
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE N° 11 – NOV. 99

NUMERICAL SIMULATION FOR SCIENCE AND TECHNOLOGY

SUPERCOMPUTING REVIEW

EPFL

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Slow recovery wavefont

S3

Slow recovery wavefont

t=740ms
(a)

t=2740ms
(b)

t=3370ms
(c)

t=3420ms
(d)

t=4150ms
(e)

t=7570ms
(f)

-80mV +20mV

Initiation of a nonsustained atrial fibrillation. First, one normal stimulus is applied followed by two ectopic beats
S2 and S3. We can see the evolution of the action potentials: (a) t=750 ms, shortly after the application of S3

which collides with the slow recovery wavefront created by S2; (b) t= 2740 ms, just at the onset of atrial
fibrillation; (c) t=3370 ms and (d) t=3420 ms show the atrial fibrillation with up to 6 independent wavelets, note

the appearance of u-turns and anatomical reentry around veins; (e) t=4155 ms transition between atrial
fibrillation and atrial flutter, note the anchoring effect around SVC; (f) t=7570 ms atrial flutter with a periodic

pattern. (see article on page 32)

http://www.epfl.ch/welcome.html
http://sicwww.epfl.ch/SIC
http://www.epfl.ch/bienvenue.html

2Nov. 99

SUPERCOMPUTING REVIEW

EPFL

Editorial
Depuis quelques années, l’idée d’assembler des machines

destinées aux calculs à haute performance à partir de compo-
sants standard du marché est devenue attrayante dans la
communauté des scientifiques. Ces machines devraient rivali-
ser en performance avec les super-ordinateurs actuels et offrir
un rapport prix-performance plus avantageux. Ce défi a
donné naissance à de nombreux projets dans le monde et
parmi ces projets, il y a Swiss-Tx dans lequel l’EPFL participe
intensivement. En effet, deux machines prototypes sont déjà à
l’EPFL et une nouvelle machine pourrait être installée à la fin
de cette année (page 3). Bien que les machines Swiss-Tx soient
assemblées à partir de stations de travail, elles possèdent
néanmoins un réseau de communication développé en Suisse
qui supporte une implantation de la librairie standard de
communication MPI* (page 12) et un module NAFS de
fichiers répartis utilisé pour les entrées-sorties parallèles
(page 15). Les performances de deux des applications tour-
nant sur ces machines sont montrées dans les articles des pages
23 et 29.

Par la nature multidisciplinaire de cette revue, nous vous
proposons deux articles qui à notre avis méritent d’être
soulignés. Le premier article concerne une simulation infor-
matique réussie des arythmies auriculaires (page 32). Le
deuxième article présente un nouvel outil de prédiction de
performance pour les applications parallèles (page 36).

Contents
Table des matières

Parallel computer architectures for commodity
computing and the Swiss-T1 machine

Architectures de machines parallèles construites
avec des matériels standardisés et l'ordinateur
Swiss-T1

Pierre Kuonen & Ralf Gruber 3

Communication Libraries for the Swiss-Tx
Machines

Les librairies de communication pour les machines
Swiss-Tx

Stephan Brauss 12

Parallel File Striping on the Swiss-Tx Architec-
ture

Entrées/sorties parallèles sur les disques locaux de
l’architecture Swiss-Tx

Benoit A. Gennart, Emin Gabrielyan &
Roger D.Hersch 15

A Parallel Discrete Element Method for Indus-
trial Granular Flow Simulations

Une méthode d'éléments discrets parallélisés pour
les simulations d'écoulements granulaires
industrielles

Mark L. Sawley & Paul W. Cleary 23

Performance test of the SPECULOOS code on
the T0-Dual parallel machine

Test de performance du code SPECULOOS sur
l’ordinateur parallèle T0-Dual

Daniel Weill 29

Computer simulation of atrial arrhythmias
Simulation informatique des arythmies

auriculaires
Olivier Blanc, Jean-Marc Vesin,

Nathalie Virag, Olivier Egger,
Jacques Koerfer & Lukas Kappenberger 32

IP3T a performance prediction tool for irregular
parallel programs

IP3T, un outil de prédiction de performance
pour applications parallèles irrégulières

Michel Pahud 36

For more information about CAPA:
Pour plus d’informations sur CAPA

http://capawww.epfl.ch/

Editorial
Since a few years, building a machine dedicated to high

performance computing made of computer commodities
became an attractive endeavour for the scientific commu-
nity. These machines should be as powerful as the existing
supercomputers and should have a favourable price-per-
formance ratio. With this challenging goal, many projects
started around the world. The Swiss-Tx, in which EPFL has
an intensive participation is one of these projects. Two
prototype machines are already in use at EPFL and a new
machine might be installed by the end of this year (page 3).
Although the Swiss-Tx machines are built from commodity
elements, they feature a Swiss-made communication net-
work supporting MPI*, the standard communication li-
brary (page 12) and the NAFS striped files package used for
parallel Input/Output (page 15). Performances of two ap-
plications running on these machines are presented in the
two articles on pages 23 and 29.

 As a multidisciplinary review, it is worth proposing two
unrelated but interesting articles. The first one talks about
computer simulation of atrial arrhythmias (page 32) and
shows a successful simulation of some phenomena already
observed in nature. The second one presents a new perform-
ance prediction tool for parallel applications (page 36).

* MPI: Message Passing Interface (interface pour les échanges de messages)

http://capawww.epfl.ch/

3 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

La disparition, au cours des dernières années, des
principaux constructeurs de superordinateurs parallè-
les a favorisé l’émergence d’un nouveau concept de
machine parallèle basé sur l’assemblage d’ordinateurs
utilisant des composants standards, tels des PCs ou des
stations de travail, connectés au travers d’un réseau à
haut débit et à latence faible. Dans cet article nous
présentons et comparons différentes topologies envisa-
gées pour réaliser de tels réseaux et nous justifions le
choix de la machine Swiss-T1 que l’EPFL planifie
d’installer à fin 1999 dans le cadre du projet Swiss-Tx.
L’objectif de ce projet est de réaliser, à l’horizon 2000,
une machine parallèle de faible coût délivrant un
Teraflop/s.

Commodity parallel computing becomes more
and more popular, as the specialised supercomputing
companies stop their activity. In this new concept, a
user is confronted with a machine built with mass
produced fully equipped workstations or PCs which
are interconnected through some high speed, low
latency network. In this paper, we discuss and com-
pare the different network topologies that are used to
cluster those computational units. Then we justify the
choice made for the Swiss-T1 parallel commodity
computer that may be installed at EPFL by the end of
1999 in the framework of the Swiss-Tx project. Its
final objective is to build a low cost, parallel commodity
computer delivering one Teraflop/s by the year 2000.

INTRODUCTION

Since 6 years, most of the supercomputer vendors have
been taken over by PC and workstation manufacturers
(Cray, Convex), have stopped supercomputing (Intel), or
stopped their business (Thinking Machines, KSR). There is
no manufacturer now remaining for whom the main busi-
ness is supercomputing. Users of high performance parallel
machines can now choose among vector machines (Cray/
SGI, NEC, Fujitsu) and SMPs (SGI, IBM, Sun, Compaq,
HP, Hitachi). Besides the high prices, the vector machines
demand data structures different to those chosen in cache
based computers as PCs or workstations and the SMP
machines with their customised architectures often do not
scale with the number of processors. These are major

reasons why commodity parallel computing is now consid-
ered as an alternate road map towards high performance
parallel computing. In this new approach, autonomous,
high performance, shared memory computers are con-
nected by an external high-speed network. Global commu-
nication between processors can be taken care of by message
passing libraries such as MPI. Such parallel computers are
often called message passing machines for which a user has
to care about optimising the MPI implementation to
become efficient on all those computer architectures. In
contrary to vector machines, the use of commodity com-
puters as computational units guarantees that local
optimisation has not to be touched when porting a PC or
workstation program to a commodity supercomputer.

In this paper we first discuss and compare the different
popular network architectures chosen to cluster computa-
tional units with a special emphasis on circulant graphs.
Secondly, we present the Swiss-Tx commodity parallel
computer project [2, 3] that aims at delivering a Teraflop
machine by the year 2000.

NETWORK ARCHITECTURES

The definition of efficient interconnection network
topology is a major issue of parallel commodity computer
designers. Since many years, several topologies have been
studied and used to build parallel computers. For example,
a few years ago, hypercube topology was largely used
because of its apparently low diameter and its good math-
ematical properties. Besides the SGI Origin2000, this to-
pology is not any more used today because of its lack of
scalability. Topologies derived from trees are used in the
IBM SP-2 and the fat-tree topology by the Compaq-
Quadrics machines using a follow-up of the Meiko [7]
network technology. On the other hand, there is a trend
towards simple graphs such as grids (often used by Beowulfs)
or the torus (SGI/Cray T3E). In the following paragraphs
we will present the results of our studies concerning the
topologies for interconnection networks realised in the
framework of the Swiss-Tx project.

The graph theory is the main mathematical method
applied in the field of interconnection networks. To well
understand the content of this paper we start with a glossary:
❚ A graph is made of edges and nodes;
❚ The size of the graph is the number N of nodes of the

graph. It is directly related to the maximum computa-

PARALLEL COMPUTER ARCHITECTURES
FOR COMMODITY COMPUTING
AND THE SWISS-T1 MACHINE

PIERRE KUONEN, EPFL, COMPUTER SCIENCE DEPARTMENT, PIERRE.KUONEN@EPFL.CH
AND RALF GRUBER, EPFL, COMPUTER SERVICES, RALF.GRUBER@EPFL.CH

mailto:Pierre.Kuonen@epfl.ch
mailto:Ralf.Gruber@epfl.ch

4Nov. 99

SUPERCOMPUTING REVIEW

EPFL

tional power of the machine. Typically, each node of the
graph will be occupied by a fixed number P of processors;

❚ Two nodes are adjacent if they are the extremities of the
same edge;

❚ A chain between two nodes x and y is a list of k nodes
x1,..,xk such that two consecutive nodes xi and xi+1,
0<i<k, are adjacent and such that x1=x et xk=y;

❚ A graph is connex if there exists a chain between each pair
of nodes of the graph. In the following, we are only
interested in connex graphs;

❚ The length of a chain is the number of its edges;
❚ The distance dij between two nodes xi and xj is the

length of the shortest chain between them;
❚ The diameter D of a graph is the longest distance in the

graph;
❚ The average diameter (or average distance) Dm of a graph

is defined as:

Dm = ∑ dij /(N2 – N)

where N is the size of the graph (by definition, dii=0).
The average diameter influences the transfer time be-
tween arbitrary nodes and the diameter influences the
time used to broadcast information. In any case we will
try to minimise these values with respect to the size and
the degree of the graph;

❚ The bisectional width BiW is the smallest number of
edges we have to cut in order to separate the graph in two
parts of the same number of nodes (plus or minus one).
It is an informal measure of the available bandwidth
between the two half of the machine. Usually we will try
to keep this value as high as possible;

❚ The degree d of a node is the number of nodes adjacent
to it. The degree imposes the number of network
communication (NC) ports we must have on each node.
Usually this number is dictated by the status of the used
technology. In any case, the price of the machine
increases with the number of needed NC ports;

❚ A graph is regular if all the nodes have the same degree.
In order to avoid special-case nodes, regular graphs are
our favourite candidates. Special case nodes can become
hot–spots and increase the contention phenomena;

❚ A topology is a class of graphs;
❚ A topology is rigid if for any given size N and degree d

there exists only a few (<<N) graphs of degree d and of
size smaller or equal to N. An example of a very rigid
topology is the hypercube. There exits only one hypercube
with a given degree d and the size of this hypercube must
be 2d. Therefore, following the above definition, for any
d and N there exists at most one hypercube of degree d
and of size smaller or equal to N. To build computers of
any power we need to have a great liberty on the choice
of the size of the graph. Therefore we try to avoid rigid
topologies.

To summarise, the ideal topology should have the
following characteristics: It should be regular and not rigid,
we need a low average diameter, a low diameter and a high
bisectional width for a large size and a small degree.

Our objective is to compare different topologies. To do
so, we need to define clearly what parameters of which
graphs should be compared. As it can be seen in Fig. 1, the
processing power of a machine is characterised by the
number N of processing units (PU) or nodes as previously
defined and the number P of processors per PU, and the
network by the degree d, the diameter D, the average
diameter Dm, the bisectional width BiW, and the cost. In
our study, we will compare graphs with the same number of
PUs and processors per node. In others words, the problem
is to decide, for a given computing power, which are the
topologies having the best connection characteristics.

Interconnection Network
(D, d, Dm, BiW, Cost)

PU1
d

PU2
d

PUN
d

Mem. Disks Mem. DisksMem. Disks

Fig. 1 – General representation of a commodity parallel
computer

CIRCULANT GRAPHS

In [5] we analyse and propose the so-called K-Ring
topology for the network of the Swiss-Tx machines. We
show that this topology has better characteristics than the
most currently used (hypercube, torus, fat-tree,..) ones. In
the following section we are going to enlarge our study in
order to extend our analysis to a topology called circulant
graphs [1] that includes the K-Rings.

❚ A circulant graph: CN<a1,a2,..,aK> with
0<a1<a2<..<aK<(N+1)/2 is a graph of size N where the
nodes are numbered from 0 to N-1 and such that the
node i is linked to the nodes i±a1, i±a2,..,(i±aK) mod N.

Circulant graphs are regular graphs, but they can be
non-connex (example C12<2,4>). It has been demonstrated
[1] that a circulant graph is connex if gcd(a1,a2,..,ak,N)=1.

The condition “∃ ai, aj such that gcd(ai,aj)=1” implies
that gcd(a1,a2,..,ak,N)=1, but the reverse is not true. A
simple example is: gcd(6,10,15)=1 but gcd(6,10)=2,
gcd(6,15)=3 and gcd(10,15)=5. If we impose that a1=1, we
obtain: ∀ i, gcd(1,ai)=1 and the corresponding graph is
connex. Even if the class of circulant graphs having a1=1
does not contain all the connex circulant graphs, we will
restrict our analysis to circulant graphs having a1=1 i.e. to
CN<1,a2,..,aK>.

It has to be noted that K-Rings are circulant graphs
CN<a1,a2,..,aK> such that ∀ i, gcd(ai,N)=1. Consequently,
K-Rings are included in CN<1,a2,..,aK> (see [4] for details).

PARALLEL COMPUTER ARCHITECTURES FOR COMMODITY COMPUTING AND THE SWISS-T1 MACHINE

5 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

FAT-TREES

Fat-tree topology is used to build multi-stage networks.
In these networks some nodes of the graph are computing
nodes (PU) while other nodes are switching nodes. More
details on the fat-tree topology can be found in [6].

Fig. 2(a) present a fat-tree of size 12. Figs. 2(b) and 2(c)
presents the two possible solutions for building an intercon-
nection network starting from the fat-tree represented
in 2(a). Squares represent computing nodes while circles
represent 4x4 crossbar switches. Only computing nodes
contain processors. In this paper we will assume that
interconnection networks are built using the solution 2(c).
This choice is motivated by the fact that fat-trees were
designed for maximising the bisectional width. Solution
2(c) leads to a better bisectional width with respect to the
number of computing nodes and it is very close to the
solution used by Meiko [7].

As it appears in Fig. 2, fat-trees are not regular graphs.
Indeed switching nodes have a degree that is the double of
the one of computing nodes. In order to compare this
topology with a regular one, we have to decide which degree
we assume for fat-trees. In order to be fair in our compari-
son, we base our choice on the degree of the computing
nodes. Indeed this degree determines how many NC ports
must be present on the PUs. With this hypothesis the
graphs presented in Fig. 2 have a degree of 2.

(a)

(b) (c)
Fig. 2 – Fat-tree of size 12 and the corresponding

interconnection networks

GRIDS, TORUSES AND HYPERCUBES

Toruses are periodic grids. Since their topologies are
well known, we only remind that a torus of dimension K is
a regular graph of degree 2K.

As our objective is to build the interconnection network
of a parallel computer we are not interested by multi-graph
(graphs that can have more than one edge between two
nodes). More precisely, we consider a multi-graph to be
equivalent to the graph obtained by replacing any multiple
edges by one edge. With such a definition hypercubes are
special case of toruses (toruses of dimension K and of size 2K).

In the following sections we will compare the character-
istics of toruses, fat-trees, and circulant graphs CN<1,a2,..,aK>
for the same size and the same degree. Our comparisons are
limited to the degrees 4, 6, 8 and 10 because, on the one
hand, the degree of toruses and circulant graphs must be an
even integer and, on the other hand, circulant graphs and
toruses of degree 2 are simple rings.

COMPARISON OF THE CHARACTERISTICS OF TORUS, FAT-
TREES AND CIRCULANT GRAPHS

Figs. 3 and 4 presents the comparisons of the measured
values of the diameter, the average diameter and the bisec-
tional width for degrees 4, 6, 8 and 10. For degree 10 the
values are obtained with an approximate formula, since the
computed values were not available for circulant graphs.
These results show that:
1. Toruses always have the worst diameter;

100090080070060050040030020010000
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

Number of PUs
(a) Degree 4

D Cir.Graph

Dm Torus
Dm Cir.Graph

D Fat-Tree

Dm Fat-Tree

D Torus

1200100080060040020000
0

2

4

6

8

10

12

14

16

Number of PUs
(b) Degree 6

Dm Torus
Dm Cir.Graph

D Torus

D Cir.Graph

D Fat-Tree

Dm Fat-Tree

PARALLEL COMPUTER ARCHITECTURES FOR COMMODITY COMPUTING AND THE SWISS-T1 MACHINE

6Nov. 99

SUPERCOMPUTING REVIEW

EPFL

60050040030020010000
0

1

2

3

4

5

6

7

8

9

Number of PUs
(c) Degree 8

D Torus

D Cir.Gr.Graph

Dm CirDm Cir.Gr.Graph

D Fat-Tree
Dm FDm Fat-Tree

Dm TDm Torus

100090080070060050040030020010000
0

1

2

3

4

5

6

7

8

9

10

11

Number of PUs
(d) Degree 10

D Fat-Tree

D Torus

D Cir.Graph

Fig. 3 – Comparison of the diameter (D) and average
diameter (Dm) of toruses, fat-trees and circulant

graphs

2. Fat-trees appear to have the best diameter but the
difference with circulant graphs is decreasing with in-
creasing degree;

3. The average diameter of fat-trees is very close to its
diameter, as a consequence, for degrees greater than 4
and a size smaller than 1000, the average diameter of
circulant graphs is smaller than the one of fat-trees;

4. For a number of PUs up to 1000 the diameter of
circulant graphs is smaller or equivalent to the one of fat-
tree as soon as the degree is greater than 6;

5. Fat-trees always have the best bisectional width, toruses
the worst ones, and the bisectional width of circulant
graphs is very erratic.

Based on these results we can discard the toruses that
always have the worst diameter and bisectional width. Small
degree fat-trees seem to be the best choice even if the
difference with circulant graphs is not spectacular. Never-
theless, the drawback of fat-tree is that they are extremely
rigid. We have the following properties:

❚ The number of fat-trees of a given degree d and of size
≤ N is equal to Logd(N) . For d=8 and N=1000 this
number is equal to 3;

❚ Performant circular graphs can be found for any number
of PUs.

In order to decide whether or not fat-trees is a better
choice than circulant graphs we are going to study how to
build a communication network using these topologies.

100090080070060050040030020010000
0

100

200

300

400

500

600

700

800

900

1000

Number of PUs
(a) Degree 4

Circulant graph
Fat-tree
Torus

10009008007006005004003002001000
0

200

400

600

800

1000

1200

1400

1600

1800

Number of PUs
(b) Degree 6

Circulant graph
Fat-tree
Torus

30025020015010050000

100

200

300

400

500

600

Number of PUs
(c) Degree 8

Circulant graph
Fat-tree
Torus

Fig. 4 – Comparison of the bisectional width of
toruses, fat-trees and circulant graphs

PARALLEL COMPUTER ARCHITECTURES FOR COMMODITY COMPUTING AND THE SWISS-T1 MACHINE

7 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

COMMUNICATION NETWORKS AND CROSSBAR SWITCHES

Mem. Disks Mem. DisksMem. Disks

Interconnection Network
(D, d, Dm, BiW, Cost)

PU1

P
Switch

d

PU2

P
Switch

d

PUN

P
Switch

d

Fig. 5 – General representation of a parallel computer
built using crossbar switches

Recent developments of high-speed crossbar switches
have opened new possibilities for the design and the reali-
sation of interconnection networks. Fig. 5 shows the gen-
eral schema of a communication network built using cross-
bar switches. In the case of Swiss-Tx machines, the available
technology is a 12x12 crossbar switch, called T-NET,
designed by the company Supercomputing Systems AG
(SCS). The objective of the Swiss-Tx project is to build a
parallel machine having a peak performance of up to 1
Teraflop/s. Today’s technology can provide processors of a
peak performance of 1 Gflop/s (such as the DEC-Alpha
21264). For a parallel one Teraflop/s computer, 1000 one
Gflop/s processors have to be interconnected using the high
bandwidth, low latency 12x12 T-NET switches. In all the
following considerations we make the assumptions that we
need one link per processor. This assumption leads to the
following possibilities:
❚ P=2 processors by PU, a topology of degree d=10 and a

size of N=500;
❚ P=4 processors by PU, a topology of degree d=8 and a

size of N=250;

10009008007006005004003002001000
0

1

2

3

4

5

6

7

8

9

Di
am

et
er

s

Number of Processors
(a) Degree 4

Dm Cir.Graph
Dm Fat-Tree

D Fat-Tree

D Cir.Graph

10009008007006005004003002001000
0

1

2

3

4

5

6

Number of Processors
(b) Degree 6

Di
am

et
er

s

Dm Cir.Graph

Dm Fat-TreeD Fat-Tree

D Cir.Graph

10009008007006005004003002001000
0

1

2

3

4

5

Number of Processors
(c) Degree 8

Di
am

et
er

s

Dm Cir.Graph
Dm Fat-Tree

D Fat-Tree

D Cir.Graph

10009008007006005004003002001000
0

1

2

3

4

5

Number of Processors
(d) Degree 10

Di
am

et
er

s

Dm CirDm Cir.Gr.Graph

D Fat-Tree

Fig. 6 – Diameter (D) and average diameter (Dm) of
interconnection networks built using crossbars

❚ P=6 processors by PU, a topology of degree d=6 and a
size of N=167;

❚ P=8 processors by PU, a topology of degree d=4 and a
size of N=125.
All these situations can be realised with circulant graphs;

no one can exactly be realised with fat-tree topology.

PARALLEL COMPUTER ARCHITECTURES FOR COMMODITY COMPUTING AND THE SWISS-T1 MACHINE

8Nov. 99

SUPERCOMPUTING REVIEW

EPFL

Fig. 6 compares the diameters of possible solutions
using fat-trees and circulant graphs. For degrees 4, 6 and 8
the results are computed values, for degree 10 results are
based on an approximate formula. Possible solutions using
fat-trees are indicated with a dot. It clearly appears that
circulant graphs always have a diameter smaller or equal to
the one of fat-trees. Nevertheless, fat-trees have a better
bisectional width.

At this stage of our analysis it is still difficult to choose
between circulant graphs and fat-trees. Circulant graphs are
much more flexible, have most of the time a better diameter
and always have a better average diameter whereas fat-trees
have a better bisectional width. The last criterion we have
to analyse is the cost of the network.

1400120010008006004002000
0

100

200

300

400

500

600

700

800

Number of Processors
(a)

Nu
m

be
r o

f S
wi

tc
he

s

Fat-Tree

D Cir.Graph

1400120010008006004002000
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Processors
(b)

Nu
m

be
r o

f l
in

ks

Fat-Tree

D Cir.Graph

Fig. 7 – Cost of interconnection networks of degree 6
built using 12x12 crossbar switches

The cost of a massively parallel machine is roughly
composed of the cost of the PUs and the cost of the
communication network. Since N*P is chosen to be the
same in all the cases, the cost for the PUs is the same for fat-
trees and circulant graphs. The cost of the network is
directly related to the number of switches and links neces-
sary to build it. Fat-trees have the following property: if we
use nxn crossbars to realise the switch nodes and the
computing nodes then the degree of the fat-tree must be

n/2 (see Fig. 2). Therefore, if the available technology is
12x12 crossbars, we are limited to a degree of 6.

Fig. 7 shows the cost of fat-trees and circulant graphs of
degree 6 for a number of processors up to 1400. The needed
links and crossbars increase more rapidly for fat-trees than
for circulant graphs. Let us compare possible solutions that
are the closest to 1000 processors:
❚ Fat-Tree: 1296 processors (216 PU’s), a diameter of 6,

an average diameter of 5.63, a bisectional width of 648,
756 crossbars and 3888 links;

❚ Circulant graph: 1002 processors (167 PU’s), a diam-
eter of 5, an average diameter of 3.68, a bisectional width
of 96, 167 crossbars and 501 interconnection links.

Of course the solution with a fat-tree has a much better
bisectional width. But two remarks can be made:
1. The high bisectional width has its price. Thus, the ratios

of the number of switches and links between the fat-tree
solution and the circulant graph solution are 4.53 and
7.77, respectively;

2. The number of processors in a fat-tree must be a power
of 6. Using circulant graphs, the number of processors
must be a multiple of 6. Thus, there always exists a
solution close to a given number of processors.

Because of their flexibility and of the erratic behaviour
of their bisectional width, circulant graphs can always
exhibit solutions having a good bisectional width for a
number of processors close to a given value. In our case we
can mention two possibilities:
1. 1260 processors (210 PU’s), a diameter of 6, an average

diameter of 3.98, a bisectional width of 362, 210
crossbars and 630 links;

2. 1356 processors (226 PU’s), a diameter of 6, an average
diameter of 4.07, a bisectional width of 394, 226
crossbars and 678 links.

Nevertheless, these two solutions still have a quite low
bisectional width compared with the one for the fat-tree
solution. But, as using circulant graphs we are not limited
to a degree 6, we can also build solutions using a circulant
graph of degree 8 (with 4 processors on each switch). Doing
this we find the following solution:
❚ 1192 processors (298 PU’s), a diameter of 5, an average

diameter of 3.47, a bisectional width of 588, 298
crossbars and 1192 links.

In comparison with the solution of 1296 processors
using a fat-tree, this solution exhibits a better diameter and
average diameter, uses 2.5 times less crossbars, 3,26 less
links and achieves a bisectional width per processor of 0.49
which is almost the same as the fat-tree solution (0.5).

Nevertheless, if the only important parameter is the
bisectional width, regardless any other considerations and
particularly the cost, we can design the interconnection
network using circulant graphs of degree 10 with two
processors per PU. Below are the characteristics of some
examples of these possible solutions:

PARALLEL COMPUTER ARCHITECTURES FOR COMMODITY COMPUTING AND THE SWISS-T1 MACHINE

9 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

❚ 1000 processors (500 PU’s), a diameter of 5, an average
diameter of 3.54, a bisectional width of 570, 500 cross-
bars and 2500 links;

❚ 1020 processors (510 PU’s), a diameter of 5, an average
diameter of 3.57, a bisectional width of 642, 510 cross-
bars and 2550 links;

❚ 1080 processors (540 PU’s), a diameter of 5, an average
diameter of 3.61, a bisectional width of 778, 540 cross-
bars and 2700 links.

For these solutions the bisectional width per processor
is 0.57, 0.63 and 0.72, respectively, which is better than the
solution using a fat-tree. Moreover they use significantly
less crossbar switches and links.

As a conclusion we can say that the fat-tree is a topology
especially designed for exclusively building very high per-
formance interconnection network. The circulant graph
topology allows to adapt the performance of the intercon-
nection network to the user needs and, if needed, it allows
to obtain performance equivalent or better to fat-tree for a
lower cost. Moreover, the fat-tree topology is a very rigid
topology, it cannot fully benefit from the increasing size of
the crossbar switch technology, since the degree of a fat-tree
must correspond to half of the crossbar size, and the number
of PUs must be a power of the degree. With circulant
graphs, networks of any numbers of PUs can be built.

For all those reasons we decided to use circulant graphs
for building the interconnection network of the Swiss-Tx
computers series. In the next section we present the archi-
tecture of the Swiss-T1 computer which is based on a
circulant graph.

SWISS-T1 CONfiGURATION

HARDWARE CONfiGURATION

The first prototype Swiss-T1 machine will consist of
8 PUs connected using the T-NET 12x12 crossbar switches.
Each PU consists of 4 dual processor, Alpha-based, DS20
servers, 2 links are used per server, and 8 links per PU (one
link per processor). The four remaining links are used to
connect the 8 PUs through the circulant graph: C8<1,3>
(Fig. 8). The diameter is 2, the average diameter is 1.43 and
the bisectional width is 8. It has to be noted that we obtain
a K-Ring for this particular case. An efficient routing for
communications between all PUs is given in Table 1. This
table has to be read in the following manner: for a direct link
between the nodes, the routing number is identical to the
destination node (blue background), for an indirect con-
nection, the number (yellow background), denotes the
crossbar number through which the routing passes. In Fig.
8 the numbers on the links indicate the number of packages
that have to be sent in both directions for such an all-to-all
message passing operation. The routing table has been set
up to well distribute the charge on the different links during
an all-to-all global communication.

The architecture is completed by a frontend consisting
of 2 dual processor DS20 servers. The frontend is con-

nected to the computing nodes through the Gigabit
Ethernet/Fast Ethernet switching system.

1 2 3 4 5 6 7 8

1 - 2 2 4 4 6 8 8

2 1 - 3 7 5 3 7 5

3 2 2 - 4 4 6 8 8

4 1 7 3 - 5 7 7 3

5 4 2 4 4 - 6 6 8

6 1 3 3 7 5 - 7 1

7 8 2 8 4 6 6 - 8

8 1 5 3 3 5 1 7 -

Table 1 – Routing table for the Swiss-T1 machine

The detailed hardware and software specifications are:
❚ Swiss-T1 consists of 8 PUs, each one including one

12x12 crossbar and 4 Alpha 21264 dual-processor boxes
running at 500 MHz, giving 64 Gflops peak perform-
ance. One box has 1 Gbytes of main memory and
18 Gbytes of local disk space;

❚ Each box is connected to the 12x12 crossbar by two
bidirectional 100 Mbyte/s links through PCI adapters;

❚ Four links interconnect the crossbars. The communica-
tion configuration is the circulant graph C8<1,3> ;

❚ For an all-to-all communication, up to three messages in
both directions have to be sent between crossbars if one
follows the routing table given in Table 1;

❚ There is one frontend node consisting of 2 Alpha 21264
dual-processor boxes running at 500 MHz. Each box
includes 2 Gbytes of main memory and 18 Gbytes of
local disk space. During the installation phase it will be
connected only through the Gigabit Ethernet/Fast
Ethernet switching system, in a second phase, it will be
directly linked to the T-NET as well;

❚ Two 20x20 Fast Ethernet switches interconnect the
upper and lower half of the computational boxes;

❚ A RAID disk system of 300 Gbytes is connected to the
frontend;

❚ The remaining frontend crossbar links can be used to
interconnect other units;

❚ There is also a development box identical to a compute
box separated from the production machine;

❚ A one Terabytes archive robot system is connected to the
development box.

SOFTWARE CONFIGURATION

The different important software packages to be in-
stalled on the Swiss-T1 are (the programs marked with *
will be available at T1 installation time):

PARALLEL COMPUTER ARCHITECTURES FOR COMMODITY COMPUTING AND THE SWISS-T1 MACHINE

10Nov. 99

SUPERCOMPUTING REVIEW

EPFL

Fast Ethernet Switch 20 x 20

Fast Ethernet Switch 20 x 20

G
i
g
a
b
i
t

E
t
h
e
r
n
e
t

S
w
i
t
c
h

4
x
4

USER

USER

DLT
Archive

RAID

9

1

2 3

4

5

67

8

De
ve

lo
pm

en
t

Un
it

3

3

3
3

3

3
3

2

2 2

2

2
2

2

2
2

Fr
on

te
nd

Co
m

pu
ta

ti
on

al
 U

ni
t

A

N=8 P=8 d=4 D=2 Dm=1.43 BiW=8

Fig. 8 – Swiss-T1 architecture based on Alpha 21264 dual-processors. The 8 PUs consist of 4 dual processor
boxes. They are connected by a 12x12 crossbar switch, called T-NET. Each box, represented by a red rectangle, is
connected by two links, the remaining 4 links connect to other crossbars. The diameter is D=2. For an all-to-all

communication 3 bidirectional data exchanges are needed at most. The numbers on the links denote the number
of these exchanges between these links. A Gigabit Ethernet/Fast Ethernet switching system directly connects

the boxes to the frontend. An archive robot of 1 Tbytes and a RAID disk can be accessed by the 2 frontend boxes
in a symmetric manner. There is a special development machine connected to the Fast Ethernet and the Gigabit

Ethernet.

PARALLEL COMPUTER ARCHITECTURES FOR COMMODITY COMPUTING AND THE SWISS-T1 MACHINE

11 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

PARALLEL COMPUTER ARCHITECTURES FOR COMMODITY COMPUTING AND THE SWISS-T1 MACHINE

BASIC SOFTWARE IN EACH DUAL PROCESSOR BOX

*Tru64 Unix Compaq Operating system in each box
*F77/F90 Compaq Fortran compilers
*HPF Compaq High performance Fortran
*C/C++ Compaq C and C++ compilers
*DXML Compaq Digital math library in each box
*MPI Compaq SMP message passing interface from

Compaq (only usable in a box)
*Posix threads Compaq Threading in a box
*OpenMP Compaq Multiprocessor usage in a box

through directives
*KAP-F Kuck Ass. Inc. To parallelise a Fortran code in a

multiprocessor box (preceeds
OpenMP)

*KAP-C Kuck Ass. Inc. To parallelise a C program in a
multiprocessor box (preceeds
OpenMP)

Software to pass messages between the boxes and to use
them in parallel

*LSF Platform/ Load Sharing Facility for
SIC-EPFL resource management

Monitor SIC-EPFL Monitoring of system parameters
*Totalview Dolphin Parallel debugger
*Paradyn Madison/ Profiler to help parallelising

CSCS programs
*MPI-1/FCI SCS AG Message passing interface between

boxes running over T-NET
MPI I/O SCS/ Message passing interface

LSP-EPFL for I/O
*MPICH Argonne Message passing interface running

over Fast Ethernet
*PVM UTK Parallel virtual machine running over

Fast Ethernet
*BLACS UTK Basic linear algebra subroutines
*ScaLAPACK UTK Linear algebra matrix solvers
NAG NAG Math library package
MEMCOM SMR SA Data management system for dis-

tributed architectures

CONCLUSIONS

The fat tree topology was especially designed to build a
very high bandwidth network. As the fat-tree is a topology
derived from trees, the diameter grows optimally with the
logarithm of the number of PUs. The drawback of this
topology is the extreme rigidity, the high cost, i.e. the very
high number of links and switches.

We expect, but we have not proven yet, that the diameter
of circulant graphs grows as 2d

N which is, on a theoretical
point of view, not as good as fat-trees. Nevertheless, due to its
great flexibility we can fully benefit from the numerous
possibilities offered by the use of the crossbar technology.
Consequently, in the practice, it is always possible to find a
solution using circulant graphs which have better character-

istics for a lower cost than the ones using fat-trees. Moreover,
by using circulant graphs we can adapt the performance of the
network to user needs. For a given number of processors and
a given crossbar switch technology, we can choose the
performance of the network. If, subsequently, the user
needs to increase this performance we can increase the
degree of the circulant graph without changing the number
of processors. The opposite modification is also possible, we
can increase the number of processors without changing the
degree of the circulant graph. This flexibility which is not
possible with other topologies, allows us to optimise the
ratio price/performance according the user needs.

ACKNOWLEDGEMENTS

We would like to thank Martin Frey for continuous
interaction to define the Swiss-T1 architecture and to Mario
Romano for the graphical representation of it. The Swiss-Tx
project is a co-operation between EPFL, ETHZ, CSCS,
Supercomputing Systems and Compaq. It is financed by
CTI (Commission for Technology and Innovation at Bern).

REFERENCES

[1] F.Boesch, R. Tindell, Circulants and their Connectivities,
Journal of Graph Theory, vol 8, p.487-499, 1984

[2] S. Brauss, M. Frey, A. Gunzinger, M. Lienhard and J.
Nemecek, Swiss-Tx Communication Libraries, HPCN’99
(Amsterdam) and this issue

[3] Y. Dubois-Pèlerin, R. Gruber and Swiss-Tx Group: Swiss-
Tx, First experiences on the T0 system, EPFL, Supercomputing
Review, 10 (1998) 19-23 and http://capawww.epfl.ch/

[4] P. Kuonen: The K-Ring, Proceedings of the European
Research Seminar on Advances in Distributed Systems
(ERSADS), April 1995 .

[5] P. Kuonen, R. Gruber, A. de Vita and P. Volgers, Parallel
computer architectures for commodity computing, keynote
lecture at High Performance Computing and Networking
(HPCN) Europe, Amsterdam, April 12-14, 1999

[6] Leiserson C.E. Fat-Tree, Universal network for hardware-
efficient supercomputing, IEEE Transactions on Computers,
C-34, No. 10 (1985) 892-901

[7] Communication Network Overview, http://www.meiko.com/
info/NetworlOverview/Network/Overview.html. ■

http://capawww.epfl.ch/
http://www.meiko.com/info/NetworlOverview/Network/Overview.html
http://www.meiko.com/info/NetworlOverview/Network/Overview.html

12Nov. 99

SUPERCOMPUTING REVIEW

EPFL

COMMUNICATION LIBRARIES FOR THE
SWISS-TX MACHINES

STEPHAN BRAUSS,SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH (ETHZ), BRAUSS@IFE.EE.ETHZ.CH

 Dans le projet Swiss-Tx, les composantes matériel-
les et logicielles pour la communication sont développées
spécifiquement, car les produits standard disponibles ne
peuvent pas offrir une latence, une bande passante, la
fonctionnalité et la portabilité nécessaires. Une implé-
mentation complète de MPI, standard pour les librai-
ries des échanges de messages, est disponible. Elle est
basée entièrement sur la nouvelle interface de commu-
nication rapide, Fast Communication Interface (FCI).
Cet article montre le concept de communication utilisé
dans le projet Swiss-Tx incluant les librairies FCI et
MPI. Il compare ensuite cette librairie MPI avec
MPICH, une implémentation disponible gratuitement.

In the Swiss-Tx project, the communication hard-
ware and communication software are custom-made,
because available standard products do not offer the
necessary bandwidth, latency, functionality, and
portability. A full implementation of MPI, the stan-
dard for message-passing libraries, is available. It is
designed entirely on top of the new Fast Communica-
tion Interface (FCI). This paper presents the Swiss-Tx
communication concept including FCI and MPI and
compares Swiss-Tx MPI with the freely available
implementation MPICH.

INTRODUCTION

The highlights of the Swiss-Tx communication libraries
are low-latency, high-bandwidth, portability, and compat-
ibility. Portability means that all libraries run on various
hardware platforms (currently PCs and Compaq Alpha-
based Workstations and Servers), communication net-
works (currently EasyNet and T-NET1) and operating
systems (currently Compaq Tru64 UNIX, Linux, and
Microsoft Windows NT). Compatibility means that user
programs run without any modification on different plat-
forms. For this reason, a high-level communication library
offering the standardized Message Passing Interface (MPI)
[3] is available. This MPI library is written entirely on top
of the so-called Fast Communication Interface (FCI) [2].
See Fig. 1 for an overview of the communication hardware
and software that is involved when a Swiss-Tx MPI appli-
cation runs on two processing elements2 . The MPI appli-
cation consists of two MPI processes running on two
processing elements named PE1 and PE2. Each process
consists of the application code (User Code) or a part of it
and the communication libraries (that are the same on each
processing element). Mainly, the following three libraries

are involved:
❚ Message Passing Interface Library (MPI Library);
❚ Abstract Device Interface Library (ADI Library);
❚ Fast Communication Interface Library (FCI Library).

User Code (part #1)

MPI LibrMPI Library

ADI Library

Device Driver

EasyNet / T-NET Adapter

User Code (parUser Code (part #2)

MPI LibrMPI Library

ADI LibrADI Library

FCI Library

Device Drivevice Driver

EasyNet / TEasyNet / T-NET Adapter-NET Adapter

PE PE

MPI PMPI Process #2

FCI Library

MPI PMPI Process #1

21

Fig. 1 – A Swiss-Tx MPI application running on two
processing elements

The MPI library offers the high-level MPI routines, the
ADI library does a part of the memory management and
handles MPI data types. The FCI library is an implemen-
tation of the new communication architecture FCI. It offers
two programming paradigms: Message Passing and the so-
called Remote Store (for an introduction to Remote Store
see [6]). The EasyNet or T-NET Communication Adapter
is mainly controlled by FCI. The device driver is only used
for startup and maintenance purposes and is easy to imple-
ment.

PORTABILITY

Portability is mainly attained by a good overall hardware
and software concept and by smart programming. In this
concept, we separate the hardware and operating system
dependent from the hardware and operating system inde-
pendent software parts. Most dependencies are covered by
the new Fast Communication Interface FCI that is split
into the following three interfaces:
❚ API (Application Programming Interface)

FCI defines the set of routines which can be used by a

1 EasyNet is the communication network used in Swiss-T0 and
Swiss-T0-Dual, T-NET is used in Baby T1, Swiss-T1, and
maybe also in Swiss-T2

2 in Swiss-T0, each box has one processing element, in Swiss-
T0-Dual a box has two of it [1]

mailto:brauss@ife.ee.ethz.ch
Emin Gabrielyan
Pencil

13 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

parallel application. Such a parallel application can be a
pure FCI application (using only the routines offered by
the FCI library) or a MPI application with the ADI and
MPI libraries (see Fig. 1).

❚ DDI (Device Driver Interface)
FCI defines the functionality that must be offered by the
network device driver residing in the kernel.

❚ NHI (Network Hardware Interface)
FCI defines the functionality of the network hardware.
This includes mandatory and optional parts which can
be added for better performance.

FCI guarantees that it is easy to port the communication
libraries to new hardware and software platforms, which is
a big advantage: We can reuse most of our software which
reduces costs and development time:
❚ Replacing the communication hardware by a new one

only affects the network device driver and some low level
routines in the FCI library that directly control the
communication interface adapter.

❚ Replacing the platform by for example Motorola Power
PC based systems with Apple Mac OS only affects the
network device driver (that has to be rewritten once for
the new platform with the new operating system) and
some low level routines in the FCI library that use the
operating system and the device driver.

❚ Updating the operating system to a new release (for
example to Compaq Tru64 UNIX V5.0) or replacing
the hardware platform by a new one of the same archi-
tecture (for example a migration from Compaq Alpha
21164 Workstations to Compaq Alpha 21264 Work-
stations) normally needs no modification at all or only
affects some small parts in the network device driver.

WHY SHOULD I USE SWISS-TX MPI INSTEAD OF
MPICH ON A SWISS-TX MACHINE?

To make you understand why the Swiss-Tx communi-
cation libraries perform better than other products, we will
compare MPICH [4] on the Swiss-Tx machines with Swiss-
Tx MPI. MPICH is a freely available, portable implemen-
tation of MPI (Message Passing Interface) [3], the standard
for message-passing libraries. On the Swiss-Tx machines, it
uses the socket interface with Fast Ethernet to transfer data
between processes running on different boxes (see [1]).

In Fig. 2 you can see a MPICH application running on
two Swiss-Tx processing elements named PE1 and PE2 in
a Compaq Tru64 UNIX environment. PE1 wants to send
a message to PE2. The message is represented by a rectangle
with a letter M inside. At the beginning, the message is held
in the MPICH process on PE1. When a transfer takes place,
the message is copied into the I/O subsystem, which is a part
of the UNIX kernel. Additional overhead of the TCP/IP
protocol (e.g. the message has to be split up in smaller
network packets and the network packets have a checksum
that must be calculated in software) is illustrated by another
copy step in the I/O subsystem, that is followed by a transfer

COMMUNICATION LIBRARIES FOR THE SWISS-TX MACHINES

of the network packets to the Fast Ethernet Adapter. This
adapter is a device in a PCI slot of the Compaq Alpha
Workstation. The packets are transmitted to the adapter
that is located in a PCI slot of PE2 (by use of a Fast Ethernet
Switch) and are stored in a block of memory in the I/O
subsystem, where an additional copy step illustrates addi-
tional overhead of the TCP/IP protocol. At last, the MPICH
process on PE2 receives the message. Transferring data into
the kernel and back to the MPICH process is a resource
intensive job: The application has to call a routine in the
kernel to initiate such transfers. As you can see, there are
three main drawbacks of MPICH on the Swiss-Tx ma-
chines:
❚ messages have to be copied many times;
❚ the kernel is involved in the transfer of the messages

(send and receive) and has to be called therefore;
❚ the big TCP/IP protocol overhead.

Fast Ethernet Switch

I/O Subsystem

Kernel

Hardware

Processes

Fast Ethernet
Adapter

MPICH
Process

I/O Subsystem

Kernel

Hardware

Processes

Fast Ethernet
Adapter

MPICH
Process

MPICH
Application

MM MM

M M

MM

PE PE1 2
Sender Receiver

Fig. 2 – Two processing elements of a Swiss-Tx
machine running a MPICH application

In Fig. 3 you can see a Swiss-Tx MPI application
running on the same two processing elements PE1 and PE2
as shown above. We are still in a Compaq Tru64 UNIX
environment and PE1 wants to send a message to PE2 3 . As
before, the message is represented by a rectangle with a letter
M inside. When the message must be transmitted from PE1
to PE2, it is directly transferred from the Swiss-Tx MPI
process on PE1 to the Swiss-Tx Network Adapter (currently
EasyNet or T-NET) that resides in a PCI slot of the
Compaq Alpha Workstation. This adapter sends the mes-
sage to the destination adapter from where it is directly
copied to the right location in the Swiss-Tx MPI process on
PE2 by the adapter itself. No CPU time is used to receive the
message.

The Swiss-Tx FCI library avoids expensive kernel calls
and avoids message copying. Send and receive operations
are zero-copy. In addition to that, it has only a small
protocol overhead. This can be achieved by an intelligent
communication hardware that supports automatic multicast

3 Assumptions: the message is 4 Byte aligned, contiguous, and
transmitted by a blocking send

14Nov. 99

SUPERCOMPUTING REVIEW

EPFL

COMMUNICATION LIBRARIES FOR THE SWISS-TX MACHINES

capable routing 4 and that guarantees secure data transmis-
sion which makes error handling in the FCI library unnec-
essary. All this advantages result in a better overall perform-
ance for real applications. A workstation cluster connected
by Fast or even Gigabit Ethernet using TCP/IP can also
offer reasonable bandwidth and latency. But often, one
aspect is not taken into account: Such clusters waste a lot of
CPU time for the communication between the processing
elements because each processing element has to copy the
message several times, has to call routines in the kernel, and
has to run the TCP/IP. This time is lost and cannot be used
for calculations. These networks often don’t reach the
possible peak bandwidth at all because the processing
elements do not have enough CPU power.

Hardware

Processes

Hardware

Processes

EasyNet / T-NET
Adapter

Swiss-Tx MPI
Process M

M EasyNet / T-NET
Adapter

Swiss-Tx MPI
ProcessM

M

EasyNet / T-NET

Swiss-Tx Application

PE2
Receiver

PE1
Sender

Fig. 3 – Two processing elements of a Swiss-Tx
machine running a Swiss-Tx MPI application

INSIGHTS INTO THE SWISS-TX COMMUNICATION
NETWORKS EASYNET AND T-NET

Transferring messages directly from user space to the
communication adapter in a UNIX environment requires
that the communication hardware is specifically designed.
The same is true for the automatic reception of messages,
the Remote Store Concept [6], and other features. In fact,
the communication adapters EasyNet and T-NET comply
with the so-called Network Hardware Interface (NHI)
Specification. This specification includes functionality that
is mandatory to implement and other that is optional.
Three important parts are the communication channels,
the multicast capability and the page table support.

COMMUNICATION CHANNELS

One of the optional features is the number of supplied
communication channels that are available on the commu-
nication hardware. Depending on the number of such
channels, it is possible to attach one or more processes of an
application to a communication adapter. Each process
needs a private channel and is exclusively bound to this
channel. Each process of a parallel application using the
Swiss-Tx communication libraries should normally run on
a private processing element using a private channel of a
communication adapter. EasyNet has only one channel,
T-NET is designed to have several, but only one has been

implemented yet. This is why only one process per box can
use Swiss-Tx MPI on Swiss-T0-Dual. This machine has
only one EasyNet adapter per box but each box has two
processing elements. On Baby T1, each box has currently
two 1-channel T-NET communication adapters, one for
each processing element and therefore it is possible to run
one process of a Swiss-Tx MPI application on each process-
ing element. It is currently not possible to attach processes
of different parallel applications to different channels of the
same communication adapter. This restricts how the ma-
chine can be partitioned.

In the near future, T-NET will offer an additional
channel that is reserved for the operating system. This
channel is not part of the NHI. It can be used to transfer
TCP/IP packets that are currently transported by Ethernet.
This will speed-up applications like PVM [5], NFS [8], and
MPICH.

MULTICAST CAPABILITY

An important feature of T-NET is the possibility to
transport multicast messages. It is not fully implemented in
the EasyNet hardware. Multicast means that a message can
be sent from one communication adapter to a set of
receiving adapters. The Swiss-Tx FCI library requires that
the message is automatically copied to the right main
memory locations of the receiving processing elements
without any CPU interaction. This speeds up all collective
routines in MPI significantly and reduces the network load.

T-NET PAGE TABLE SUPPORT

On Swiss-T0, Swiss-T0-Dual, and Baby T1 in the first
phase, a programmer has to use the CMM Memory Man-
ager for allocating memory suitable to store data that should
be communicated to get the best possible performance.
This will be obsolete in the near future. Modern operating
systems use virtual memory with techniques called Paging
and Swapping. The physical memory is partitioned into a
set of pages of equal size that can be assigned to different
processes. A process sees a contiguous virtual address space
but the physical memory behind this addresses is located in
distributed pages of physical memory or is even unallocated.
This is managed by software and by the Memory Manage-
ment Unit (MMU). So it is not guaranteed that a message
that is larger than one page is located contiguously in
physical main memory. It is even not sure that it is in main
memory at all because it could have been swapped out to
disk. See [7] for further explanations about Paging and
Swapping. Because the communication adapters EasyNet
and T-NET store received messages directly into the memory
of a dedicated process, three solutions are possible:
❚ all main memory accesses of the communication adapter

are routed through the MMU;
❚ the operating systems guarantees that the physical block

of memory where the messages should be stored is
contiguous;

❚ the communication adapter knows the page tables of the
processes it is attached to and translates virtual addresses
to physical addresses by itself.4 not fully available in EasyNet

15 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

PARALLEL FILE STRIPING
ON THE SWISS-TX ARCHITECTURE

BENOIT A. GENNART, EMIN GABRIELYAN, ROGER D. HERSCH, EPFL-DI, PERIPHERAL SYSTEMS LAB.
HTTP://VISIBLEHUMAN.EPFL.CH

COMMUNICATION LIBRARIES FOR THE SWISS-TX MACHINES

The first solution is platform dependent. It assumes that
accesses from the communication adapter are routed through
the MMU. Using this feature makes us incompatible to a
large number of modern platforms. The second solution is
implemented in EasyNet and also in the first release of
T-NET. The CMM Memory Manager runs in a preallocated
area of contiguous main memory that is marked as non-
swappable. All memory allocated by this manager is taken
out of this area. Such a memory block is guaranteed to be
contiguous and available in the physical memory so that the
communication adapter is capable to write to it. In the
future, T-NET will offer page table support to be as flexible
as possible. Memory allocation by the CMM Memory
Manager won’t be necessary anymore. It is still necessary
that pages are fixed in main memory to prevent them from
being swapped to disk. This is no real drawback. Applica-
tions running on a Swiss-Tx machine should not swap at all
because swapping applications has normally a very bad
performance.

CONCLUSIONS

The Swiss-Tx communication architecture guarantees
that only a small overhead is included by the communica-
tion libraries and the communication network. Measure-
ments on an experimental system based on two Compaq
Alpha 21264 Workstations equipped with a non-optimized
T-NET network are already available. The Swiss-Tx MPI

latency is less than 20 µs and the bandwidth more than
50 MB/s (theoretical peak bandwidth of the network is
100 MB/s) 5 . Both numbers will be improved.

REFERENCES

[1] Swiss-Tx Architecture. Swiss Federal Institute of Technology
Lausanne (EPFL), http://capawww.epfl.ch/swiss-tx/index.html

[2] S. Brauss, J. Nemecek: The FCI Reference Manual. Swiss
Federal Institute of Technology Zurich (ETHZ), http://
www.ife.ee.ethz.ch/hpc/fci

[3] MPI: A Message-Passing Interface Standard. University of
Tennessee, http://www.mcs.anl.gov/mpi/index.html

[4] MPICH - A Portable Implementation of MPI. University of
Tennessee, http://www-unix.mcs.anl.gov/mpi/mpich/

[5] PVM: Parallel Virtual Machine. Oak Ridge National
Laboratory, http://www.epm.ornl.gov/pvm/pvm home.html

[6] S.Brauss, M.Frey, M. Lienhard, J.Nemecek, A. Gunzinger:
Swiss-Tx Communication Libraries. Lecture Notes in
Computer Science 1593, HPCN Europe 1999 Proceedings,
Springer (1999)

[7] A. Tanenbaum: Operating Systems: Design and
Implementation, pages 191-250, Prentice-Hall (1987)

[8] NFS: Network File System Protocol Specification. Sun
Microsystems, RFC1094, http://www.cis.ohio-state.edu/
htbin/rfc/rfc1094.html ■

5 This measurements have been done at Supercomputing
Systems AG in July 1999

 La tendance actuelle dans le domaine des
superordinateurs est de prendre avantage de l’augmen-
tation constante et rapide de la puissance de calcul des
stations de travail, et de créer des superordinateurs en
empilant des stations de travail et des PC en les connec-
tant par un réseau rapide. Cette approche minimise le
coût du matériel en prenant avantage de l’effort de
développement des composants grand-public (micro-
processeurs, cartes réseau, disques).

Elle pose aussi de nouveaux problèmes : le modèle de
programmation, les entrées/sorties, la gestion des utili-
sateurs et des tâches. Cette contribution discute les
problèmes de conception d’un système d’accès aux don-
nées sur les ordinateurs à haute performance. Elle
présente brièvement l’architecture matérielle, et les
raisons de choisir un modèle de programmation distri-
bué. Elle explique en détail la conception et l’implanta-
tion du module NAFS de fichiers zèbrés (striped files),
dont l’implémentation est fondée sur le langage d’exten-
sion CAP.

The current trend in the area of high performance
computing is to take advantage of the constant and
rapid increase in the processing power of desktop
workstations, and create supercomputers by piling up
workstations and connecting them up with a high-
speed network. Such an arrangement ensures mini-
mal hardware cost by taking advantage of the
development effort of commodity components
(microprocessors, network cards, disks). It also raises
new issues: the programming interface, input/output,
user and job scheduling.

This paper presents the design issues surrounding
input/output to disk on high-performance machines.
It presents briefly the basic hardware architecture, and
the reasons behind the choice of a distributed memory
programming model. It also explains the reasons for
offering an interface to distributed scalable data storage.
It then describes in detail the design and implementation
of the NAFS striped file package, based on the CAP
parallel programming extension to C++.

mailto:benoit.gennart@epfl.ch
mailto:emin.gabrielyan@epfl.ch
mailto:rd.hersch@epfl.ch
http://visiblehuman.epfl.ch
http://capawww.epfl.ch/swiss-tx/index.html
http://www.ife.ee.ethz.ch/hpc/fci
http://www.ife.ee.ethz.ch/hpc/fci
http://www.mcs.anl.gov/mpi/index.html
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.epm.ornl.gov/pvm/pvm home.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1094.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1094.html

16Nov. 99

SUPERCOMPUTING REVIEW

EPFL

INTRODUCTION

The current approach to high-performance computing is
to use the available computing power in existing workstations
and PCs and provide to users tools to extract the best
performance out of multiple connected desktop computers.
Low-end solutions simply consists of dividing a large task
into multiple independent jobs, and submitting them to
remote computers, as in the SETI@home project (http://
www.setileague.org/general/setihome.htm). Higher-end solu-
tions, for problems with more data dependencies, consists of
improving the connectivity of an existing computer network,
by using for example an Ethernet crossbar switch. Top-end
solutions would include piling up dedicated computers and
connecting them through a high-speed custom network,
and adding a high-speed archive to handle large data sets.

While it is fairly easy to harness the computing power of
multiple desktop computers connected through crossbar
switches, achieving a high I/O throughput remains elusive.
Solutions involving multiple RAID servers are possible, but
involve additional costs. It is therefore tempting to use
internal desktop-workstation disk-drives to mimic a single
high-performance archive. The principle is to divide user
files into multiple subfiles allocated on different disks in
each desktop workstation. A parallel-striped-file software
package ensures that the multiple files appear to the user as
a single conventional file.

The main design goals of a parallel-striped-file package
are portability and scalability. Portability is required to
ensure that as many available computers as possible can be
used regardless of their operating system and network, and
leads to the selection of the most common network proto-
col, namely sockets. Scalability guarantees that the per-
formance of the parallel striped-file package increases as
computers are added to the architecture. Achieving high-
performance in an I/O system is notoriously difficult: the
latency of individual drives is high, and the program I/O
operations tend to have small granularity. To improve the
performance of the package, it is necessary to design an
interface which allows multiple computers to coordinate
their I/O activities in what is called collective operations.

Other design goals of a parallel-striped-file package are
reliability, transparent job-scheduling, and client-server
design. In terms of reliability, it is important for striped-files
to survive the crash of a single computer/disk in the parallel
architecture. Parallel I/O performance is also very depend-
ent on the location of the files accessed by a program. A
smart job-scheduler should be capable of scheduling jobs
and moving striped files automatically so as to ensure
maximum overall performance. In distributed systems,
multiple user programs may access the same file. While this
approach is required in the case of e.g. databases, it is often
an overdesign in the case of high performance computing,
where a single user completely controls the machine (or part
of it) and the required files for the duration of the compu-
tation. At this point in the project, the reliability, transpar-
ency and client-server goals are secondary, and the main
focus is on portability and scalability.

This paper describes NAFS, a parallel-striped-file pack-
age running under UNIX and WindowsNT.

❚ The Swiss-Tx hardware architecture and I/O re-
quirements describes the Swiss-TX architecture and its
effect on the I/O design;

❚ The CAP Computer-Aided Parallelization tool de-
scribes the precursor to the NAFS striped-file package
project, the Visible Human Slice Server;

❚ The Swiss-Tx I/O software design addresses the issues
surrounding the design and implementation of the
NAFS striped-file package.

THE SWISS-TX HARDWARE ARCHITECTURE AND I/
O REQUIREMENTS

HARDWARE ARCHITECTURE

Fig. 8 in article: Parallel computer architectures
for commodity computing and the Swiss-T1 machine (see on
page 3) describes the parts of the Swiss-T1 architecture
relevant to the I/O subsystem design. This machine consists
of 8 processing nodes, each with 4 dual processor boxes,
altogether 64 production processors, and of a four processor
front-end subsystem. The front-end subsystem takes care of
resource management and of all the external interactions.
Two RAID servers connected to the front-end subsystem
store the user files. They provide performance through
striping and reliability through data redundancy. Each
dual-processor box incorporates two 9GB disks, for system
and scratch files. The boxes are connected through Ethernet
for startup and system messages and through
T-Net for high-speed transfers between user processes.

The issues to be addressed in the design of the Swiss-Tx
architecture are: performance, scalability, reliability,
portability. Performance of a N-processor architecture must
be very close to N times the performance of a single
processor, otherwise it is very difficult to justify the increase
in size of the architecture. The architecture must be able to
survive the failure of one or more nodes. And as a bonus, it
would be nice if the software designed to improve the
performance would work under various UNIX flavors
(Solaris, Digital Unix, Linux) as well as under WindowsNT.

PROGRAMMING MODEL

The Swiss-Tx machine is a distributed memory archi-
tecture. Current implementation of shared memory models
over distributed hardware are expensive and do not deliver
higher performance for middle grain and small grain paral-
lel applications [8, 18]. In fact, to achieve scalable perform-
ance, the programmer must handle data decomposition,
allocate data subsets to the various nodes in the architecture
and specify explicitly data transfers between the nodes of the
architecture. Hence the selection of a distributed memory
programming model and the use of a message passing
interface for parallel programming. The standard message
passing API (Application Programmer Interface) is MPI
[4,7].

PARALLEL FILE STRIPING ON THE SWISS-TX ARCHITECTURE

http://www.setileague.org/general/setihome.htm
http://www.setileague.org/general/setihome.htm

17 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

I/O DESIGN AND LIBRARY INTERFACE

I/O is a major bottleneck in many parallel applications.
The main reason for poor application-level I/O perform-
ance is that I/O systems are optimized for large accesses,
whereas parallel applications typically make many small
I/O requests [1,2,9,12,16]. Leaving each parallel program
thread to fend off for itself results in poor performance, as
each thread performs comparatively small I/O requests,
each incurring a high latency (see table 1). Much research
has demonstrated the efficiencies of data organization and
collective I/O [4,10,14], In the MPI-IO interface, data
types take care of data organization, and the API supports
non-collective, collective, blocking and non-blocking op-
erations. The Swiss-Tx project has selected the MPI-IO
API as an interface to the striped file package.

THE CAP COMPUTER-AIDED PARALLELIZATION
TOOL

To extract maximal performance from commodity com-
ponent based architectures, and overcome the high latency
of their communication network, it is necessary to overlap
processing, communication, and data accesses. Writing
such asynchronous parallel programs is tedious and error-
prone. To facilitate the development of such programs, we
have developed a computer-aided parallelization tool, CAP,
and parallel file system components. CAP lets us generate
parallel server applications automatically from a high-level
description of threads, operations and the macro-dataflow
between operations. Because of CAP’s macro-dataflow
nature, the generated parallel applications are completely
asynchronous, without the need for callback functions.
Each thread incorporates an input token queue, ensuring
that communication occurs in parallel with computation.
In addition, the CAP runtime environment executes disk-
access operations asynchronously, also without the need for
explicit callback functions [6].

We used the CAP tool in several applications, such as the
Visible Human Slice Server which offers access to slices and
surfaces within the 3D Visible Human dataset (13GBytes),
and the RadioControl radio-rating project which correlates
the content of radio programs with the content of wrist-
held audio-data recorders (http://www-imt.unine.ch/
Radiocontrol). Thanks to CAP the generated applications
are flexible; it is easy to maintain and modify the parallel
programs. Evaluation of the access times for the applica-
tions shows that their performance is close to the best that
the underlying hardware can sustain [6]. The CAP tool is
also used in a commercialization effort by A2I
(http://www.axsnow.com/), aiming at providing components
for manipulating large raster images.

While the development focus of the laboratory is on
WindowsNT, the CAP tool is available on both
WindowsNT and UNIX (Solaris, Digital). Among future
developments is a wizard for specifying graphically the
macro-dataflow between operations.

THE SWISS-TX I/O SOFTWARE DESIGN

As a part of the Swiss-Tx effort, the authors implement
a portable striped file package called NAFS (Not A File
System). To the user, a NAFS striped file is a linearly
organized set of bytes. The operations available to manipu-
late the files are the traditional file operations: create, open,
close, delete, read from, and write to a NAFS file at specific
offsets. The NAFS files are accessible both through an MPI
API and an NAFS API. The aim of NAFS is to make the use
of striped files as transparent as possible. To achieve this
aim, the NAFS project will provide utilities to move, copy,
and display (UNIX cat command) files. Both the NAFS and
the MPI API hide the striping to the programmer. The
striping information can be made available to the program-
mer who wishes to take advantage of the information to
improve performance.
In the following paragraphs we address the following issues:
❚ performance considerations,
❚ striping and programming interface,
❚ miscellaneous design issues (need for dedicated I/O

threads, network requirement, pipelining, file protec-
tion, redundancy),

❚ the implementation of NAFS using CAP,
❚ the current status of NAFS.

The CAP language extension is described in a separate
box.

EXPECTED PERFORMANCE

port to port
bandwidth
(Ethernet)

port to port
bandwidth

(T-Net/MPI)
local-disk

throughput

latancy 500ms 12µs 10ms
throughput
(nominal) 12.5MB/s 100MB/s 8MB/s

throughput
(aggregate) 100MB/s 1GB/s 512MB/s

throughput
(2KB block) 5MB/s 62.5MB/s 0.195MB/s

throughput
(50KB block) 7.5MB/s 97MB/s 2.5 to

5MB/s

Table 1 – Performance figures for the Swiss-T1
architecture

Table 1 presents the relevant performance figures for the
Swiss-T1 architecture. We consider that each box in the
architecture contains two processors and two disks. The
measured Ethernet bandwidth per box is 5 to 8 MB/s per
box. The nominal T-Net throughput is 200MB/s
(100MB/s each way), shared between 4 boxes, or 50MB/s
per box. We assume that both the Ethernet crossbar and the
T-Net crossbar offer sufficient bandwidth to sustain the
nominal throughputs at the box level. The next two para-
graphs evaluate the distributed I/O design, and the central-
ized-server design.

PARALLEL FILE STRIPING ON THE SWISS-TX ARCHITECTURE

http://www-imt.unine.ch/Radiocontrol
http://www-imt.unine.ch/Radiocontrol
http://www.axsnow.com/

18Nov. 99

SUPERCOMPUTING REVIEW

EPFL

In the distributed I/O architecture that we have chosen,
each dual-processor box is both a producer and a consumer
of data in an I/O operation. The processors produce data
that is consumed by the disks. In a typical balanced
I/O transfer, each box spends half the time sending data and
half the time receiving data. Hence half the network band-
width is available for distributed I/O operations. Assuming
enough disk bandwidth, the I/O operations can be per-
formed at the rate of 2.5 to 4MB/s per box through
Ethernet, and 25MB/s per box through T-Net. In the case
if the 32-box T1 architecture, the peak network throughput
for I/O is 80 to 128MB/s through Ethernet and
1GB/s through T-Net. The nominal disk throughput is
between 2.5 and 5MB/s for 40KB blocks depending on the
locality of the data on disk. In the case of a 32 box
architecture with 2 disks per box, the peak disk throughput
is 160 to 320MB/s. This back-of-the-envelope analysis
suggests that the Ethernet bandwidth is below the disk
bandwidth, and that it is therefore necessary to use the
T-Net for distributed I/O operations in order to achieve the
maximum throughput.

These considerations suggest that the distributed ap-
proach offers high performance at low cost, if the T-Net is
used. The Ethernet-based distributed design offers only
acceptable performance. The back-of-the-envelope calcu-
lations in this section must of course be validated through
experiments, and the overhead of various protocols (NFS,
TCP sockets) taken into accounts.

NAFS DESIGN

In this discussion we assume that a parallel program
consists of threads. Whether there are multiple user threads
per processes as in CAP or a single user thread per process
as in many MPI implementations is not important at this
point in the discussion of the design. A striped file consists
of one or more subfiles.

0 1 2 3
50K 100K 150K 200K

50
K

10
0

K
15

0
K

20
0

K

50
K

10
0

K
150

K
20

0
K

0

2

1

3

SF0 SF1

thread
memory

striped
file

 2 50000 0
 /scratch/p0/userfile.sub0
 /scratch/p1/userfile.sub1
 /*metafile userfile.nafs*/
 /*in the user home directory*/

Fig. 2 – File striping

Each NAFS striped file consists of a metafile and one or
more subfiles. The striped file is divided in extents
(i.e. contiguous data sets of sufficient size to make a disk
access worthwhile, typically 50KB) which are stored in
subfiles in round robin fashion. A set of extents located at
the same position in each subfile is called a stripe. Consider

(Fig. 2) a program consisting of a single thread which
dumps the content of its memory (a single 1MB block) to
striped file userfile.nafs with two subfiles /scratch/p0/
userfile.sub0 (short name: SF0) and /scratch/p1/userfile.sub1
(short name SF1) and an extent size of 50KB. Striped file
bytes [0-50K[are stored in SF0[0-50K[, striped file
bytes[50K-100K[are stored in SF1[0-50K[, striped file
bytes [100-150K[are stored in SF0[50-100K[, striped file
bytes [150-200K[are stored in SF1[50-100K[, etc..

The metafile contains the number of subfiles, the extent
size, the total file size and the list of subfile names (absolute
OS paths, accessed through NFS on Unix machines or
UNCs under WindowsNT). The metafile and subfiles are
native OS files, for portability reasons. Each byte in the
striped file is described by its offset (64-bit) and value.

When multiple threads are involved in writing to a
striped file, each of them writes its own blocks to the file.
The number of subfiles in the striped file need not be equal
to the number of threads in the parallel program. Multiple
requests to the same subfile are serialized. At the NAFS
level, the operations read from and write to the striped file
a block-list, each block being characterized by a size, an offset
in the file, and a pointer in memory to the data to be
transferred from/to disk. Arbitrary number of threads can
take part to collective read/write operations. MPI I/O uses
communicators to indicate the threads involved in collec-
tive operations, and datatypes to indicate the layout of data
both in file and in memory. A software layer transforms
MPI communicators and data types into block-lists and sets
of threads.

NAFS ISSUES

Miscellaneous issues must be addressed in the design of
the NAFS striped file package: the number of threads per
dual-processor box, the high-speed network support, the
pipelining of data transfers and disk accesses, the protection
of files against multiple simultaneous accesses, and redun-
dancy.

One dedicated I/O thread per I/O node
In the distributed I/O architecture, each user thread can

request I/O operations from any dual-processor box in the
architecture. In effect, it is acting as a client requesting I/O
services. It is therefore necessary that each dual-processor
box runs a thread dedicated for serving I/O requests from
user threads. In this paper, we refer to user threads as
compute-threads and I/O-request-serving threads as disk-
threads.

Ethernet/socket communication vs. T-Net/MPI
communication

The analysis of paragraph Expected performance suggests
that it is necessary to use the T-Net to sustain the disk
throughput of the distributed I/O design. And the com-
ments of the previous paragraph indicate it is necessary to
have a dedicated I/O thread in addition to the usual
processing thread(s) in each box. However, many high-
performance versions of MPI are not multi-threaded, and

PARALLEL FILE STRIPING ON THE SWISS-TX ARCHITECTURE

19 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

CAP EXTENSION LANGUAGE OVERVIEW

This section presents a simple example describing
the basic features of the CAP language extension to
C++. CAP’s main design goal is to implicitly imple-
ment asynchronous parallel behavior. To achieve
these goals, it uses language constructs (1) to specify
and group threads, (2) to specify the data structures
exchanged between threads, (3) to specify the opera-
tions the threads and thread groups can perform and
(4) to specify the macro-dataflow (pipeline/parallel
scheduling) between thread operations.

We first illustrate the asynchronous semantics of
the CAP. Consider a CAP program which converts
data on one processor and writes it to one disk, chunk
by chunk. For the sake of simplicity, we assume that
the conversion operation does no change the size of
the data chunk, nor does it require data in other
chunks. Fig. A1 shows the syntax, graphical represen-
tation and timing diagram of such a program. In Fig.
A1, program lines 1 to 6 specify the data structures
specifying the data chunks moved between the pro-
gram’s two threads. Lines 8 to 17 specify the two
threads (DiskThreadT, ComputeThreadT) in the
program and the operations they can perform
(WriteChunk and ConvertChunk respectively). Lines
19 to 26 logically group the two threads under the
name GlobalProcessT, and specify which operation(s)
they can perform as a group (ConvertAndWriteData).
Line 28 instantiate GlobalProcessT, which automati-
cally creates the two threads under the GlobalProcessT
umbrella. In CAP, threads are instantiated upon
program initialization. No threads are created during
program execution, thereby reducing execution over-
head.

Lines 29 to 44 specify the behavior of the pro-
gram. The input of the program is a DataT token
initialized with an open file descriptor FileP, an
OffsetInFile, and a Data pointer to the memory data.
The asynchronous parallel semantics of the CAP
language is entirely handled by the parallel while
expression (lines 39 to 44).The SplitChunk C++
function (passed as parameter to the parallel while
expression) incrementally divides the DataT input
token inP into several DataT tokens referencing
consecutive 50KB blocks in memory. The
ComputeThread converts the data chunks one after
the other, and forwards each converted token to the
DiskThread as soon as it is converted. The DiskThread
writes the P[i] tokens to disk one after the other, and
generates the M[i] void tokens. As soon as each of the
M[i] tokens is available, it is merged by the
MergeChunk function (not shown) into the outP
void token. When all tokens have been merged, the
ConvertAndWriteData operation is complete.

The graphical representation of the ConvertAnd-

WriteData operation (bottom of Fig. A1) matches
the textual specification. It indicates that the input
token is divided using the split function into several
data chunks that are fed to the ComputeThread’s
ConvertChunk operation. The output of the conver-
sion is fed to the DiskThread.WriteChunk opera-
tion. The output of the WriteChunk operations are
used for synchronization purposes: when all outputs
have been received, the ConvertAndWriteData op-
eration is complete.

The SplitChunk, MergeChunk functions and the
WriteChunk, ConvertChunk operations are all ex-
ecuted asynchronously, i.e. provided enough proces-
sors and disk they could all be executed simultane-
ously (albeit on different data chunks). It is possible
to allocate the DiskThread and the ComputeThread
not only on different processors in the same box, but
also on different boxes. In that case, the token transfer
over the network is automatic and asynchronous,
that is, computation, communication and disk ac-
cesses are overlapped.

In the case where the split function generates
many chunks of data, there is a risk of memory
overflow, since the split function is typically much
faster than the conversion operation. To work around
this, CAP uses flow control modifiers to its parallel
construct, limiting the number of tokens simultane-
ously active inside the parallel construct. Fig. A2
shows a modified ConvertAndWriteData where the
number of simultaneously active data chunks is lim-
ited to 4.

To achieve asynchronous parallel behavior in
CAP, the programmer replaces the disk- and com-
pute-thread (lines 21 and 22) by arrays of disk- and
compute-threads (e.g. DiskThreadT
DiskThread[MAX] and ComputeThreadT
ComputeThread[MAX]). The pipelining behavior
explained in the previous paragraph is still available,
but up to MAX data chunks can be compressed or
written simultaneously, depending on the available
hardware resources. The work of the CAP program-
mer is then to define the tokens and the operations
required to achieve a given algorithm. The CAP
language extension supports 8 predefined expres-
sions, 3 for asynchronous parallel behavior (parallel,
indexed parallel, parallel while), 3 expressions for
iterative behavior (sequence, for, while), and 2 ex-
pressions for branching (if, ifelse). CAP programs
based on predefined CAP expressions are deadlock-
free by construction. CAP programs are reconfigurable
without recompilation: the same executable can run
on a 1-processor 1-disk low-end PC, on a 4-processor
4-disk shared-memory machine, or on an 10-proces-
sor distributed-memory architecture with 60 disks.

PARALLEL FILE STRIPING ON THE SWISS-TX ARCHITECTURE

20Nov. 99

SUPERCOMPUTING REVIEW

EPFL

 1 token DataT {
 2 FILE* FileP ;
 3 int OffsetInFile ;
 4 int Size ;
 5 char* Data ;
 6 } ;
 7
 8 process DiskThreadT {
 9 operations:
10 WriteChunk in DataT* inP out void* outP;
11 } ;
12
13 process ComputeThreadT {
14 operations:
15 ConvertChunk
16 in DataT* inP out DataT* outP;
17 } ;
18
19 process GlobalProcessT {
20 subprocesses:
21 DiskThreadT DiskThread ;
22 ComputeThreadT ComputeThread ;
23 operations:
24 ConvertAndWriteData
25 in DataT* inP out void* outP;
26 } ;
27
28 GlobalProcessT GlobalProcess ;
29 leaf operation DiskThreadT::WriteChunk
30 in DataT* inP out void* outP
31 { // C++ code to write data chunk to file }
32
33 leaf operation ComputeThreadT::ConvertChunk
34 in DataT* inP out DataT* outP
35 { // C++ code to uncompress data chunk }
36

37 operation GlobalProcessT::ConvertAndWriteData
38 in DataT* inP out DataT* outP
39 { parallel while (SplitChunk, MergeChunk,
40 ComputeThread, DataT result)
41 (ComputeThread.CompressChunk >->
42 DiskThread.WriteChunk
43) ;

44 }

disk-thread

compute-thread

M
ergeChunk

ComputeThread.
ConvertChunk

DiskThread.
WriteChunkS

pl
it

Ch
un

k

inP outP
S[0..4] P[0..4]

M[0..4]

Fig. A1 – CAP specification and pipelining semantics

1 operation GlobalProcessT::ConvertAndWriteData
2 in DataT* inP out DataT* outP
3 { flow_control (4)
4 parallel while (SplitChunk, MergeChunk,
5 ComputeThread, DataT result)
6 (ComputeThread.CompressChunk >->
7 DiskThread.WriteChunk
8) ;

9 }

Fig. A2 – Flow-control modifier

PARALLEL FILE STRIPING ON THE SWISS-TX ARCHITECTURE

therefore the I/O thread must be allocated in a separate
process. This is often made difficult by the fact that the
requirements of the high-performance network preclude
the use of multiple processes. As a result, and also for
portability reasons, NAFS and user threads communicate
through sockets. In the second phase of the Swiss-Tx
project, it is planned to adapt the NAFS parallel-striped-file
package to use the high-speed T-Net network.

0

50K 100K 150K 200K

50
K

10
0

K
150

K
20

0
K

50
K

10
0

K
150

K
20

0
K

0

SF0 SF1

Parallel
program

striped
file

thread 0

50K 100K 150K 200K

thread 1

Box 0 Box 1

Fig. 3 – The need for dedicated I/O threads

Pipelining data transfers and disk accesses
To achieve peak I/O throughput, it is necessary to

ensure that data transfers between different dual-processor

boxes and I/O transfers to disks are overlapped. The usual
approach is to use the two-phase approach [14], where the
next chunk of data is transferred over the network while the
current chunk is transferred to disk. The CAP language
semantics implies the pipelining of operations, as explained
in paragraph NAFS implementation using CAP. This sim-
plifies the programming of parallel I/O operations to striped
files.

NAFS IMPLEMENTATION USING CAP
This section discusses the implementation of the non-

collective/collective read and write operations in terms of a
graphical representation of the behavior of the program.
The parallel program consists of 5 compute-threads (PC0
to PC4) and 5 disk-threads (IO0 to IO4), and the parallel
programs reads or writes data covering exactly 4 extents (E0
to E3). As explained in section NAFS design, the data
handled by a NAFS operation is represented as a single
block-list linking all data blocks being written to or read
from disk. The striped file written to consists of 3 subfiles
SF0, SF1, SF2, handled by threads IO0, IO1, IO2 respec-
tively. Extent E0 (resp. E1, E2, E3) is written to subfile SF0
(resp. SF1, SF2, SF0), according to the round-robin rule.

Non-collective read
In this example, one compute-thread (namely PC2)

reads a single block covering 4 extents in a 4-subfile striped
file (Fig. 4). The compute-thread divides its memory into

21 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

four blocks covering the extents and sends the extent
requests for each block (ER0 to ER3) to the appropriate
disk-thread. Each disk-thread returns the data to the com-
pute-thread which writes it to memory. All extents are read
in parallel. However, to limit the memory requirements in
the case of an operation involving many extents, a flow
control modifier limits the number of extents processed by
a single disk-thread to a small number (4). The non-
collective write operation is similar to the non-collective
read operation.

Disk-thread

ER0

IO0.read
extent (E3)IO2.read

extent (E2)IO1.read
extent (E1)IO0.read

extent (E0)

ER1

ER2

ER3

PC2.m
erg

e e
xte

nt
s

PC2div
ide

by
 ex

ten
t

E0

E1

E2

E3

Fig. 4 – Non collective read operation

Collective write
In this example, the 5 compute-threads PC0 to PC4

collectively write the data covering the 4 extents E0 to E3
(Fig. 5)1. Before starting the collective operations, all com-
pute-threads synchronize, and compute-thread PC0 initi-
ates the collective operation by creating extent-writing
requests for each of the extents covered by the operation
(ER0 to ER3)2.

For each extent request, the disk thread controlling the
subfile where the extent is stored sends requests to all
compute-threads for their part of memory covering the

extent (GetBlocks operation). After receiving all blocks
from the compute-threads, the disk-thread merges the
blocks and writes the extent to disk. All extents are proc-
essed in parallel. However, to limit the memory require-
ments for the operation, a flow control modifier limits the
number of extents simultaneously processed by a single disk-
thread to a small number.

Collective read
In the collective-read operation, the 5 compute-threads

collectively read 4 blocks from 3 subfiles (Fig. 6). The
5 compute-threads first synchronize and PC0 initiates the
collective read operation by asking all compute-threads to
divide their respective block-list list into separate block-
sublists for each extent. Each compute-thread then sends
the block-request sublists to the appropriate disk-thread.
Each disk-thread waits for block-sublists. When it has
received from all compute-threads the block-sublists corre-
sponding to a given extent, it reads the extent from disk and
fills the blocks in the corresponding block-sublist. The disk-
threads then send the blocks to the compute-threads, where
they are copied in memory.

CURRENT STATUS

The CAP environment has undergone extensive testing.
The experimental performance results published in [6]
show that the pipelining strategies of CAP are effective, that
the performance achieved is close to the maximum of either
computation-time, communication-time or disk access-
time. The CAP environment runs on WindowsNT, Solaris
and Digital Unix. An installation wizard is available under
WindowsNT.

The NAFS parallel-striped-file package is implemented
and partially tested. It supports blocks of arbitrary size

PARALLEL FILE STRIPING ON THE SWISS-TX ARCHITECTURE

1 Each compute-thread reads data from each extent.
2 The requests are forwarded to the disk-threads and specify for each disk-thread the extent for which it must gather data from the

compute-threads.

m
erge block

covering E0
m

erge block
covering E0

m
erge block

covering E0
m

erge block
covering E0

each compute-server thread sends the buffers covering the extent

Syn
ch

ron
ise

E0

E1

E2

E3

ER0

ER1

ER2

ER3

PC2div
ide

by
 ex

ten
t

IO0.write
extent (E3)IO2.write

extent (E2)IO1.write
extent (E1)

IO0.write
extent (E0)

PC0.GetBlocks(E3)

PC0.GetBlocks(E2)

PC0.GetBlocks(E1)

PC0.GetBlocks(E0)

PC1.GetBlocks(E0)

PC2.GetBlocks(E0)

PC3.GetBlocks(E0)

PC4.GetBlocks(E0)

disk-threads compute-threads disk-threads

Fig. 5 – Collective-write operation

22Nov. 99

SUPERCOMPUTING REVIEW

EPFL

written in arbitrary positions in the striped file (support for
MPI data types), arbitrary number of stripes in the striped-
file, arbitrary number of processes taking part to collective
operations (support for MPI communicators), and non-
blocking function interfaces. Current performance on the
Swiss-T0 machine is limited by the absence of a FastEthernet
crossbar switch. Further testing will be conducted under
WindowsNT and UNIX, depending on the available
configurations.

The MPI interface to the NAFS parallel-striped-file
package is currently under development, reusing as much as
possible the ROMIO implementation [17].

DS0.read
extent (E3)DS2.read

extent (E2)DS1.read
extent (E1)DS0.read

extent (E0)

disk-thrdisk-threadseadscompute-thrcompute-threadseads

PC0

PC1

PC2

PC3

PC4

PC0

PC1

PC2

PC3

PC4

compute-thrcompute-threadseads

fo
r a

ll
co

m
pu

te
 s

er
ve

r t
hr

ea
d

divide block list
by extent

merge block
 requests
 covering
 extent
 E0 to
 E3

divide
extent

in blocks

copy blocks
in memory

Fig. 6 –The collective-read operation

CONCLUSION

This document presented the issues involved in the
design and implementation of a parallel-striped file pack-
age. It shows that the parallel-striped-file approach is viable,
but requires careful implementation: collective operation
interface, and pipelining between data transfers and data
accesses. Future work will address the implementation of
the MPI-IO interface, performance measurements, and
possible optimizations of the existing package.

REFERENCES

[1] S. Baylor, and C. Wu. Parallel I/O worKload characteristics
using Vesta. In R. Jain, J. Werth, and J. Browne, editors.
Input/Output in Parallel and Distributed Computer
Systems, chapter 7, p. 167-185. Kluwer, 1996.

[2] P. Crandal, R. Aydt, A. Chien, and D. Reed. Input-output
characteristics of scalable parallel applications. In Proc.
Supercomputing’96. ACM Press, December 1995.

[3] S. Garg. Architecture and design of a highly efficient parallel
file system. In Proc. SC’98 High Speed Networking and
Computing. Orlando, Florida, USA, November 7 - 13,
1998 (http://www.supercomp.org/sc98/papers/index.html).

[4] W. Gropp, E. Lusk, A. Skjellum, Using MPI, The MIT
Press, 1994.

[5] D. Kotz. Disk-directed I/O for MIMD multiprocessors. ACM
Transactions on Computer Systems, 15(1):41-74, February
1997.

[6] V. Messerli, O. Figueiredo, B. A. Gennart, and R. D.
Hersch. Parallelizing I/O-intensive image access and processing
applications. IEEE Concurrency, 7(2):28-37. April-June
1999.

[7] Message Passing Interface Forum, MPI-2: Extensions to the
Message-Passing Interface, Technical Report, July 1997,
http://www.mpi-forum.org.

[8] C. M. Mobarry, T. Sterling, J. Crawford, and D. Ridge. A
comparative analyzis of hardware and software support for
parallel programming within a global name space. In Proc.
SC’96 High Speed Networking and Computing (http://
www.supercomp.org/sc96/papers/index.html) 1996.

[9] N. Nieuwejaar, D. Kotz, A Purakayastha, C.Ellis and M.
Best. File-access characteristics of parallel scientific workloads.
IEEE transactions on Parallel and Distributed Systems,
7(10):1075-1089, October 1996.

[10] J. del Rosario, R. Bordawekar, A. Choudhary. Improved
parallel I/O via a two-phase run-time access strategy. In Proc.
Workshop on I/O in Parallel Computer Systems at IPPS’93,
pages 56-70, April 1993. Also published in Computer
Architecture News, 21(5):31-38, December 1993.

[11] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett.
Server-directed collective I/O in Panda. In Proc.
Supercomputing ‘95. ACM Press, December 1995.

[12] E. Smirni, R. Aydt, A. Chien, and D. Reed. I/O requirements
of scientific applications. In Proc. 5th IEEE Int. Symp. on
High Performance Distributed Computing, p. 49-59. IEEE
Computer Society Press, 1996.

[13] J. Sturtevant, M. Christon, P. D. Heerman. PDS/PIO:
lightweight libraries for collective parallel I/O. In Proc. SC’98
High Speed Networking and Computing. Orlando, Florida,
USA, November 7 - 13, 1998 (http://www.supercomp.org/
sc98/papers/index.html).

[14] R. Thakur, and A. Choudhary. An extented two-phase
method for accessing sections of out-of-core arrays. Scientific
Programming, 5(4):301-317, Winter 1996.

[15] R. Thakur, W. Gropp, and E. Lusk. A case for using MPI’s
derived datatypes to improve I/O performance. In Proc. SC’98
High Speed Networking and Computing. Orlando, Florida,
USA, November 7 - 13, 1998 (http://www.supercomp.org/
sc98/papers/index.html).

[16] R. Thakur, W. Gropp, and E. Lusk. An experimental
evaluation of the parallel I/O systems of the IBM SP and Intel
Paragon using a prodution application. In Proc. 3rd Int.
Conf. of the Austrian Center for Parallel Computation
(ACPC) with special emphasis on paralle databases and
parallel I/O. LNCS 1127. Springer-Verlag, September
1996.

[17] R. Thakur, W. Gropp, and E. Lusk. Users guide for ROMIO,
A high-performance, portable MPI-IO implementation. TR
ANL/MCS-TM-234. Mathematics and Computer Science
Division, Argonne National Laboratory, revised July 1998.

[18] G. Bell, C. van Ingen. DSM Perspective: another point of
view. In Proc. of the IEEE, 87(3):412-417, March 1999.■

PARALLEL FILE STRIPING ON THE SWISS-TX ARCHITECTURE

http://www.supercomp.org/sc98/papers/index.html
http://www.supercomp.org/sc96/papers/index.html
http://www.supercomp.org/sc96/papers/index.html
http://www.supercomp.org/sc98/papers/index.html
http://www.supercomp.org/sc98/papers/index.html
http://www.supercomp.org/sc98/papers/index.html
http://www.supercomp.org/sc98/papers/index.html

23 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

La simulation numérique d’écoulements granulai-
res, comme tant d’autres méthodes particulaires, de-
mande des ressources de calcul importantes pour nom-
bre de problèmes de grande taille auxquels l’industrie
s’intéresse. Le calcul parallèle a le potentiel pour repous-
ser les limites de capacité des systèmes existants, permet-
tant l’étude de systèmes granulaires plus proches de la
réalité. Nous présentons ici l’implémentation d’un al-
gorithme parallèle, ainsi que des mesures de performan-
ces d’un système parallèle formé de composants stan-
dard interconnectés par un réseau à basse latence et
haut débit. Les résultats valident l’algorithme parallèle
mais aussi le rôle important que ce type de système
parallèle peut jouer dans les simulations d’écoulements
granulaires industriels demandant de grandes puissan-
ces de traitement.

The numerical simulation of granular flows, like
many other particle-based methods, is computationally
intensive for large-scale problems of industrial interest.
Parallel computation has the potential to alleviate
current compute-based limitations, allowing much
larger granular systems with greater physical reality to
be analysed. A study of the implementation of a
parallel algorithm is presented, together with perfor-
mance measurements on a commodity cluster
computer system. The results obtained validate not
only the parallel algorithm, but also the potential role
of such computer systems in industrial granular flow
simulations.

INTRODUCTION

Granular or particulate materials, composed of a large
number of loosely-packed individual particles or grains, are
an integral part of our environment; common examples are
sand, powder, rocks and grains in their many forms. The
flow of such granular material plays a critical role in many
industrial processes, such as separation and mixing (eg in
the manufacture of glass and pharmaceuticals), rotary mould-
ing of plastics, mineral production and processing (eg
blasting and excavation, crushing and grinding of mineral
ores), commodity sampling (eg from conveyor belts), stock-
pile construction and discharge, and flows in and from
hoppers and silos. Since small reductions in energy con-
sumption or increases in output represent substantial finan-
cial benefits for plant owners, significant effort is placed on
improving the efficiency of such processes. Numerical

simulation of granular flows has an increasing role to play
in this optimisation procedure.

Granular flows are known to exhibit strongly different
behaviour than conventional continuum flows. This be-
haviour can be numerically simulated using the Discrete
Element Method (DEM), which involves tracking the
movement of all the individual particles, as well as their
interactions with other particles and with their surround-
ings. DEM simulations – sometimes referred to as Granular
Dynamics – can be viewed as a macroscopic-level equiva-
lent of short-range Molecular Dynamics [1,2], in which the
inelastic nature of particle interactions is taken into ac-
count. The simulation of simple flows using DEM has been
established for several years [3-5]. More detailed flows have
also been successfully computed, such as for geophysical
[6,7], mineral processing [8-10], and bulk material han-
dling [9-12] applications.

The realistic simulation of industrial granular flows may
involve the tracking of many millions of particles, as well as
a high level of complexity to describe particle interactions
involving breakage, attrition, cohesion and aggregation. In
addition, the presence of particles of non-spherical shape,
which can significantly affect flow behaviour, increases the
demands on contact detection. Such complex simulations
require sizeable computational resources. Fortunately, par-
ticle-based numerical methods can generally be parallelised
in a relatively straightforward manner.

For DEM simulations, parallelisation is facilitated by
the fact that the particles interact via short-range collisions
[13-17]. This leads to a high degree of data localisation and
an associated modest level of data communication between
processors. Nevertheless, there are a number of considera-
tions that must be taken into account to obtain good
performance from a parallel DEM code. In particular,
granular flows can be highly dynamic, with particles that are
in close proximity at one time rapidly becoming more
distant. To maintain efficient use of all processors under
such conditions, dynamic load balancing is essential.

In the present paper, a parallel DEM implementation
that incorporates dynamic load balancing is described.
Using this code, calculations have been undertaken for the
flow of granular material from two different slot hoppers.
Performance results obtained on a commodity cluster com-
puter system, the Swiss-T0-Dual installed at the Ecole
Polytechnique Fédérale de Lausanne [18], are presented.

THE DISCRETE ELEMENT METHOD

DEM simulations involve solving the equations of
motion for the trajectory, spin and orientation of every

A PARALLEL DISCRETE ELEMENT METHOD FOR
INDUSTRIAL GRANULAR FLOW SIMULATIONS

MARK L. SAWLEY, PAUL W. CLEARY. CSIRO MATHEMATICAL & INFORMATION SCIENCES, CLAYTON, AUSTRALIA

24Nov. 99

SUPERCOMPUTING REVIEW

EPFL

particle in the flow and modelling each collision between
particles and between particles and the surrounding bound-
ary objects. When appropriate, equations of motion are also
solved for the boundary objects with which the particles
interact in order to treat moving boundaries.

The DEM variant used in our studies is sometimes
referred to as the soft particle method. The particles are
allowed to overlap and the amount of overlap ∆x, and
normal vn and tangential vt relative velocities determine the
collisional forces. There is a range of possible contact force
models available that approximate the collision dynamics to
various extents. A conventional linear spring-dashpot model,
as shown schematically in Fig. 1, is used in these simulations.

Fn

Ft

Fig. 1 – Schematic diagram of the linear spring-
dashpot model for the collisional normal (Fn) and
tangential (Ft) forces acting between particles

The normal force Fn = –kn∆x + Cnvn consists of a linear
spring to provide the repulsive force and a dashpot to
dissipate a proportion of the relative kinetic energy. The
maximum overlap between particles is determined by the
stiffness kn of the spring in the normal direction. Typically,
average overlaps of 0.1-1.0% are desirable, requiring spring
constants of the order of 106-107 N/m. The normal damp-
ing coefficient Cn is chosen to give the required coefficient
of restitution ε, defined as the ratio of the post-collisional to
pre-collisional normal component of the relative velocity.

The tangential force is given by
Ft = min { µFn, kt ∫ vtdt + Ctvt } ,

where the integral of the tangential velocity vt over the
collision behaves as an incremental spring that stores energy
from the relative tangential motions and represents the
elastic tangential deformation of the contacting surfaces.
The dashpot dissipates energy from the tangential motion
and models the tangential plastic deformation of the con-
tact. The total tangential force (given by the sum of the
elastic and plastic components) is limited by the Coulomb
frictional limit (with µ the coefficient of dynamic friction)
at which point the surface contact shears and the particles
begin to slide over each other.

The DEM algorithm itself is relatively simple, and is
comprised of three essential parts:

❚ A particle near-neighbour interaction list is constructed
with the aid of an overlaying Cartesian grid. The size of
the grid cells is chosen such that there is at most one
particle in each cell, and the surrounding cells searched
for neighbouring particles. This grid search technique
[5,11,16] reduces the nearest neighbour search proce-
dure to an O(N) operation, where N is the total number
of particles. This is essential for DEM simulations
involving a large number of particles.

❚ The collisional forces on each of the particles and
boundary objects are evaluated efficiently using the
near-neighbour list and the spring-dashpot interaction
model and then transformed into the simulation frame
of reference.

❚ All the forces on the particles and surrounding boundary
objects are summed and the resulting equations of
motion are integrated to advance the positions in time.
A second-order predictor-corrector scheme is used, with
between 10 and 50 timesteps required to integrate
accurately each collision. This gives very small timesteps,
typically 10-3 to 10-6 s, depending on the length and
time scales of each application.
Due to the relative motion between particles, it is

necessary to update periodically the near-neighbour list. In
addition, at selected times various physical quantities of
interest are calculated, such as the particle velocity and force
distributions and the forces exerted on the boundaries.

The above DEM algorithm has been employed to
compute a wide range of two- and three-dimensional
granular flow simulations [9,10]. Examples of three-di-
mensional DEM simulations of particular interest to the
mineral processing industry are shown in Fig. 2.

PARALLEL DEM IMPLEMENTATION

DEM simulations involving a relatively modest number
of circular or spherical particles (<100,000), such as those
shown in Fig. 2, can be performed in a reasonable time on
a single-processor workstation. As the geometric and physi-
cal complexity of the modelling increases, so does the
computational resources required. The simulation of, for
example, one million non-spherical particles in a complex
3D geometry, including the effects of breakage and/or
cohesion, is thus not reasonably performed by a single
processor. However, the required level of computational
power can be obtained by parallel DEM simulations.

As a preliminary study of the development of a parallel
DEM code, the parallelisation of two-dimensional
simulations has been investigated. The goal was to produce
a portable parallel implementation that would exhibit good
performance scaling up to 100’s of processors for large-scale
simulations. The code is required to run on parallel compu-
ter systems having either shared or distributed memory.

A number of different algorithms can be successfully
employed to parallelise particle-based computations [14-
16]. The parallel algorithm used for the present study is of
SPMD (Single Program, Multiple Data) style, based on

A PARALLEL DISCRETE ELEMENT METHOD FOR INDUSTRIAL GRANULAR FLOW SIMULATIONS

25 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

spatial domain decomposition. The simulation domain is
divided into subdomains by a simple slicing parallel to
either the x or y axis. Choosing the number of subdomains
equal to the number of processors available, data associated
with particles in the same subdomain are stored in the same
processor’s memory. The computational effort depends on
the number of collisions between particles, which is closely
related to the number of particles. Assuming processors of
equal performance, to achieve load balance (in order to
minimise synchronisation delays) the subdomains are cho-
sen to contain the same number of particles.

It should be noted that a block decomposition may lead
to a smaller amount of data exchange between processors
than the strip decomposition that has been chosen. Never-
theless, a block decomposition is generally found to be only
marginally more efficient, since its more complicated com-
munication pattern involves a greater number of short
length exchanges of data [13]. In addition, implementation
of a dynamic load balancing scheme is considerably more
complex.

Of the different parallel programming models available,
message passing (using either the MPI or PVM library) has
been chosen for the present implementation. This model
provides both low communication overhead (leading to
higher parallel performance) and a high level of code
portability (since message passing is available on essentially
all parallel computer systems).

Fig. 3 – Particles coloured according to storage
location in memory for decomposition into three

subdomains
(Light colours denote ghost particles)

Data localisation – and hence inter-processor commu-
nication – is optimised by copying a layer of “ghost”
particles from the neighbouring subdomains, as shown in
Fig. 3. The width of this layer is chosen to ensure that all
interactions can be calculated from local data. The use of
ghost particles also simplifies the dynamic load balancing,
since renaming ghost particles as physical particles is equiva-
lent to moving particles between subdomains. It is impor-
tant to note that the subdomain boundaries are not fixed in
physical space, but are automatically moved to satisfy the
load balancing requirements.

A flow diagram for the parallel DEM algorithm is
presented in Fig. 4. After the input data is read and

A PARALLEL DISCRETE ELEMENT METHOD FOR INDUSTRIAL GRANULAR FLOW SIMULATIONS

Fig. 2 – Examples of three-dimensional DEM
simulations: charge motion in (top) a ball mill and

(middle) the Hicom nutating mill, and (bottom) size
segregation by a vibrating screen [10]

26Nov. 99

SUPERCOMPUTING REVIEW

EPFL

distributed to the appropriate processor memory, each
processor performs essentially the same grid search and
collision calculation as for the sequential algorithm de-
scribed above. As shown in the Fig. 4, communication
between processors is required to update the ghost particle
data, to re-partition the data to maintain good load balanc-
ing, and for the assembly of the output information. For the
example problems described in the next section, the re-
partitioning of data and updating of the near-neighbour list
in each subdomain was undertaken every 50-100 timesteps.

grid searchgrid searchgrid search

force calc.force calc.force calc.

movemovemove

outputoutputoutput

re-partitionre-partitionre-partition

initialise and distribute data

read input data for particles and objects

update g.p.update g.p.update g.p.

t2 >> ∆t

t1 = ∆t

t3 ≥ t2

Fig. 4 – Flow diagram for the parallel DEM algorithm
(Red arrows represent communication)

The parallel DEM code is written in standard Fortran
90, and makes use of features such as modules, derived data
types, interface blocks and kind declarations. Serial, PVM
or MPI code versions can be selected by compiler directives
inserted into the code. For the MPI implementation, only
eight basic message passing routines are used:

mpi_init mpi_isend
mpi_comm_rank mpi_recv
mpi_comm_size mpi_wait
mpi_finalize mpi_barrier

The parallel code could therefore be run on the Swiss-
T0-Dual machine using either the standard MPICH li-
brary (via Fast Ethernet) or the MPI-lite library (imple-
mented on the FCI library that uses the faster EasyNet bus)
[18,19].

HOPPER DISCHARGE

Hoppers are common storage devices for granular ma-
terials. Their relatively simple geometry and well-defined

discharge flow pattern has made them attractive for numeri-
cal simulation, using both discrete element and continuum
methods. While both methods can qualitatively predict
mass flow, neither method has been able to predict all the
observed phenomenon [12]. In some situations – such as
when the grains are not significantly smaller than the
discharge port – the granular nature of the material cannot
be neglected, and a continuum approach is not valid. DEM
simulations that incorporate a sufficient level of physical
modelling can provide valuable qualitative and quantitative
insights into complex phenomena observed during hopper
discharge [5,9-12].

In the present study, the two-dimensional flow from
two different slot hoppers has been considered. The first is
a generic single-port hopper, has a width of 2.4 m, and is
initially filled with 3545 circular particles with a distribu-
tion of diameters from 20 to 100 mm. The second case is a
dual-port hopper of 40 m width, such as used in the mining
industry for feeding ore to large crushing mills; the hopper
initially contains 200,000 particles having a distribution of
diameters from 50 to 200 mm.

Fig. 5 presents, for each of these two cases, plots of the
particle locations at an early time during the discharge.
Since the present paper is concerned primarily with the
code performance, the reader is referred to [9] for more
details of the physical interpretation of the simulation
results.

CODE PERFORMANCE RESULTS

The performance of the parallel DEM code implemen-
tation has been assessed on the Swiss-T0-Dual machine.
This commodity cluster computer system consists of 8 dual-
processor Digital Alpha 21164 (EV5.6) boxes [18]. Each
processor has a 4 MB level 3 cache, with the total system
having a distributed memory of 8 GB and a peak perform-
ance of 16 GFlop/s. The processors are connected via both
an EasyNet bus and a Fast Ethernet switch; each dual-
processor box has one PCI-based connection to the EasyNet
bus and one Fast Ethernet port. Initial measurements [18]
indicated a communication bandwidth between boxes of
35 MB/s for EasyNet and 10 MB/s for Fast Ethernet, and
latencies of 12 µs for MPI-lite (using EasyNet) and 500 µs
for MPICH (using Fast Ethernet). A maximum of 8 proc-
essors can be used with MPI-lite, and up to 16 with MPICH
(however, the inter-box bandwidth is halved and latency
doubled if more than 8 processors are used). The Digital
UNIX operating system is run on each box.

For each of the hopper flows described in the previous
section, computations have been performed for different
numbers of processors, using the MPI code version for both
the Fast Ethernet and EasyNet interconnect. For compari-
son, computations have also been undertaken using the
serial code version on one processor. To obtain these
performance measurements, the flow has been computed
for only the first 1 s (about 55,000 timesteps) for the single-
port hopper and the first 0.1 s (about 1100 timesteps) for

A PARALLEL DISCRETE ELEMENT METHOD FOR INDUSTRIAL GRANULAR FLOW SIMULATIONS

27 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

the dual-port hopper. Measurements have been made of the
time required to perform the individual tasks of the DEM
algorithm. This has enabled the determination of the
amount of time spent in both computation and communi-
cation / synchronisation to be determined, and also the
performance speedup (defined as the ratio of simulation
times using the serial code and the parallel code).

Fig. 5 – Discharge of (top) 3545 circular particles
from a single-port hopper, and (bottom) 200,000

circular particles from a dual-port hopper
(The particles are coloured by their velocity,

increasing from blue to red)

The results of timing measurements for the code using
MPICH are presented in Figs. 6 and 7. The times presented
are averages of the values measured on the different proces-
sors used in the simulations. Only slightly different values
were measured for simulations using MPI-lite (via the
EasyNet bus).

10

100

1000

Number of processors
Ti

m
e

 [s
]

total
computation
communication
grid search

1 2 4 6 8

1

10

100

1000

10000
Ti

m
e

 [s
]

Number of processors

total
computation
communication
grid search

1 2 4 8 16

Fig. 6 – Computational time required for the individual
tasks of the DEM simulation of (top) single-port and

(bottom) dual-port hoppers
 (The dashed line represents linear scaling)

From the timing results presented in Fig. 6 it can be
observed that as the number of processors used is increased,
the simulation time required decreases. For both hopper
flows the computation time decreases roughly linearly with
the number of processors, whereas the time required for
inter-processor communication remains approximately
constant. This results in the flattening of the speedup curve
observed in Fig. 7. It should be remarked that for the larger
problem size of the dual-port hopper case, the ratio of
computation to communication is substantially higher; this
results in a higher parallel efficiency for larger number of
processors. In fact, the single-port hopper case represents a
very small problem size for which parallel efficiency is rather
low using MPICH on the Swiss-T0-Dual. Nevertheless,
the timing results for this case show that with a relatively
modest reduction of the communication time (as expected
from a faster interconnection network), good scalability
should be attainable for up to around 8 processors.

A PARALLEL DISCRETE ELEMENT METHOD FOR INDUSTRIAL GRANULAR FLOW SIMULATIONS

28Nov. 99

SUPERCOMPUTING REVIEW

EPFL

A PARALLEL DISCRETE ELEMENT METHOD FOR INDUSTRIAL GRANULAR FLOW SIMULATIONS

0

2

4

6

8

S
pe

ed
up

Number of processors
0 2 4 6 8

0

4

8

12

16

S
pe

ed
up

Number of processors
0 4 8 12 16

Fig. 7 – Measured speedup for the DEM simulation of
(top) single-port and (bottom) dual-port hoppers

(The dashed line represents linear scaling)

For the hopper flows considered here, the ghost particle
data is updated much more frequently than the near-
neighbour list. Thus, as seen in Fig. 6, the grid search
requires only a very small proportion of the total simulation
time. While this proportion may be somewhat larger for
more dynamic flows involving very rapidly moving parti-
cles, it should never be the source of a computational
bottleneck.

For the dual-hopper case, the performance is observed
to scale linearly for up to 8 processors. The relative decrease
in performance observed for more than 8 processors is
attributed to the degradation of communication when
more than one processor in at least one of the dual-processor
boxes is used.

Given the substantially greater performance of EasyNet
compared to Fast Ethernet, it is surprising that its use did
not yield a significant improvement in code performance.
To update the ghost particle data, about 5.5 kB of data per
iteration is passed in each direction across each of the
subdomain interfaces for the single-port hopper case, and
about 30 kB for the dual-port hopper case. The communi-
cation time determined using the network performance
data given above is, however, much smaller (by a factor of
up to 5) than the time measured to perform the update of
ghost particle data. Two possible reasons for this discrep-

ancy are that either there are unaccounted for communica-
tion overheads, or that the simulation is not well balanced
resulting in significant synchronisation overheads. A close
examination of the subroutine timings for each processor
indicates that the simulation is well balanced, and therefore
appears to rule out the second of these reasons. It is
anticipated that the significantly improved performance of
the TNet crossbar switch (to be installed on the next-
generation Swiss-T1 machine, see page 3) will both shed
light on this discrepancy, and provide a substantial increase
in performance of the parallel DEM code.

FUTURE WORK

A number of extensions to the preliminary study re-
ported here are planned. Firstly, while two-dimensional
flows have been considered to date, the real benefit of code
parallelisation is to be realised for large three-dimensional
flow simulations [10]. The extension of the parallel DEM
algorithm from two to three dimensions should be straight-
forward.

The hopper flows described above were concerned with
poly-dispersed circular particles, having a moderate ratio of
the largest to smallest particle sizes. For the strongly poly-
dispersed non-spherical particles to be considered in future
simulations (having particle size ratios of up to 250), the
search algorithm used here is no longer appropriate. A more
suitable search algorithm and contact detection has been
implemented in the serial code version; parallelisation of
this advanced search algorithm should not, however, re-
quire modifications to the techniques presented here.

Of particular importance to the accurate simulation of
complex granular flow behaviour is a sufficiently refined
modelling of inter-particle collisions. The inclusion of
breakage, attrition and cohesion models into the DEM
formulation is essential for certain industrial applications.

CONCLUSIONS

A preliminary investigation of the implementation of a
spatial domain decomposition technique for parallel granu-
lar flow simulations has been presented. The parallel algo-
rithm developed incorporates dynamic load balancing,
which is essential to obtain good performance from a
parallel DEM code. Performance measurements obtained
on a prototype commodity cluster computer system for two
hopper flow simulations have confirmed that good parallel
performance can be obtained for sufficiently large prob-
lems. Improved scalability is to be expected on future
computer systems having a greater communication per-
formance.

The performance of parallel simulations increases as the
ratio of computation to communication increases. For
parallel DEM simulations, increasing the problem size and
the complexity of the contact detection and physical mod-
elling will require an increase in computational effort, but
only a modest increase in inter-processor communication.
It is therefore be possible to perform numerical simulations

29 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

TEST DE PERFORMANCE DU CODE SPECULOOS
SUR L’ORDINATEUR PARALLÈLE T0-DUAL

DANIEL WEILL, EPFL-DGM, LABORATOIRE DE MÉCANIQUE DES FLUIDES

of large-scale industrial granular flow problems in an effi-
cient manner on commodity cluster computer systems
having substantially more processors than available on the
machine employed in the present study.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the Service
Informatique Central of the Ecole Polytechnique Fédérale
de Lausanne for providing access to the Swiss-T0-Dual
machine and, in particular, to Noureddine El Mansouri for
his technical support.

REFERENCES

[1] M.P. Allen and D.J. Tildesley, Computer simulation of
liquids, Oxford Science (1989).

[2] D.C. Rapaport, The art of molecular dynamics simulation,
Cambridge University Press (1995).

[3] G.C. Barker, Computer simulations of granular materials, in
“Granular Matter: An Inter-disciplinary Approach”,
A. Mehta (ed.), Springer-Verlag (1994).

[4] O.R. Walton, Numerical simulation of inelastic frictional
particle-particle interaction, in “Particulate Two-Phase Flow”,
M.C. Roco (ed.), Butterworth-Heineman (1994)
 884-911.

[5] G.H. Ristow, Granular dynamics: a review about recent
molecular dynamics simulations of granular materials, Annual
Reviews of Computational Physics, 1 (1994) 275-308.

[6] M.A. Hopkins, W.D. Hibler and G.M. Flato, On the
numerical simulation of the sea ice ridging process, Journal of
Geophysical Research, 96 (1991) 4809-4820.

[7] C.S. Campbell, P.W. Cleary and M.A. Hopkins, Large-
scale landslide simulations: global deformation, velocities and
basal friction, Journal of Geophysical Research – Solid
Earth, 100 (1995) 8267-8283.

[8] B.K. Mishra and R.K. Rajamani, The discrete element
method for the simulation of ball mills, Applied Mathematical
Modelling, 16 (1992) 598-604.

[9] P.W. Cleary, Discrete element modelling of industrial granular
flow applications, TASK. Quarterly - Scientific Bulletin, 2
(1998) 385-416.

[10] P.W. Cleary and M.L. Sawley, Three-dimensional modelling
of industrial granular flows, Proceedings of the Second
International Conference on CFD in the Minerals and
Process Industries (Melbourne, 1999), to appear. See also:
www.cmis.csiro.au/cfd/dem

[11] G.H. Rong, S.C. Negi and J.C. Jofriet, Simulation of flow
behaviour of bulk solids in bins. Parts 1 and 2, Journal of
Agricultural and Engineering Research, 62 (1995) 247-
269.

[12] J.M.F.G. Holst, J.M. Rotter, J.Y. Ooi and G.H. Rong,
Numerical modeling of silo filling. I: Continuum analysis &
II: Discrete element analysis, Journal of Engineering
Mechanics, 125 (1999) 94-110.

[13] G.A. Kohring, Dynamic load balancing for parallelized
particle simulations on MIMD computers, Parallel
Computing, 21 (1995) 683-693.

[14] S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, Journal of Computational Physics, 117 (1995) 1-
19.

[15] J.-A. Ferrez, D. Müller and T.M. Liebling, Parallel
implementation of a distinct element method for granular
media simulation on the Cray T3D, EPFL Supercomputing
Review, 8 (1996) 4-7.

[16] G.A. Kohring, Dynamical simulations of granular flows on
multi-processor computers, Computational Methods in
Applied Sciences ’96, J.-A. Désidéri et al. (eds), Wiley
(1996) 190-196.

[17] C.M. Dury, R. Knecht and G.H. Ristow, Size segregation of
granular materials in a 3D rotating drum, in “High-Perfor-
mance Computing and Networking”, P. Sloot et al. (eds),
Springer (1998) 860-862.

[18] R. Gruber and Y. Dubois-Pèlerin, Swiss-Tx: First experiences
on the T0 system, EPFL Supercomputing Review, 10 (1998)
19-23. See also: http://capawww.epfl.ch/swiss-tx

[19] See Supercomputing Systems: Remote Store Architecture,
http://www.scs.ch/rsa.html ■

A PARALLEL DISCRETE ELEMENT METHOD FOR INDUSTRIAL GRANULAR FLOW SIMULATIONS

The use of spectral methods in the purpose of
simulating unsteady flows in complex geometries
implies increasing computational costs in terms of
memory and CPU time. These methods being very
expensive, the parallelisation of the codes using them
becomes necessary. We propose in this article to study
the performance of the code SPECULOOS parallelised
using the MPI library. The tests are made on the new
Swiss T0-Dual computer with 16 processors.
Comparisons will be done with the former T0
computer with 8 processors.

L’utilisation des méthodes spectrales pour la résolu-
tion d’équations différentielles partielles, comme l’équa-
tion de Navier-Stokes, nécessite de plus en plus de
moyens informatiques puissants afin de mener à bien les
simulations d’écoulements non-stationnaires dans des
géométries complexes. Ces méthodes étant très gour-
mandes en espace mémoire ainsi qu’en temps CPU, la
parallélisation des codes qui les utilisent devient une
voie nécessaire à suivre. Cet article propose de mesurer
les performances en parallélisme du code SPECULOOS
écrit en langage C++, en utilisant la librairie MPI. Les

mailto:daniel.weill@epfl.ch
http://capawww.epfl.ch/swiss-tx
http://www.scs.ch/rsa.html

30Nov. 99

SUPERCOMPUTING REVIEW

EPFL

TEST DE PERFORMANCE DU CODE SPECULOOS SUR L’ORDINATEUR PARALLÈLE T0-DUAL

tests sont effectués sur la nouvelle machine T0-Dual à
16 processeurs. Une comparaison sera effectuée avec le
précédent T0 à 8 processeurs.

INTRODUCTION

Nous effectuons une étude de performance en parallé-
lisme du code SPECULOOS, solveur des équations de
Navier-Stokes incompressibles instationnaires pour un fluide
visqueux par une méthode numérique d’éléments spec-
traux.

∂u
∂t
— +(u . ∇)u = – ∇ p + —∇ 2 u +f 1

Re
∇ . u = 0 + conditions aux bords/initiales

{
(u est le vecteur vitesse, p la pression, f un terme de force de
volume).

Plusieurs cas test ont été étudiés, parmi eux l’équation de
Poisson tridimensionnelle dans un cube, un écoulement de
Navier-stokes bidimensionnel dans une cavité carrée en-
traînée à Reynolds 1000 ainsi qu’un écoulement bidimen-
sionnel autour d’un obstacle de forme rectangulaire à
Reynolds 100. A la différence de la méthode des éléments
finis (MEF) ou des volumes finis (VF), la méthode des
éléments spectraux est plus précise, ce qui en fait un atout
incontestable pour la recherche fondamentale où l’on étu-
die souvent des phénomènes très sensibles et où l’on veut
que les effets numériques, parasites et non-physiques, soient
les plus réduits possible. De plus, contrairement aux métho-
des spectrales classiques (comme celle de Fourier), cette
méthode peut traiter de problèmes à géométrie complexe et
non-périodique, ce qui la rend attrayante dans le domaine
de l’ingénierie.

Son principe de base consiste à mettre les équations
différentielles sous forme faible, à décomposer les grandeurs
étudiées dans un espace polynômial adapté et à discrétiser
ensuite les intégrales selon une quadrature de Gauss. La base
polynômiale est constituée des interpolants de Lagrange-
Legendre. La discrétisation se fait en prenant le produit
scalaire des équations de Navier-Stokes avec les fonctions
tests représentant la base polynômiale, que l’on choisit être
les interpolants de Lagrange-Legendre h(r) définis sur l’élé-
ment parent [–1,1] et dont l’une des propriétés est que
hi(ξj)=δij , où ξj ∈ [–1,1] sont les points de collocation de
Gauss-Lobatto-Legendre (qui sont les zéros de la dérivée du
polynôme de Legendre d’ordre n, L’n=0 plus les extrémités
de l’intervalle). La vitesse u est approchée sur la grille
constituée des points de Gauss-Lobatto-Legendre. La pres-
sion p est approchée sur la grille de Gauss-Legendre, cons-
tituée des points de collocation ζj ∈]–1,1[qui sont les zéros
de Ln-1= 0, pour n fixé. Le solveur des équations discrétisées
est de type itératif. Il s’agit d’un gradient conjugué avec
préconditionnement.

En ce qui concerne la discrétisation temporelle, un
schéma d’Euler d’ordre deux est utilisé pour le traitement
implicite du terme visqueux, alors que le terme non-linéaire

est traité par une extrapolation explicite d’ordre deux. Une
méthode de découplage vitesse/pression est mise en oeuvre
et fait appel à une décomposition LU généralisée des
équations discrétisées. Pour plus de détails concernant la
méthode des éléments spectraux, on peut se référer aux
articles suivants [4]et [3].

Un des aspects originaux de cette recherche est que
SPECULOOS est écrit dans un langage de programmation
par objet, le C++. Cette approche permet plus de clarté dans
la lecture du code source, et laisse la possibilité de pouvoir
réutiliser plus facilement des parties de code ultérieure-
ment. Les méthodes d’éléments spectraux nécessitant beau-
coup de puissance de calcul à cause de la précision qu’elles
exigent, la parallélisation de ce code devient une étape
incontournable pour son utilisation ultérieure. Ce code fait
appel à la librairie de communication parallèle MPI. C’est
aujourd’hui l’un des standards les plus utilisés dans le
monde. Ceci permet de le porter sur une plus large gamme
d’ordinateurs parallèles. Pour notre part nous utilisons le
Swiss-Tx (T0-Dual à 16 processeurs DEC à 500 MHz
distribué sur 8 boxes bi-processeurs à 1 Gb de mémoire et
5 Mb de mémoire cache [5]). Une version optimisée d’une
librairie parallèle pour le T0-Dual est aussi utilisée et se
nomme FCI.

TESTS

Dans le numéro 10 de la présente revue (novembre
1998,[1]) nous vous avons présenté une suite de tests
effectués avec SPECULOOS dans différents cas de figure.
Ces tests se sont faits sur la version précédente du T0. Nous
vous proposons donc de refaire certains de ces tests dans le
cas du T0-Dual. Nous utilisons 1, 2, 4 et 8 processeurs.

La librairie parallèle est MPI. Dans un deuxième temps
nous effectuons les mêmes mesures en utilisant, cette fois,
le protocole de communication FCI, qui est spécialement
adapté au Swiss-Tx.

TEST 1: EQUATION DE POISSON 3D

Nombre de
processeurs

1

2

4

8

Eléments par
processeur

12x8x8

16x8x8

6x4x8

6x4x4

MPI
(T0-dual)

1

1.86

3.71

6.69

FCI
(T0-dual)

1

1.94

3.68

6.72

MPI
T0

1

1.7

3.4

6.6

FCI
T0

1

2.1

4.0

6.9

Tableau 1 – Equation de Poisson 3D

Le test No 1 résout l’équation de Poisson en 3D sur un
cube]0,1[x]0,1[x]0,1[contenant 12x8x8 éléments. L’or-
dre dans chaque élément est respectivement de 8, 10 et 11,
selon x, y et z. Les résultats du speedup sont présentés sur le
tableau 1. Le comparatif s’arrête à huit processeurs car pour
l’instant FCI ne gère pas encore seize processeurs.

31 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

TEXT 2: CAVITÉ ENTRAÎNÉE 2D

Nombre de
processeurs

1

2

4

8

Eléments par
processeur

12x16

12x 8

6x8

6x4

MPI
(T0-dual)

1.0

1.85

3.67

5.86

FCI
(T0-dual)

1.0

1.79

3.95

7.61

MPI
T0

1.0

1.7

2.8

5.1

FCI
T0

1.0

2.3

4.2

7.9

Tableau 2 – Navier-Stokes 2D incompressible

Le deuxième test que nous avons retenu (test 4 de
l’article mentionné en [1]) est celui de la résolution des
équations de Navier-Stokes 2D instationnaires dans une
cavité carrée]0,1[x]0,1[dont le couvercle est entraîné à une
vitesse donnée. Le nombre de Reynolds est fixé à 1000.
Nous avons fait 20 pas de temps. Le domaine carré est
constitué de 12x 16 éléments avec un ordre polynômial
respectivement de 9 et 7 dans chaque direction. Les résultats
sont donnés sur le tableau 2.

On remarque de manière globale sur les deux tests que
les performances sont légèrement meilleures lorsque nous
utilisons FCI. Cependant nous ne pouvons rien déduire
entre les performances du T0-Dual et celle du T0, car pour
ce dernier le speedup est à dominante super-linéaire. Cela
provient des effets d’accélération dus à la mémoire cache, et
celle-ci n’est pas la même sur les deux machines

TEST 3: ECOULEMENT AUTOUR D’UNE CONSTRICTION 2D

hauteur: 1.0
0.5

0.2

longueur: 22.0

Fig. 1 – Géométrie du domaine (pas à l’échelle)

Nous avons aussi fait un test de performances sur le T0-
Dual en prenant le cas de la constriction 2D. Le domaine de
simulation est représentée schématiquement sur la figure 1.
Il est constituée de 1024 éléments quadrilatéraux. L’ordre
polynomial dans chaque élément est de 7x7. Le nombre de
Reynolds est de 100. Nous effectuons 200 pas de temps. Les
conditions aux limites incluent un profil de vitesse de type
Poiseuille à l’entrée du domaine, de type non-glissement sur
les parois solides et des conditions naturelles homogènes à
la sortie, ∂u

∂n
ν – pn = 0

Encore une fois nous nous intéressons au speedup du code.
La méthode des éléments spectraux est particulièrement

bien adaptée à une implémentation sur ordinateur parallèle.
Pour que la distribution des éléments spectraux sur les
différents processeurs soit optimale, il y a deux contraintes
que nous devons prendre en compte. La première est de
distribuer la charge de calcul sur les processeurs de la

manière la plus équilibrée. La seconde exige que le mini-
mum de communication se fasse entre processeurs lors-
qu’un transfert de données est nécessaire. La solution
optimale qui doit satisfaire à ces deux exigences n’est de loin
pas triviale et demande de faire appel à des logiciels spécia-
lisés dans cette tâche. Le résultat est montré sur la figure 2.

4

2

0

y

0 5 10 15 20
x

0
5

6
7

41

2
31

Processeur 0 1 2 3 4 5 6 7

Fig. 2 – Distribution des éléments selon 8 processeurs

Les résultats sont montrés dans le tableau 3 (la simula-
tion avec 1 processeur est prise comme référence) pour MPI
et FCI. La figure 3 présente les lignes de courant de
l’écoulement. On voit bien apparaître le tourbillon derrière
la constriction.

X

Y

4 5 6 7 8 9 10

0

0.5

1

Fig. 3 – Lignes de Courant

Le tableau 3 laisse apparaître un speedup super-linéaire
pour le cas à 2 processeurs.

temps MPI
(sec.)

3368.5

1664.6

929.9

507.6

359.9

Nombre de
processeurs

1

2

4

8

16

MPI
(T0-dual)

1

2.02

3.62

6.64

9.36

temps FCI
(sec.)

3497.3

1744.7

891.7

FCI
(T0-dual)

1

2.01

3.92

Tableau 3 – Speedup vs. nombre de processeurs (T0-
Dual)

Cet effet provient encore de la mémoire cache, dont les
transferts de données se font beaucoup plus vite avec le
processeur, que de celui-ci avec la mémoire convention-
nelle. Une manière de contourner cette singularité serait de
faire des simulations avec une taille de domaine beaucoup
plus grande que la nôtre, alors l’effet de la mémoire cache en
sera réduit. De manière générale cependant, le speedup
n’est pas très bon. Le cas FCI est meilleur que celui avec
MPI. La raison est due principalement au éléments sui-
vants:
❚ la version du compilateur C++ n’est pas encore assez

optimisée comme l’est Fortran77. Cela se comprend
quand on sait que ce langage n’est que peu utilisé dans

TEST DE PERFORMANCE DU CODE SPECULOOS SUR L’ORDINATEUR PARALLÈLE T0-DUAL

32Nov. 99

SUPERCOMPUTING REVIEW

EPFL

la recherche scientifique. Un effort de la part de fabri-
cants de compilateur est donc demandé.

❚ l’implémentation du parallélisme n’a pas encore été
optimisée au niveau de la programmation. Il faut entre
autre faire attention à ce que la répartition des tâches
distribuées aux processeurs soient la plus homogène
possible.
Malgré des performances qui ne sont pas encore maxi-

males en terme de parallélisme, SPECULOOS reste un
solveur des équations de Navier-Stokes très prometteur. Il
est d’ailleurs plus que cela, c’est un outil très général de
résolution de systèmes d’équations aux dérivées partielles
qui peut être utilisé dans d’autres domaines de la science ou
de l’économie. Sa souplesse d’utilisation en fait un atout
incontestable pour des applications futures. En dépit de ces
quelques critiques qui ne concerne pas le hardware du T0-
Dual proprement dit, on peut sans nul doute espérer de très
bonnes performances de la part de cet ordinateur et des
prochaines versions qui sortiront bientôt.

TEST DE PERFORMANCE DU CODE SPECULOOS SUR L’ORDINATEUR PARALLÈLE T0-DUAL

RÉFÉRENCES

[1] Gruber R., Dubois-Pèlerin Y., Swiss-Tx:First experience on
the T0 system, Supercomputing Review, EPFL #10, pp. 19-
23, 1998.

[2] Dubois-Pèlerin Y., Van Kemenade V., Deville M., An
objetct-oriented toolbox for spectral element analysis, J. Scient.
Computing, Vol. 14, pp. 1-29, 1999.

[3] Maday Y. & Patera A. T., Spectral Element Methods for the
Incompressible Navier-Stokes Equations, In State-of-The-Art
Surveys on Computational Mechanics, A.K. Noor and
J. T. Oden (eds.), The American Society of Mechanical
Engineers, pp. 71-143, 1989.

[4] Rønquist E., M., Spectral Element Methods for the Unsteady
Navier-Stokes Equations, von Karman Institute for Fluid
Dynamics, Lecture Series, 1991.

[5] http://sewww.epfl.ch/SIC/SE/servcentraux/generalites.html. ■

COMPUTER SIMULATION OF ATRIAL ARRHYTHMIAS

OLIVIER BLANC & JEAN-MARC VESIN, EPFL-DE, SIGNAL PROCESSING LABORATORY,
NATHALIE VIRAG,MEDTRONIC EUROPE S. A., OLIVIER EGGER, OASYA S. A. AND JACQUES KOERFER

& LUKAS KAPPENBERGER, CHUV-LAUSANNE, DIVISION OF CARDIOLOGY

La fibrillation auriculaire constitue la forme la plus
fréquente d’arythmie, et provoque inconfort, malaises
cardiaques et embolies artérielles. Du fait de l’absence
de modèles biologiques stables de la fibrillation auricu-
laire, la thérapie est basée sur des observations empiri-
ques. En contraste avec le myocarde ventriculaire, la
surface et l’épaisseur limitées de l’oreillette permet le
développement d’un modèle 3D du tissu auriculaire sur
les ordinateurs actuels dans le but de développer de
nouvelles stratégies thérapeutiques. Sur la base d’un
modèle informatique de tissu cardiaque hétérogène et
anisotrope qui a été prouvé être réaliste lors d’expéri-
mentations antérieures, nous avons développé un mo-
dèle 3D anatomique de l’oreillette humaine. L’anato-
mie a été reconstruite virtuellement, et est composée
d’environ 250 000 cellules cardiaques simulées. Des
observations électro-physiologiques faites sur des êtres
humains ont révélé l’existence de motifs anormaux
d’activité électrique tissulaire ressemblant à des spirales
et auto-organisants lors d’arythmies auriculaires. Nous
avons été capables à l’aide de notre modèle de simuler ces
phénomènes dans des conditions physiologiquement
réalistes.

Atrial fibrillation is the most frequent form of
arrhythmia, provoking discomfort, heart failure and
arterial embolisms. As reliable biologic models do not

exist, therapy is based on empirism. In contrast to the
ventricular myocardium, the limited surface and wall-
thickness of atria should permit the development of a
3D model with up-to-date computer power in order
to develop new therapeutic ideas. Based on a 2D
heterogeneous and anisotropic computer model of
cardiac tissue that has proved to be realistic in previous
experiments, we have developed a 3D anatomical
model of human atrium. The anatomy has been
virtually reconstructed and is composed of about
250’000 cardiac cells. Electro-physiological observa-
tions made in humans have revealed the existence of
anomalous, self-organizing, spiral-like patterns of tis-
sue electrical activity during atrial arrhythmias. Using
our model, we have been able to simulate these
phenomena under physiologically realistic conditions.

INTRODUCTION

Research and development in any field of science is
nowadays almost always supported by computer power.
Several mathematical models of the heart based on an
accurate representation of anatomy and cellular biophysics
are currently under development [1,2], one of the main
goals being to better understand the complex spatio-tempo-
ral mechanisms leading to cardiac arrhythmias. We present
here our model of human atria, which is to our knowledge

http://sewww.epfl.ch/SIC/SE/servcentraux/generalites.html
mailto:olivier.blanc@epfl.ch
mailto:jean-marc.vesin@epfl.ch

33 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

mapping [4], i. e. the simultaneous recording of potentials
at numerous locations of the cardiac tissue. Besides practical
difficulties, this coarse spatial discretization yields only
limited information upon the space-time evolution of the
arrhythmia.

Since the most frightening fatal arrhythmias leading to
sudden death are of ventricular origin and induced by
ischemic events, most efforts of research in electrophysiol-
ogy are made to understand ventricular tachycardias and
ventricular fibrillation. Computer models of the heart have
been used to simulate these arrhythmias but the major
drawback is the heavy computational load needed for
realistic models. Indeed, the development of a three-dimen-
sional model of the whole heart is today still difficult due to
the computation time. The most effective computer mod-
els of the heart based on detailed ionic models have about
1’000’000 cardiac cells [5,6], leading therefore to a limita-
tion in the number of cardiac cells and size of tissue that can
be simulated. While in the ventricles reentry is a three-
dimensional process, even within an isolated wall segment,
atria are constituted of thin walls and the arrhythmic
process can be reduced to a two-dimensional phenomenon.
Based on these premises the electrophysiology of the atrium
can be considered as a 2D problem in a 3D structure with
a total area of about 100 cm2. This is a size that we can
model with current computer power.

TWO-DIMENSIONAL MODEL OF THE CARDIAC
TISSUE

i,j
Istim

i,j-1
Vm

Ry
i,j

i,j

i,j

i,j

Rx RxVm
Vm

Vm

Vm

Cm

Ry

i-1,j i+1,j

i+1,j

i,j+1

i,j+1

Iion

i,j

B-R or L-R
Model

Fig. 1 – Representation of a cardiac cell with its four
neighbors

A 2D heterogeneous and anisotropic model of cardiac
tissue has been developed, where the modeling of each cell
is based on membrane ionic channels. The cardiac tissue
consists of a grid of individually calculated cells intercon-
nected via resistors representing gap junctions. Membrane

the first one incorporating realistic anatomical features. Its
ability to reproduce phenomena observed in clinical experi-
ments is illustrated.

DESCRIPTION OF THE PROBLEM

Humans, like all other mammals, have a four-cham-
bered heart, consisting of the left and right atria and the left
and right ventricles. The two atria can be envisioned as the
receiving chambers, or «priming» pumps, of the heart. The
two ventricles represent the «power» pumps of the circula-
tory system. The right atrium receives the blood returning
from the body through the veins, and the left atrium
receives the freshly oxygenated blood from the lungs. Blood
circulation depends on an appropriate contraction of the
atria and the ventricles. This contraction is provoked by the
propagation of a so-called action potential from cardiac cell
to cardiac cell. This action potential relies on changes in the
concentration of ions (calcium, potassium, and sodium)
inside these cells. The excitation spreads rapidly through
the tissue of an atrium or a ventricle, ensuring that all cells
contract together. In the normal functioning of the heart,
this excitation finds its source in a special set of pacemaker
cells called the sinoatrial (SA) node. Atria are excited, and
thus contract, first. The contraction of the ventricles is
delayed because the excitation can reach them via an
electrical connection formed by a group of special cardiac
cells called the atrioventricular node.

What may (unfortunately) happen is that, either be-
cause of defects in the tissue (anatomical reentry) or of
ectopic foci (functional reentry), spiral-like wavefronts of
excitation appear in the cardiac tissue (atrium or ventricle)
and start to wander through it, creating a continuous, self-
organizing electrical activity. Defects in the tissue may be
due for instance to prior infarction. Ectopic foci are groups
of cardiac cells that become spontaneously excited. This
type of phenomenon goes under the general denomination
of arrhythmia, since the normal rhythm disappears, and its
most extrem form (corresponding to a large number of
randomly propagating wavefronts) is called fibrillation. As
progressive, rhythmic excitation of the cardiac tissue is
replaced by an anarchic excitation, the atrium or ventricle
loses its efficiency as a pump. Atrial arrhythmias, the most
frequent form of arrhythmias, are not lethal by themselves.
However, they often cause disabling symptoms and severe
complications such as heart failure and stroke [3]. Ventricu-
lar fibrillation leads to sudden cardiac death, and the only
known therapy is defibrillation, which consists in applying
an electric shock to the heart in order to «reset» it.

Arrhythmias are phenomena difficult to study in vivo.
Observation on human patients is of course rare, and
experimentation on animals is quite challenging: First,
large animals (sheep, goats, pigs,…) have to be used for
reasons of heart size similarity, and mice hearts are even to
small to fibrillate. Second, it is impossible to impose the
conditions leading to fibrillation with precision. Third, the
most common data acquisition procedure is epicardial

COMPUTER SIMULATION OF ATRIAL ARRHYTHMIAS

34Nov. 99

SUPERCOMPUTING REVIEW

EPFL

ion kinetics is computed with either the Beeler-Reuter (B-
R) [7] or the Luo-Rudy (L-R) [8] models derived from
experimental data. These models have been chosen because
they are based on physiologic parameters and are therefore
well suited for the study of arrhythmias. To limit the
computation time, we have implemented a monodomain
model, where the current flow is described only in the
intracellular region and where the extracellular region is
assumed to be grounded (Fig. 1).

 The electrical propagation in the intracellular domain
is described by the continuous reaction-diffusion equation:

1
Sv
— ∇ .(D∇ Vm) = Cm — + Iion – Istim

∂Vm
∂t

(1)

245 ms 300 ms 350 ms

400 ms 450 ms 500 ms

-80 20m√
Fig. 2 – Functional reentry in a 120 * 120 cells

homogeneous and isotropic 2D tissue

where Sv is the surface to volume ratio, D the conductivity
tensor, Vm the transmembrane potential, Cm the mem-
brane capacitance, Iion the sum of the membrane ionic
currents and Istim a stimulus current. Equation (1) is
discretized by a finite difference method and solved in two
steps: firstly an explicit computation of the membrane ionic
currents Iion, and secondly a semi-implicit current diffusion
solved by a classical ADI scheme. The choice of the time and
space discretizations is the result of a tradeoff between
computation speed and accuracy. All the simulations are
conducted with Cm = 1 µF/cm2 and Sv = 0.024 cm-1. The
behavior of separate cells and the values of intracellular
resistivities in the longitudinal and transversal directions are
individually programmable for each cell via the conductiv-
ity tensor D, allowing us to introduce heterogeneity (ischemic
zones, obstacles to conduction) and anisotropy in the
cardiac tissue. Several experiments have been performed to
show the realistic behavior of our two-dimensional tissue,
which has been described in detail [9]. Fig. 2 shows an

exemple of functional reentry in a 120*120 cells homoge-
neous and isotropic tissue. The pattern resulting from the
conjunction of normal excitation (vertical front) and an
ectopic focus (point on the left) repeats itself in time in a
stable way.

THREE-DIMENSIONAL MODEL OF HUMAN ATRIA

Since atria are constituted of thin walls, we have built
our anatomic model of the human right and left atrium by
folding the described two-dimensional cardiac tissue into a
3D model of one layer of cells. Holes are placed to simulate
veins and valves like represented in Fig. 3.

SVC 4 Pulmonary
Veins

IVC

SA Node
Mitral Valve

Tricuspid Valve

(a) (b)

Fig. 3 – Proposed model for both atria with the holes
represented in black: (a) top front view (right atrium
on the left) with the superior vena cava and the sino-
atrial node, (b) bottom rear view (right atrium on the
right) with the four pulmonary veins, the inferior vena

cava (IVC) and the tricuspid and mitral valves

 The surface of the mitral and tricuspid valves is 4 cm2,
2 cm2 for the superior vena cava, 2.5 cm2 for the inferior
vena cava and 1 cm2 for each pulmonary vein. Electrical
activation is initiated from selected regions by injecting an
intracellular current (simulated electrical stimulus) into the
cells. Furthermore, different action potential modifications
have been tested by a modulation of the ionic channels,
simulating membrane defects or electrical disturbances.
The simulated size of both atria is equivalent to the external
surface of a 3cm x 3cm x 7cm parallelepiped-shaped box.
The total area is 100 cm2 with the orifices of the veins and
the valves representing 20 % of this area.

We have used in our model ∆x = ∆y = 200 µm and
∆tmin = 0.025 ms for a resistivity ranging from ρ = 80 Ω.cm
to 800 Ω.cm.This leads to a total number of cardiac cells of
about 250’000 cells. The model has been implemented
with double precision in C++ on a Silicon Graphics Onyx.
This supercomputer runs with 8 R10’000 processors hav-
ing an internal frequency of 195 MHz.

COMPUTER SIMULATION OF ATRIAL ARRHYTHMIAS

35 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

The software generates a color-coded movie of the
electrical activation in the tissue, with 5 frames per second,
and a simulation time of 5 milliseconds between each frame
(we typically simulate 10 seconds of activation). Activation
potentials of specific cells can also be recorded, as well as an
electrocardiogram (ECG) corresponding to the global acti-
vation of the tissue.

EXAMPLE OF EXPERIMENT

Atrial fibrillation could be initiated from a normal sinus
rythm and two or three ectopic beats carefully timed and
located. Although many attempts have resulted in unsus-
tained wavefront perpetuation, two ectopic beats S2 and S3
located in the high right atrium at 475 ms and 700 ms
respectively have led to a fibrillation lasting for about
2 seconds, which then converted to a so-called sustained
atrial flutter (see figure on the cover of this issue).

Time[s]
0 0.5 1 1.5 2 2.5 3 3.5 4

3 3.5 4 4.5 5 5.5 6 6.5 7
Time[s]

V m
 [m

V]

20
0

-20
-40
-60
-80

-100

V m
 [m

V]

20
0

-20
-40
-60
-80

-100

Fig. 4 – Comparison of the evolution of the action
potential for a cardiac cell located between the

tricuspid valve and the inferior vena cava during atrial
flutter and atrial fibrillation: (a) atrial flutter with an
average rate of 220 bpm; (b) atrial fibrillation with an

average rate of 422 bpm

Atrial flutter is a sustained tachyarrhythmia character-
ized by a periodic pattern. We can clearly see in this example
that atrial fibrillation is observed as multiple reentering
wavefronts traveling randomly. It is to be noted that this
conversion from atrial fibrillation to flutter has indeed been
observed in experimental studies [3]. Fig. 4 (a) displays the
temporal evolution of the action potential of one cardiac
cell during an atrial flutter. The average rate is 220 beats per
minute and the waveform looks distinctly quasi-periodic.
Fig. 4 (b) displays the same information in the case of atrial
fibrillation. The average rate is 422 beats per minute and the
more stochastic aspect of the waveform is obvious.

CONCLUSION

We have developed a computer model of human atria
which allows us to simulate phenomena observed in nature
such as normal rhythm, atrial flutter, or atrial fibrillation.
We can analyse the temporal and spatial evolution of the
excitation, and we can also, like in real clinical experiments,
record the action potential at a specific location.

As such, at least in what concerns atria, we have full
access to a virtual electrophysiology device, on which we can
study in full depth the mechanisms leading to arrhythmias.
Our next goal is to simulate therapeutic actions such as
defibrillation and ablation (creation of a zone of non-
conducting tissue blocking the onset of the arrhythmia) in
order to define optimal strategies for their use.

ACKNOWLEDGMENTS

This study was made possible by grants from the Theo-
Rossi-Di-Montelera Foundation, Medtronic Europe and
the Swiss Commission pour la Technologie et l’Innovation
(CTI).

REFERENCES

[1] P.J. Hunter, M.P. Nash and G.B. Sands, Computational
electromechanics of the heart, in Computational Biology of
the Heart, pp. 345-407. Edited by A.V. Panfilov and A.V.
Holden, John Wiley & Sons, 1996.

[2] Y. Rudy, Insights from theoretical simulations in a fixed
pathway, J. Cardiovasc. Electrophysiology, Vol. 6, pp. 294-
312, 1995.

[3] P. Wolf, E. Benjamin, A. Belanger, W. Kannel, D. Levy, R.
D’Agostino, Secular trends in the prevalence of atrial fibrilla-
tion: The Framingham study, American Heart Journal, Vol.
131, No. 4, pp. 790-796, 1996.

[4] K. Konings, C. Kirchhof, J. Smeets, H. Wellens, O. Penn,
and M. Allessie, High-density mapping of electrically induced
atrial fibrillation in humans, Circ., vol. 89, pp. 1665-1680,
1994.

[5] W. Quan, S.J. Evans and H.M. Hastings, Efficient Integration
of a realistic two-dimensional cardiac tissue model by domain
decomposition, IEEE Trans. on Biomed. Eng., Vol.45, No.
3, pp. 372-385, March 1998.

[6] D. Noble and R.L. Winslow, Reconstruction of the heart:
network models of SA node-atrial interaction, in
Computational Biology of the Heart, pp. 49-64. Edited by
A.V. Panfilov and A.V. Holden, John Wiley & Sons, 1997.

[7] G. W. Beeler and H. Reuter, Reconstruction of the action
potential of ventricular myocardial fibbers, J. Physiol., Vol.
268, pp. 177-210, 1977.

[8] D. Luo and Y. Rudy, A model of the ventricular cardiac action
potential, Circ. Res., Vol. 68, No. 8, pp. 1501-1526, 1991.

[9] N. Virag, J.-M. Vesin, L. Kappenberger, A Computer Model
of Cardiac Electrical Activity for the Simulation of Arrhythmias,
PACE, Vol. 21, No. 11, Pt. II, pp. 2366-2371, Nov.
1998.■

COMPUTER SIMULATION OF ATRIAL ARRHYTHMIAS

36Nov. 99

SUPERCOMPUTING REVIEW

EPFL

Dans ce travail nous présentons tout d’abord notre
modèle de prédiction de performance pour applications
parallèles irrégulières (ou régulières). Ensuite, nous
présentons notre outil de prédiction de performance,
baptisé IP3T (Irregular Parallel Performance Prediction
Tool), basé sur notre modèle. L’originalité de notre
modèle et de l’outil est de permettre de prédire les
performances d’applications réelles et industrielles. Pour
réaliser cela, le modèle a été conçu pour être facilement
extensible. L’outil IP3T a été testé avec succès pour des
applications complexes sur machines parallèles et sur
réseaux de stations et a prouvé qu’il est précis et fiable.
Enfin, nous présentons quelques résultats obtenus avec
cet outil.

In this work we first present our performance
prediction model for irregular (or regular) parallel
applications. Secondly, we present a performance
prediction tool, named IP3T (Irregular Parallel Per-
formance Prediction Tool), based on our model. The
distinctive feature of our model and our tool is that it
provides for predicting the performance of industry-
oriented complex applications. To do that, the model
was design to be easy to extend. The IP3T tool has
been successfully tested with several complex applica-
tions on parallel machines and on networks of
workstations and has proven to be accurate and reliable.
Finally, we present some results obtained with this
tool.

INTRODUCTION

During the last decade, performance prediction has
been repeatedly quoted as a key factor to developing parallel
systems [1]. Predicting the behaviour of a program per-
formance as a function of the number of processors and of
the problem size is essential to users:
❚ in order to choose the right implementation method.
❚ to manage execution of processes in supercomputer

systems or in nondedicated networks of workstations/
PC.

❚ for optimizations in parallelizing compilers.
Numerous prediction tools have been recently proposed

in the literature [2,3]. Most of this work focuses mainly on
applications with regular and static data structures. In
contrast, the present work focusses on irregular applications

[4] and especially those exhibiting dynamic data structures
and a data-dependent execution scheme. For this type of
application, performance does not depend only on the
number of processors and on the problem size. Other
parameters have been taken into account, the value of
which are data-dependent, and therefore unpredictable.

In this work, we present a performance prediction
model for irregular (or regular) parallel applications on
parallel machines and on nondedicated networks of
workstations/PCs. We have developed a performance pre-
diction tool to show that our model is intended for auto-
matic use.

MODELING IRREGULAR APPLICATIONS

Block representation
of the application

{

Irregular
application

Extensible block model
Communications

blocks
Computation

blocks

total product time Speedup prediction

T[s]
60

Speedup

1

128 nPE'snPE's256

Br

Sc

...

...

...

...

Sc

Sc

Sc

Sc

Fig. 1 – Our approach for performance modeling

In our approach, we began by assuming that the total
execution time of an application is the sum of different
times spent in computation, communication, synchroniza-
tion, etc. In order to predict the behaviour of irregularly (or
regularly) structured algorithms, it is necessary to find well
defined templates or frameworks that can capture their
behaviour. We have assumed that the algorithms to be

IP3T A PERFORMANCE PREDICTION TOOL FOR
IRREGULAR PARALLEL PROGRAMS

MICHEL PAHUD, EPFL, DÉPARTEMENT D’INFORMATIQUE

mailto:michel.pahud@epfl.ch

37 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

IP3T A PERFORMANCE PREDICTION TOOL FOR IRREGULAR PARALLEL PROGRAMS

modeled can be decomposed into a sequence of blocks,
where each block consists of either local computation
(performed in parallel by the processors), or of a global
communication operation, or a synchronization barrier.
Once the application is decomposed into blocks, a tool can
automatically predict its runtime performance (Fig. 1).

In our model, there are two main categories of blocks:
computation blocks and communication blocks. The main
types of blocks defined in our work and their respective
symbols are given in table 1.

Computation blocks:

Type of block Symbol

Sequential block

Parallel block

Iterative block

Communication blocks:

Type of block Symbol

Point-to-point

Broadcast

Scatter

Gather

Barrier

... Br

Sc

Table 1 – Graphical symbols of the main blocks

For each of the proposed block types, a simple perform-
ance model is established as a function of basic parameters.
❚ Sequential block: A simple way of estimating single-

processor execution time is to measure it on one of the
processors of the target parallel machine.

❚ Parallel block: A global synchronization is supposed to
occur at the end of the block. The time of the block is the
time spent in the slower concurrent process of the
parallel block.

❚ Iteration block: For N succesive execution of code, time
for loop is modeled as N times the duration of the loop
body.

❚ Communication block: A set of benchmarks is estab-
lished, to time these communication operations before-
hand on the target multi-processor architectures or on
networks of workstations/PCs, for different numbers of
processors and different message sizes. These measure-
ments have to be done only once for a given architecture
and stored into a database.

Execution time of the whole program can then be
modeled by the sum of the execution times for the consecu-
tive blocks. In order to obtain accurate results, we have also
taken in account statistical models [7]. To predict perform-
ance of irregular applications we add the possibility to
model blocks where the length varies during the execution
[4]. For example, some parts of the code of real applications

contain a block or a sequence of blocks where the execution
time depends on environement parameters like iteration
number of a surrounding loop. In order to model this kind
of situation we have defined a concept of duration function.
A duration function returns a duration (in seconds) for a
given input value. The value given as parameter to the
function is an environment parameter like the current
iteration value of a loop. A duration function can be
decomposed into two part: an architecture dependant part
(named load unit or U) and an application dependant part
(named load function). Fig. 2 shows how a duration
function is composed.

duration [s]

environment
parameter

load [work]

environment
parameter

= U x

Duration function:
Architecture dependant

Load function:
Architecture dependant

Load unit:
Architecture dependant

Fig. 2 – A duration fonction permits to model the
irregularty of some applications

RESULTS

In order to verify the usability of the model in practice
we carried out prediction experiments on custom-made,
irregular, parallel programs, then on real programs. Among
the programs used for these performance validation experi-
ments are:
❚ application simulation of wave propagation in urban

areas named ParFlow++ (parallel C++ application used
for the STORMS European project: EPFL, University
of Geneva, Swisscom, …) [5].

❚ optimal networking decomposition algorithm in do-
mains (parallel C application presented in NASA Na-
tional Symposium) [6].

❚ a genetic algorithm based on the concept of individual
islands (parallel C++ application used for the LEOP-
ARD project: TDF, EPFL, …) [7].

The good results of the validation experiments confirm
the validity of the method [8]. For example, we show results
with the ParFlow++ application where the general block
decomposition is given in Fig. 3. This application contains
a main loop which contains a parallel block. Each process is
a loop which contains a sequence of a sequential block, a
communication block and another sequential block.

38Nov. 99

SUPERCOMPUTING REVIEW

EPFL

...

Flow computation

Communications

Flow propagation

Load function

Load function

iter_main

iter_mainin
de

x_
na

m
e:

 n
um

Pa
rt

Nb
Pa

rt
it

io
ns

By
PE

index_name: iter_name
NbSteps

Global parameters:
- NbPEs
- NbSteps
- NbPartitionsByPE
- WidthPartitions

Fig. 3 – Block decomposition of an application of wave
propagation in urban areas

We can automatically predict with very good precision
how efficient it is to decompose the application in parallel
(Fig. 4).

IP3T, IRREGULAR PARALLEL PERFORMANCE
PREDICTION TOOL

We planned and supervised the efforts of several senior
students to implement an experimental prediction per-
formance tool named IP3T (Irregular Parallel Performance
Prediction Tool) useful on networks of nondedicated
workstations/PCs and on parallel machines [8]. IP3T can
be also used for sequential machines like single processor
PCs. IP3T permits to demonstrate that our model is
intended for automatic use. The tool was entierely
developped in Java and runs on nearly every computer. Any
analysed parallel application can be programmed in many
languages such as C, C++, Fortran. The communication
libraries can be one of PVM, MPI and proprietary commu-
nications libraries.

The structure of the tool is in 3 layers (Fig.5):
1 a lower layer where the access to the target architecture

is done for single-processor code measurements and
database access is done for communication blocks.

2 a middle layer which works in 3 phases:
❚ Analysis phase: in which the structure of the applica-

tions is recognized. Some directives are added into
the source code in order to help the recognition of
the block structure [8].

❚ Measurement phase: in which the performances of
sequential blocks are measured on one of the proces-
sors of the target parallel machine.

❚ Prediction phase: in which the tool can compute the
prediction with the model using the performance
measurements of the sequential blocks and the data-
base of the performances of communication blocks.

3 a user interface which allow the user to interact and
modify some parameters of the prediction.

230

240

250

260

270

280

290

300

310

1 2 3 4 5 6 7 8

Measure
Prediction

optimum

#partition/processor

Pr
ed

ic
ti

on
 t

im
e[

s]
Fig. 4a – Total execution time of ParFlow++ on a 2km x
2km district of the Geneva city, as a function of the

number of partition per processor

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40
Measure
Prediction

Speedup

nbPEs

Pr
ed

ic
ti

on
 S

Fig. 4b – Speedup of the ParFlow++ program for a 1 km
x 1 km district of the Geneva city, with one partition

per processor
Fig. 4 – Some results of prediction and measurement
with an application of wave diffusion in urban areas

(Cray T3D)

In the first phase, IP3T can automatically recognize the
block structure of applications (with the help of some
special block directives) and display it in a window (Fig. 6).
This window permits also directly to add or delete new
blocks and/or change some parameters of blocks. Morever,
in this window, the user can select a subpart of the program
to be analyzed.

IP3T A PERFORMANCE PREDICTION TOOL FOR IRREGULAR PARALLEL PROGRAMS

39 Nov. 99

SUPERCOMPUTING REVIEW

EPFL

IP3T A PERFORMANCE PREDICTION TOOL FOR IRREGULAR PARALLEL PROGRAMS

Speedup prediction

Speedup

60

128 256 nPE's

...Origin2K Cray T3D Swiss-Tx

Communications databaseParallel target architecture

TARGET ARCHITECTURE ACCESS / PREDICTIONS

USER INTERFACE

rlogin
telnet texec for

sequential blocks
tcom

Request

Results of
predictionSource code

with
directives

Layers

(3)

(2)

(1)

Fig. 5 – Structure of IP3T

Fig. 6 – Window with block decomposition of the
analysed application

In order to predict the performance of applications with
many irregularities, the user of the tool can define some
personal global block parameters and can interact with
them for performance prediction through a dialog box
generated automatically from theses parameters. For exam-
ple, we obtain the dialog box of Fig. 7 with defined global
parameters of the ParFlow++ application.

Fig. 7 – Dialog box with user defined global parameters
with the ParFlow++ application

With IP3T, parameters depend on the type of a block
[4]. For example, a loop block has an indice name, a step and
boundaries. Every parameter of this block can be a constant
or a variable value. A sequential block has a load unit U and
a load function. There are also a divider parameter named
div load. Fig. 8 presents the dialog box for a sequential
block of the analysed application with a load fonction. The
Fig. permits to feel how user-friendly it is to introduce a
load fonction into a block.

Fig. 8 – Parameter window with the load function of
one block of the analysed application. The x-axis of the
“load fonction” is directely linked with the indice named

Indice_main of a surrounding loop

For the same block, Fig. 9 shows the load unit param-
eter which can be an integer value, a floating point value or
a question mark. A question mark forces the tool to measure
the execution time of that block on the target architecture.
This is automatically done by the tool using some ftp and
telnet primitives.

Fig. 9 – The Load unit U parameter configuration

There are also a div load parameter in order to model
how the duration of a block changes when the number of
processors vary (Fig. 10). The type of this parameter can be
a Global parameter, an integer value, a floating point value
or a function given by a file (FileDatabase).

40Nov. 99

SUPERCOMPUTING REVIEW

EPFL

Fig. 10 – The Div load parameter configuration

IP3T has been successfully tested on the real applica-
tions already mentioned in the results section.

CONCLUSIONS AND PERSPECTIVES

In this project, we have successfully achieved:
❚ a performance prediction model for irregular (or regu-

lar) real parallel (or sequential) applications;
❚ a validation through experiments with industry-ori-

ented applications in order to confirm the validity of the
method;

❚ a complete prediction tool to show that our model is
intended for automatic use on parallel machines or on
nondedicated networks of workstations/PCs.

Future work is directed towards an integration of IP3T
in a development environment useful in the Swiss-Tx
project [9].

ACKNOWLEDGEMENTS

This work was a part of a Ph.D. funded by the Fonds
National Suisse de la Recherche Scientifique. This Ph.D.
work was advised by Prof. Jean-Daniel Nicoud, LAMI
(LAboratoire de MicroInformatique), Prof. Giovanni Coray,
LITH (Laboratoire d’Informatique THéorique) and Dr.
Thierry Cornu, Simulog (Paris, France). Thanks especially
to Dr. Pierre Kuonen (CAPA EPFL), Dr. Thierry Cornu,
Dr. Frédéric Guidec and Dr. Noureddine Bouhmala for all

very nice help and precious suggestions during this work.
Thanks also senior students David, Samir, Gilbert, Serge,
Christian, Thomas and Boris for the participation to ex-
periments and tool development.

REFERENCES

[1] Kai Hwang. Advanced Computer Architecture Parallelism,
Scalability, Programmability. Mc-Graw-Hill, 1993.

[2] Mustafa Uysal, Tahsin M. Kurc, Alan Sussman, and Joel
Saltz. A performance prediction framework for data intensive
applications on large scale parallel machines. Technical Re-
port CS-TR-3918, University of Maryland, College Park,
July 1998.

[3] Yu-Kwong Kwok, Ishfaq Ahmad, Min-You Wu, and Wei
Shu. Graphical tool for automatic parallelization and
scheduling of programs on multiprocessors. In Proceedings of
Euro-Par’97, pages 294-301, August 1997.

[4] M. Pahud and T. Cornu. Predicting the behaviour of irregular
parallel applications using code block decomposition. In
Proceedings of the SIPAR Workshop’96 on Parallel and
Distributed Systems, Geneva, Oct. 1996.

[5] M. Pahud, F. Guidec and T. Cornu. Performance evaluation
of a radio wave propagation parallel simulator. In Proceedings
of the Third International Conference on Massively Parallel
Computing System, MPCS’98, Colorado Springs, USA,
April 1998.

[6] N. Bouhmala and M. Pahud. A parallel variant of simulated
annealing for optimizing mesh partitions on workstations. In
4th NASA National Symposium, Williamsburg, October
1997.

[7] P. Calégari, F.Guidec, P. Kuonen, and D. Kobler. Parallel
Island-Based Genetic Algorithm for Radio Network Design.
Journal of Parallel and Distributed Computing (JPDC):
special issue on Parallel Evolutionary Computing, Academic
Press, 47(1): 86-90, November 1997

[8] M. Pahud. Une méthode de prédiction de performance pour les
programmes parallèles irréguliers. PhD thesis, École Poly-
technique Fédérale de Lausanne, Switzerland, 1998.
Number 1911.

[9] R. Gruber, Y. Dubois-Pèlerin, EPFL-DGM, and Swiss-Tx
Group. Swiss-Tx: First Experiences on the T0 System. EPFL
Supercomputing Review, 19-23, November 1998. ■

IP3T A PERFORMANCE PREDICTION TOOL FOR IRREGULAR PARALLEL PROGRAMS

RÉDACTEUR EN CHEF Noureddine El Mansouri, SIC-EPFL EDITOR

MISE EN PAGE ET GRAPHISME Appoline Raposo de Barbosa, SIC-EPFL TEXT PROCESSING AND LAYOUT

ADRESSE Service informatique central EPFL ADDRESS

MA-Ecublens Case Postale 121
CH - 1015 Lausanne

TÉLÉPHONE (021) 693 22 11 PHONE

TÉLÉCOPIE (021) 693 22 20 FAX

ADRESSE ÉLECTRONIQUE Noureddine.ElMansouri@epfl.ch E-MAIL

ADRESSE WEB http://sawww.epfl.ch/SIC/SA/publications WEB LOCATION

mailto:Noureddine.Elmansouri@epfl.ch
http://sawww.epfl.ch/SIC/SA/publications

	Contents
	Parallel computer architectures for commodity computing and the Swiss-T1 machine
	
	Parallel File Striping on the Swiss-Tx Architecture
	[Brauss99B]
	A Parallel Discrete Element Method for Industrial Granular Flow Simulations
	
	Computer simulation of atrial arrhythmias
	IP3T a performance prediction tool for irregular parallel programs

