
384 IEEE COMMUNICATIONS LETTERS, VOL. 5, NO. 9, SEPTEMBER 2001

Operation and Cost Optimization of a Distributed
Servers Architecture for On-Demand Video Services

S.-H. Gary Chan, Member, IEEE

Abstract—Distributed servers architecture offers storage and
streaming scalabilities for video services. In this letter, we propose
and analyze an on-demand scheme in which the local servers store
the beginning portion (i.e., the “prefix”) of videos and deliver it
by means of unicast streams to the clients. The clients are able to
merge onto on-going multicast streams delivered from the repos-
itory by means of their set-top buffers. Given a certain limited
repository (and thereof multicast) bandwidth, we investigate how
the total cost of the local servers can be minimized. We show that if
the local storage is the main cost, the size of the prefixes is likely to
increase with the video popularity. On the other hand, if the server
cost mainly comes from streaming capacity, the size of the prefixes
is likely to decrease asymptotically with the video popularity.

Index Terms—Client buffering, distributed servers architecture,
multicasting, on-demand video services, server caching.

I. INTRODUCTION

A DVANCES in broadband networking has made the de-
livery of video to the home a reality [1]. In a video system,

repository servers such as libraries or jukeboxes (collectively re-
ferred to as a repository in this paper) are used to store all the
videos of interest to users distributed in a network. In order to
accommodate a large number of concurrent users, requests for
the same video can be served with a single multicast stream.
In spite of this, for a large user pool, the streaming require-
ment of the repository can still be high. Furthermore, since the
repository may not be co-located with the users, the network
transmission cost may be high. Distributed servers architecture
is hence proposed to address the above problems [2]. In this
system, local or satellite servers are placed close to user clus-
ters so as to pre-buffer or pre-cache videos according to their
local demand. In this way, by increasing the number of reposi-
tory servers, we achieve scalable storage; and by increasing the
number of local servers, we achieve scalable streaming capacity.

Clearly, there is a tradeoff between the limited repository
bandwidth and the cost of local servers (consisting of their total
storage and streams)—the lower the available repository band-
width is, the higher is the cost of local servers. It is therefore im-
portant to address how to minimize the cost of the local servers
given a certain (limited) repository bandwidth. In this paper,
we consider an operation of such a distributed servers archi-
tecture. Our results show that, if storage is the main cost of a

Manuscript received April 12, 2001. The associate editor coordinating the re-
view of this letter and approving it for publication was Dr. J. Choe. This work
was supported by the Areas of Excellence (AoE) Scheme on Information Tech-
nology funded by the University Grant Council in Hong Kong.

The author is with the Department of Computer Science, The Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
(e-mail: gchan@cs.ust.hk).

Publisher Item Identifier S 1089-7798(01)08456-3.

(a)

(b)

Fig. 1. The system (a) and operation (b) for a distributed servers architecture
with local caching servers and client buffering.

server, larger caches should be allocated to those more popular
videos. On the other hand, if streaming is the main cost of a
server, smaller caches should be allocated to those more popular
videos. While most of the previous work on video services fo-
cuses on either client buffering (see, for examples, [3]–[10]) or
server caching (see, for examples, [2], [11]), we consider for the
first time how server caching and client buffering can be jointly
combined in a distributed servers architecture for on-demand
(i.e., zero-delay) service, and its cost optimization issues given
a certain target arrival rate that the system is designed under.

II. DISTRIBUTED SERVERSARCHITECTURE

A. System Description

We show in Fig. 1(a) a distributed servers architecture con-
sisting of a repository, a multicast-capable network, and some
local servers. The local servers store the beginning portions (i.e.,

1089–7798/01$10.00 © 2001 IEEE

CHAN: COST OPTIMIZATION OF A DISTRIBUTED SERVERS ARCHITECTURE FOR ON-DEMAND VIDEO SERVICES 385

the “prefixes”) of the videos and each client has a buffer of lim-
ited size. In order to provide on-demand service, the local server
unicasts the prefixes of the videos to the users upon their arrival.
While receiving (and playing) its unicast stream, the client can
use its buffer to cache an on-going stream multicast from the
repository. Once the play-point of the video is available from
the client’s buffer, the unicast stream from the local server can
then be relinquished and the client is said to be “merged” with
the multicast stream. Therefore, the unicast streams as provided
by the local servers are “transient” in nature and of short dura-
tion.

We consider that there are enough streams in both the local
servers and the network so that the probability of running out
of such streams is negligible (a requirement for on-demand ser-
vice). Under this condition, the servicing of a video is indepen-
dent of the servicing of the other videos, and we can focus our
discussion on a particular videowith length minutes. We
show the operation of the system considered in this paper in
Fig. 1(b). Let be the prefix length for the video, which also
corresponds to the buffer allocated at the user’s set-top box. All
the three users arriving into the system are first served by their
respective local servers for a time of minutes. The first user
after the start of a video multicast initiates (or “pulls”) a new
multicast from the repository at a time minutes later (as the
maximum amount of data that a client can prebuffer ismin-
utes). The multicast from the repository streams from video seg-
ment minutes onwards. Clearly, while the other clients are
being served by the unicasts from their respective local servers,
the multicast would be started which the clients cache for their
later use.

B. Analysis

In this section, we analyze the system in terms of the storage
and streaming requirements at the local servers and consider
how the cost can be minimized, given a certain repository band-
width (which also corresponds to the multicast channels used).
Let be the number of videos in the system, andbe the total
number of local servers. Requests for videoarrive at the local
server () according to a Poisson process with rate

req/min. By Little’s formula, the unicast streams required
at the local server is clearly given by

(1)

We further define the aggregate request rate for videoas
, and the overall external request rate as

.
We next derive the repository bandwidth required for video

given . The average interval between successive multicast
channel allocation is given by (as the average inter-
arrival time of requests is). Since each multicast channel is
held for a duration of minutes, by Little’s formula,
the number of multicast streams (and hence the repository band-
width) required for the video is given by

(2)

In general the total server cost is a function of its total storage
given by , and its total
streaming given by .
Denote as such cost function.1 Our cost optimiza-
tion problem is hence to find such that is mini-
mized, subject to a certain constraint on repository bandwidth

, for some value of . This problem can be
solved by considering the Lagrangian function

(3)

where is the Lagrangian multiplier depending on the system
parameters. can then be solved by setting
and using the constraint . As illustrative examples,
we consider two simple cases in which the server cost mainly
comes from either storage or streaming and can be modeled by
a linear function, i.e., either or
(the proportionality constant has been absorbed without loss of
generality).

For storage optimization and the case of general interest
, the Lagrangian function can be approximated by

which yields

(4)

where and . Note that if the
movie lengths are roughly the same, the equation indicates that,
in order to minimize the (storage) cost of the local servers, the
prefix length should increase with video popularity. This is ex-
pected because keeping a larger prefix for those popular videos
leads to more significant decrease in the repository bandwidth
requirement.

Regarding the optimization of streaming cost and considering
the general case of interest , it is not difficult to show
that, by following similar steps as above,

(5)

where and . The equa-
tion says that if the movie lengths are roughly the same, as
opposed to the case of storage minimization, the prefix length
decreases asymptotically with video popularity. This is again
expected since keeping a smaller prefix for popular videos de-
creases the local streaming requirement.

III. I LLUSTRATIVE NUMERICAL RESULTS

We consider a system in which the access probability for
video is given by , where is Zipf-distributed, i.e.,

, for some parameter. Therefore, the request rate for video

1Note that we factor in the cost of the repository by adding it intof(C; U).

386 IEEE COMMUNICATIONS LETTERS, VOL. 5, NO. 9, SEPTEMBER 2001

Fig. 2. W vsersus� for the distributed servers architecture, with the local
storage minimized.

Fig. 3. W versus� in the distributed servers architecture, when streaming
is the main server cost.

is given by req/min. As a baseline, we consider a
system with req/min, , [8],
[9], minutes for all videos, , and

.
We first consider the case that the storage cost is minimized.

We show in Fig. 2 the optimal prefix length minutes for
video (corresponding also to the client buffer size) with re-
spect to . As noted before, the more popular a video is, the
larger is its , which flattens off as increases (the graph
terminates at the lowest and highest video request rate in the

system). Clearly the client buffer does not have to be large (less
than 10 minutes in this case). With respect to minimizing the
cost of local streaming, we show in Fig. 3 vs. . As op-
posed to the previous case, now decreases with video pop-
ularity. Similar to the previous case, the client buffer does not
have to be large (20% of the video length).

IV. CONCLUSIONS

We have studied in this paper the use of distributed servers
architecture to achieve both storage and streaming scalabilities.
We consider an on-demand system in which the local servers
store the beginning portion (i.e., the “prefix”) of the videos
and serve users on-demand using short unicast streams. The
remainder of the video is delivered from the repository in a
multicast manner. By means of buffering, the clients merge
onto the ongoing multicast streams. We have analyzed an
operation of the system, and investigated how the total cost of
the local servers can be minimized given a certain repository
(or multicast) bandwidth. We find that if the cost of the local
servers mainly comes from storage, the prefix length should
increase with its popularity (according to for
linear cost and uniform movie length, where is a constant
depending on system parameters andis the request rate of
the video). On the other hand, if the server cost mainly comes
from streaming, the prefix size decreases asymptotically with
video popularity (according to for linear cost
and uniform movie length, where is another constant).

REFERENCES

[1] V. O. K. Li and W. Liao, “Distributed multimedia systems,”Proceedings
of the IEEE, vol. 85, pp. 1063–1108, July 1997.

[2] S.-H. G. Chan and F. A. Tobagi, “Caching schemes for distributed video
services,” inProc. 1999 IEEE Int. Conf. on Communications (ICC’99),
Vancouver, Canada, June 1999, pp. 994–1000.

[3] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast technique for true
video-on-demand services,” inProc. ACM Multimedia 98, New York,
USA, Sept. 14–16, 1998, pp. 191–200.

[4] S. Sen, L. Gao, J. Rexford, and D. Towsley, “Optimal patching schemes
for efficient multimedia streaming,” inProc. NOSSDAV’99, 1999.

[5] D. L. Eager, M. K. Vernon, and J. Zahorjan, “Optimal and efficient
merging schedules for video-on-demand servers,” inProc. ACM Mul-
timedia 99, Orlando, FL, Oct. 30–Nov. 5, 1999, pp. 199–202.

[6] S. W. Carter, D. Long, and J.-F. Pâris, “An efficient implementation
of interactive video-on-demand,” inProc. 8th Int. Symp. on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
San Francisco, CA, Aug. 29–Sept. 1, 2000, pp. 172–179.

[7] S. Viswanathan and T. Imielinski, “Metropolitan area video-on-demand
service using pyramid broadcasting,”Multimedia Syst., vol. 4, pp.
197–208, Aug. 1996.

[8] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “Design and analysis of per-
mutation-based pyramid broadcasting,”ACM/Springer Multimedia Sys-
tems, vol. 7, no. 6, pp. 439–448, 1999.

[9] K. A. Hua and S. Sheu, “Skyscraper broadcasting: A new broadcasting
scheme for metropolitan video-on-demand systems,”ACM Computer
Commun. Rev., vol. 27, pp. 89–100, Oct. 1997.

[10] L. Gao, J. Kurose, and D. Towsley, “Efficient schemes for broadcasting
popular videos,” inProc. NOSSDAV’98, Cambridge, U.K., July 1998.

[11] W. Liao and V. O. K. Li, “The split and merge protocol for interactive
video-on-demand,”IEEE Multimedia Mag., pp. 51–62, Oct.–Dec. 1997.

