplant at Sandia Na-
tional Laboratory [4].

Cplant is an Alpha Linux cluster with each compute
node configured with one 600 MHz EV-6, 512(Ross) MB
of RAM, no disk, and a 64-bit Myrinet card. Each com-
pute node was running Red Hat 6.x with kernel 2.4.x. On
Cplant, each compute node is bound to one I/O server in a
pool of twelve in a round-robin manner at boot-time. Each
I/O server runs ENFS, a variant of NFSv2 developed at San-
dia National Laboratory, in a single global file space. Each
I/O server in turn is an NFS client to a central XFS server.
No caching is done on the I/O servers. Since we were not
allowed the luxury of dedicated I/O servers, we present the
best bandwidths from between three to five runs.

We chose to implement PFDs in ROMIO for portability
and because of the existing infrastructure. Our changes have
been submitted to the MPICH developers for consideration
as user enabled optimizations. We developed and tested our
software with MPICH 1.2.4.

7.2 Sliding Window Benchmark

To illustrate the potential benefits of PFDs, we wrote
an application with a regularly strided access pattern that
should be able to take advantage of cached data. A two di-
mensional array is broken up into a number of sub-arrays,
or tiles. Each process starts at the tile corresponding to its
rank. In each iteration, every process reads and then writes
its tile. In the following iteration, each process shifts over
one tile to the right, wrapping to the next row of tiles (or
wrapping to the first row) and perform a read and write to
its new tile, see Figure 5. This repeats until each process has
done I/O on every tile in the array. The same could be ac-
complished by reading tiles once each, modifying them, and
then communicating to the next process over with possibly
higher performance. If the tiles are small enough, however,
we may be able to implicitly capture this data communica-
tion with minimal I/O with the much simpler programming
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8 nodes 16 nodes 24 nodes 32 nodes 40 nodes 48 nodes 56 nodes 64 nodes

intelligent PFDs 6144 KB 4608 KB 4096 KB 3840 KB 3686 KB 3584 KB 3510 KB 3072 KB
AAR PFDs 3072 KB 3072 KB 3072 KB 3072 KB 3072 KB 3072 KB 3072 KB 3072 KB
fsize PFDs 20.4 MB 12 MB 8192 KB 6144 KB 4915 KB 4096 KB 3507 KB 3072 KB

Table 1. Library calculated persistent file domain sizes for the sliding window experiment.

Iteration 3

p0

p0

p0p1 p1

p1

p2 p2

p2

p3

p3

p3

Iteration 1 Iteration 2

Figure 5. Several iterations of the sliding win-
dow I/O pattern for a 4x4 example. This con-
tinues until each process has read each tile.

model used by our code. For each run, there are 8 × 8
tiles and each tile is 4096 × 768 = 3MB, making the total
file size 192 MB. The sliding window application was run
with the default 4 MB collective buffer size. Table 1 lists
the different PFD sizes generated for the 192 MB file. The
actual amount of total I/O is nproc*file size, so this ranges
from 1.5 to 12 GB. The key parameter to throughput per-
formance however, is really the tile size, and therefore the
file size, since tile size really determines the effectiveness of
any given PFD size. The “intelligent” stripe sizes are set by
the sliding window application. This would represent a user
specifying a PFDs size based on his known access pattern.
Given the number of tiles in a row, and the number of pro-
cesses, a user can determine how many rows the majority of
collective I/O calls will span using the following function:{

� x
N � + 1 if ((x − 1)modN) > x

N

� x
N � otherwise

(1)

where N is the number of processes and x is the number
of tiles in a row. Since in theory, PFDs cannot achieve
better actual I/O performance, the improvements over the
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Figure 6. For most numbers of clients, the
4MB PFD allows the most pre-fetching.
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Figure 7. Write results are far more consis-
tent between PFD sizes (except for 64 KB PFD
size).
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Figure 8. Write performance significantly
brought down the overall I/O performance of
the sliding window application.

non-caching implementation can be attributed to the ef-
fects of caching. From table 1, one would notice the PFD
sizes exceed the 4 MB, the collective buffer size. In these
cases, each node must break a collective I/O call into at
least two I/O-communication phases. The number of I/O-
communication phases is dictated by the smaller value be-
tween the collective buffer and the PFD size. During the
I/O phase, an aggregator can read no more than the size of
the collective buffer or PFD size. The dynamics between
the collective buffer, the PFD sizes, and the actual aggre-
gate access regions of each collective I/O call introduce the
large fluctuations exhibited by PFD sizes calculated during
the initial I/O call in Figure 6. Other than the 64 KB PFD
size, the PFD implementations consistently out-perform the
no-caching case. The library calculated PFD sizes resulted
in the best overall performances. Write performance in Fig-
ure 7 is much more stable than read performance. Relative
features are about the same, but less pronounced.

7.3 BTIO Benchmark

BTIO [8] is a benchmark from NASA’s Advanced Su-
percomputing (NAS) Division’s parallel benchmark suite
(NPB 2.4). The Block-Triagonal (BT) flow solver provides
a representative means of measuring performance of I/O
systems. BTIO uses diagonal multi-partitioning domain de-
composition to distribute multiple Cartesian subsets of the
global data set to compute nodes. The data on each process
are three-dimensional arrays, and are periodically written
out. The number of these subsets assigned to each pro-
cess increases as the square root of the total number of pro-
cesses. This partitioning of data results in I/O that is non-
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Figure 9. The larger 4MB PFD size allows for
more effective use of the client-side cache.

contiguous in both memory and file, a common trait among
scientific workloads.

Since the BTIO benchmark only writes out data, we
have modified it to alternatively read data with the same
access pattern. We used the class B problem size with a
102×102×102element array. Compiled with the mpi full.f
code, BTIO uses derived datatypes and collective I/O to per-
form its periodic writes as well as verification. The numbers
of clients were chosen to approximate the base 2 exponents.
Since the initial collective I/O call creates a new file, the file

size based and aggregate access region based PFDs end up
using the same PFD size. Table 2 lists the dynamically cal-
culated PFD sizes. The first row of data applies to the read
and write cases for the aggregate access region based per-
sistent file domains and the read case for the file size based
persistent file domains. The write runs actually delete the
file before writing out to a brand new file, so the file size
based PFD sizes for the write case are the same as the ag-
gregate access region based file domains since that initial
collective I/O call is all the file size based method has to
go on. For reads, the file must already exist, so the file
size based persistent really do reflect the actual size of the
file. Because the Class B file is 1.5GB, the resulting file
size based file domains are rather large, ranging from 180
MB to 13 MB in Table 2 depending on the number of avail-
able processes. The dismal fsize results in Figure 10 can
be explained by the excessively large PFDs. As the num-
ber of nodes increases, and the file domain sizes become
more reasonable, performance begins to approach that of
the other implementations. This is a good example of why
using file size based PFDs can be bad.

If chosen well for BTIO, PFDs seem to offer a marginal
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9 nodes 16 nodes 36 nodes 64 nodes 121 nodes

AAR and fsize-write 4606 KB 2591 KB 1151 KB 647 KB 343 KB
fsize-read 180 MB 101 MB 45.0 MB 25.3 MB 13.4 MB

Table 2. Library calculated persistent file domain sizes for BTIO. The first row is for aggregate access
region (rd/wr) and fsize (wr) based. The second row values are for fsize (rd) based.
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lated based on file size result in multiple
I/O-communication phases, hurting perfor-
mance.

amount of benefit over bypassing the cache completely for
read performance. For the most part, BTIO’s read perfor-
mance does not benefit PFDs. As far as write performance
is concerned, the constricting PFD sizes of the library cal-
culated methods as the number of processes increases keeps
performance well below that of the constant 4 MB PFD
sizes, Figure 9.

7.4 FLASH I/O Simulation

The FLASH code [5] is used to model several types of
thermonuclear flashes: hydrogen flashes on white dwarfs,
helium flashes on neutron stars, and carbon flashed within
white dwarfs. The FLASH code uses adaptive mesh re-
finement provided by the PARAMESH library to increase
resolution only in places where it is needed. The cost of
checkpointing FLASH is dependent on I/O performance, so
I/O performance really determines the frequency of check-
points.

While the actual FLASH code uses HDF5 for storage,
we mimic the checkpointing access pattern by using the
same organization of file variables. Doing so allows us to
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Figure 11. Results of the FLASH I/O bench-
mark with 4 - 128 processors.

use MPI’s derived datatypes and I/O functions directly. Like
BTIO, FLASH I/O is non-contiguous in both memory and
file.

Since problem size is directly proportional to the number
of processes, the AAR and file size based file domains are
always 7680 KB. For every additional client, 80 FLASH
(7MB) blocks are added to the file. So for client count
that ranges between 4 and 128, the file sizes range be-
tween 28 MB and 896 MB. The PFD sizes for AAR and file
size based PFDs are the same because the initial collective
write is always the same. The 16 MB collective buffer size
used easily accommodates the all the PFD sizes used. The
FLASH benchmark and its I/O access patterns are further
described by Ching et al. in [3].

Caching has a minimal impact on the write performance
of FLASH except for runs with less than 32 clients, Fig-
ure 11. Bandwidth quickly plateaus between around 32
clients since the number of I/O servers peaks at 12. Rel-
ative to the “ideal” I/O balancing scheme exhibited in the
no caching case, the library calculated PFD sizes for AAR
and file size based PFDs is fairly good. The 4MB and 64KB
PFD sizes are generating more I/O-communication phases
than the other methods making their performances worse.
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8 Conclusions and Future Work

While useful, this work is only implemented in MPI’s
collective I/O routines. A future direction would be to ex-
tend persistent file domains to address non-collective inde-
pendent I/O, possibly in MPI to keep things portable and
since some parallel file systems do not perform client-side
caching. In dealing only with the collective I/O routines, we
were afforded some extra luxuries like explicit communica-
tion and synchronization. Eventually, we would like to see
if we can eliminate the file locking bottleneck using knowl-
edge of the application’s access pattern and other relevant
attributes.

I/O performance of PFDs can be compromised by the
size of the collective buffer. The collective buffer essen-
tially acts as a cap on the effective PFD size. Judging by the
performance of the aggregate access region based PFD size,
it may be more useful when memory is at a premium, oth-
erwise just setting a fairly large PFD size, may be easiest.
In some pathological cases, applications are better off cir-
cumventing the client-side cache, but in general, PFDs can
offer a significant performance advantage over completely
bypassing the client-side cache.
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