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Abstract. The goal of the Swiss-Tx project is to develop, build and
install the first Swiss tera-flop supercomputer called Swiss-T2, which is
mainly based on commodity parts. Only the communication hardware
and communication software is custom-made, because available off-the-
shelf products, such as Ethernet with the socket interface, do not offer
the necessary bandwidth, latency, and functionality. In this paper, we
present a new efficient communication architecture for commodity super-
computing called Fast Communication Interface (FCI), and we introduce
T-NET, the custom-made high-performance communication hardware
for the Swiss-Tx supercomputers. The highlights are low-latency, high-
bandwidth, and portability. Portability means that the communication
hardware and software is mainly platform independent and that a large
number of modern workstations and standard operating systems can be
used as they are. A full implementation of the standardized MPI (Mes-
sage Passing Interface), written entirely on top of FCI, is also available.

1 Introduction

Modern general-purpose supercomputers often consist of custom hard- and soft-
ware. A bad price-to-performance ratio is the result of the long and expen-
sive development time and the low volume of production. By using off-the-shelf
workstations and standard operating systems, it is possible to overcome these
problems. To prove that it is possible to get supercomputing power with off-
the-shelf hard- and software, a new two-year-project called Swiss-Tx [1-3] was
launched at the end of 1997 by the Swiss Federal Institutes of Technology in
Lausanne (EPFL) and Zurich (ETHZ), the Swiss Commission for Technology
and Innovation (CTI), Supercomputing Systems (SCS), and Compaq Computer
Corporation. This is the first time that such a project takes place in Switzer-
land. It is based on a cooperation with two laboratories in the United States: the
Sandia National Laboratory and the Oak Ridge National Laboratory. The goal
is to develop, build and install a one tera-flop commodity supercomputer with
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reasonable manpower ! until beginning of the year 2000. Three additional ma-
chines will be built: two small systems with 8 and 16 processors called Swiss-T0
and Swiss-T0 (Dual), and one medium-sized system with 132 processors called
Swiss-T1. Baby T1 is a small machine that will consist of the same hardware as
T1. It will exist only for a short time and is used to validate the Swiss-T1 com-
munication hardware and software. The tera-flop machine called Swiss-T2 will
have 504 processors, 252 Gbytes of main memory, and 5 Thytes of disk storage
(see table 1).

Machine No. of |Peak Perf.|Main Memory|Disk Storage
Name Processors| (Gflop/s) |  (Gbytes) (Gbytes)
Swiss-T0 8 8 2 64
Swiss-T0 (Dual) 16 16 8 170
Baby T1 12 12 6 130
Swiss-T1 132 132 66 1000
Swiss-T2 504 1008 252 5000

Table 1. Parameters of the Swiss-Tx machines

All Swiss-Tx machines are based on Compaq AlphaServers. Swiss-T0 and
Swiss-T0 (Dual) are already installed at EPFL and use Compaq Tru64 UNIX
as operating system. Originally, Swiss-T0 (Dual) was delivered with Microsoft
Windows NT Version 4.0, but it has been changed to Compaq Tru64 UNIX
after three months. Baby T1 and Swiss-T1 will use Compaq Tru64 UNIX. The
operating system for the Swiss-T2 is not yet chosen.

All Swiss-Tx machines mainly consist of commodity parts. Only the commu-
nication hardware and software is custom-made because off-the-shelf products
(e.g. Ethernet with the socket interface) do not offer the bandwidth, latency,
and functionality required for the Swiss-Tx machines. Currently available spe-
cialized communication hardware and software (like Myrinet [12] in conjunction
with Fast or Active Messages [13,14] or MEMORY CHANNEL2 [15] in con-
junction with MPICH [9]) do not fulfill our needs either. Our main goal beside
low-latency and high-bandwidth is portability. Portability means that the com-
munication hardware and software is mainly platform independent and that a
large number of modern hardware platforms (e.g. PCs and Alpha-based Worksta-
tions and Servers) and standard operating systems (e.g. Compaq Tru64 UNIX,
Linux, and Microsoft Windows NT) can be used without modifications. To reach
our goals, we designed a new efficient communication architecture called Fast
Communication Interface (FCI), and developed FCI conform communication
hardware and software. Two different communication networks are currently
available: EasyNet and T-NET. Both use almost the same communication soft-

1 About 5 man-years for the communication software and 7 man-years for the hard-
ware.
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ware. EasyNet is an inexpensive bus-based low-latency network for up to 8 nodes.
T-NET is a switch-based high-bandwidth, low-latency network designed for large
and complex network topologies. The topology can be modified on-the-fly and
the hardware supports uni- and multicast routing with automatic error correc-
tion. Peak bandwidth of the bidirectional links is 100 Mbyte/s in each direction.
Swiss-T0 and Swiss-T0 (Dual) use EasyNet, Baby T1, Swiss-T1, and probably
Swiss-T2 will use T-NET.

FCI offers two programming paradigms, the widely used message passing
and Remote Store (see 2.1). To be compatible with other machines, the stan-
dardized Message Passing Interface (MPI) [7] is available. The MPI library is
written entirely on top of FCI by using the message passing functionality of FCI.
Low-latency and high-bandwidth data transfers are achieved by a sophisticated
overall concept, zero-copy user-level send and receive operations, small protocol
overhead, and intelligent communication hardware. All is implemented without
operating system stability and security violations.

2 FCI — The Fast Communication Interface

The Fast Communication Interface (FCI) is a new communication architecture
for commodity supercomputing. The highlights of FCI are low-latency, high-
bandwidth, and portability, while system stability and security is maintained.

Low-latency and high-bandwidth are mainly achieved by a sophisticated over-
all concept which includes:

— Zero-copy send and receive.

User-space communication to avoid expensive operating system calls [5].

— Small protocol overhead.

A well designed hardware/software interface and intelligent communication
hardware.

Small protocol overhead is important for a communication network. For ex-
ample, a system using the TCP/IP protocol [17,18] to transport data between
processes over Ethernet, normally wastes a lot of CPU time, because checksums
have to be calculated in software and data must be copied and split up in small
network packets. This overhead is mostly hidden in benchmarks measuring only
latency and bandwidth but shows up in real applications that need CPU time
for calculations.

Designing the hardware for the software and not vice versa is also a major
concern. A dedicated and optimized hardware/software interface for commodity
supercomputing simplifies the communication software and reduces its overhead.

In modern systems is guaranteed that a process cannot interfere with other
processes or even the operating system. System stability and security must be
guaranteed in commodity supercomputers and should not be subordinated to
the performance.

Portability means that the communication hardware and software is mainly
platform independent and that it can be ported easily to new platforms. This
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is in fact a big advantage because we can reuse most of the software for future
machines to reduce costs and development time. We separate the software into
two parts: the platform dependent part and the platform independent part.
Most code is absolutely hardware and operating system independent. Currently,
we use PCs and Compaq AlphaServers with Compaq Tru64 UNIX, Linux, and
Microsoft Windows NT 2.

FCI offers the programming paradigms message passing and Remote Store,
a lock management (used to restrict access to shared resources) and barriers.
The basic functionality of Remote Store and the message passing mechanism
are presented in 2.1 and 2.2. Lock management and barriers are not further
discussed in this paper.

MPI Application

MPI

FCI Application ADI

FCI

Device Driver

Communication Hardware

Fig. 1. FCI and its integration in the environment

See figure 1 for an overview of FCI and its environment. MPI is the widely
used Message Passing Interface [7]. It is built entirely on top of FCI. The Abstract
Device Interface (ADI) does a part of the memory management for MPI and
handles MPI data types.

2 All installed Swiss-Tx machines are Compaq AlphaServers with Compaq Tru64
UNIX and Microsoft Windows NT. At ETHZ, we use only PCs with Linux for
Swiss-Tx hardware and software development.
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FCI has the following three interfaces to the environment:

— Application Programming Interface (API): The interface to the FCI appli-
cation. An application using the FCI API can be a pure FCI application or
for example a higher-level interface such as MPI.

— Device Driver Interface (DDI): The interface to the device driver that is
necessary to control the communication hardware. FCI needs a device driver
only for start up, close down, and maintenance of an application. It is nor-
mally easy to implement it.

— Network Hardware Interface (NHI): The interface to the communication
hardware. The communication hardware has a set of mandatory and optional
functionality. The optional functionality is used to increase the flexibility and
to improve the performance of the network.

The FCI API offers the following routines:

— Management routines (start up, close down, environmental queries).
Blocking and non-blocking message passing sends, receives, and probes
(point-to-point routines).

— Barriers and message passing broadcasts (collective routines).

— Remote Store routines.

— Lock management routines.

2.1 Remote Store

Remote Store is some sort of distributed shared memory with remote writes but
no remote reads. It is similar to Reflective Memory [6]. All processes of a parallel
application see a virtual Global Communication Space (GCS). They can write
to this space and can also receive from it. A process can define several address
ranges in the GCS where it wants to receive data. These address ranges are called
windows. They can be arranged in any possible variation while overlapping is
allowed. Each process that has an open window in the GCS has a corresponding
window of the same size in its memory 3. See figure 2 for an example with three
processes named P, P,, and P,. Each has a local process memory and one
open window in the GCS. Window w,, in the GCS belongs to window w’, in the
memory of process P, w, belongs to w;, in the memory of P,, and w,, which is
equal to w,, belongs to w’, in the memory of P,. Assume that process P, wants
to write data D to the process memory of P, and P,. It knows that P, has
opened window w, and that P, has opened window w, for the same area in the
GCS. Tt writes D to the right location in the GCS (1). D will be transported
automatically to the corresponding locations in the memories of processes P,
(2) and P, (3).

3 The number of available windows depends on the used communication hardware.
The boundaries of such windows must be aligned to a hardware-dependent number
of bytes (4 bytes for EasyNet).
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Fig. 2. A part of the Global Communication Space (GCS) with three processes Pz, Py,
and P,. Each process has opened one window

Remote Store avoids two problems of conventional distributed shared memory
systems:

— To allow caching of distributed data, distributed shared memory systems
need a synchronization mechanism to guarantee data consistency. This makes
hardware more complicated and more expensive.

— A read instruction takes two steps. Data has to be requested and afterwards
delivered by the owner. A write instruction is faster because the same in-
stance requests the operation and delivers the data. Normally, efficient read
instructions supporting bursts are expensive to implement. Remote Store
does not support distributed read instructions at all. The necessary hard-
ware is easy to implement.

2.2 FCI Message Passing

The message passing functionality of FCI is a minimum subset necessary to
implement MPI. No direct message passing support is included in the FCI NHI,
which makes hardware easy to design but demands sophisticated software: The
efficient message handling of the Intelligent Sender Concept is based on local
and distributed tables that are maintained by Remote Store accesses and by the
lock management 4.

4 The lock management is currently implemented in software by use of Remote Store.
Lock management hardware support is a optional functionality of the NHI.
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all processes SRO SH1 SR2 Sender/Receiver SR

1,0] 21,1 S1 2 Sender S,

process P1

1,0 "1,1 1,2 R1,3 Receiver R,

0 1 2 3

Sa,o S3,1 S3,2 S3,3 Sender Sy
process P3
E. R3,2 R3,3 Receiver Ry

Fig. 3. A part of the tables that hold the receive requests for an application with four
participating processes Py to Ps. The tables for Py and P> are omitted

Intelligent Sender means that the complete message transfer can be done by
the sending process without any software interaction at the receiving process.
The message is directly sent to the right location in main memory of the re-
ceiving process. The tables mentioned hold the receive requests that contain the
necessary information to execute the transfer. A receive request is set up by a
process that wants to receive a message. The request must be visible by the
process or processes that are possible senders. To maintain such requests, it is
also necessary that the receiving process keeps a local copy of it. Figure 3 shows
a part of the local and distributed tables that hold the receive requests for an
application with four participating processes. Each square can hold a fixed num-
ber of requests. The request tables are named S, ;, R; j, and SR; (0 <1i,j < 3).
The uppermost line containing SRy to SRj3 is used to maintain receive requests
that are set up by a process that wants to receive a certain message from a set of
processes, the other lines are involved when the sender is explicitly given. SRy
to SR3 are stored on all participating processes, S; o to S; 3, and R; o to R; 3 on
process P;. All processes can write to all tables and read from SR;. R; ; and S; ;
are only readable for P;. Assume that process P; wants to receive a message from
process P, and that process P, wants to send a message to process P;. Process
P5 inserts a receive requests in Rg 1 (local) and also in S; 3 (remote in process
Py). Process P; waits for the matching receive request in S 3, finds it, takes
the necessary information out of the request and transfers the message at the
right location in the memory of process Ps. Then, process P, marks the receive
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request in S7 3 (local) and also in R3 1 (remote in process Ps) inactive. Later,
process P53 can clean up the tables and remove the inactive receive requests from
Rg,l and Sl,g.

Now, assume that process P; wants to receive a message that is allowed to
be sent by any process of the message passing application and that process P;
will be the sender. Process Ps inserts a receive request in SRz which is available
for all processes. Process P; waits for the matching receive request in SR3 and
finds it. To guarantee that no other process will send a message for the found
request, process P; has to lock SR3 exclusively. When it has acquired the lock, it
has to rescan SRj3 in order to guarantee that the receive request is still pending
(it could be marked inactive or even removed if another process was faster and
has attained the lock first). If the request is still available, it sends the mes-
sage to process P3 and marks the receive request in S R3 inactive. In any case, it
has to release the lock. Later, process P53 can remove the inactive request handle.

The Intelligent Sender Concept has the following advantages:

— The tables are easy to handle. No complex and time consuming software is
necessary. Using Remote Store makes it fast.

— There is only one way messages are transferred and there are no exceptions
like unexpected messages [10]. When a message is sent, the receiver has
always set up a matching receive request.

— No code must run on the receiving processing element to enable the recep-
tion. In state-of-the-art systems, it is normally expensive to call an interrupt
handler or to wake up a kernel thread. In the Intelligent Sender Concept, all
code that has to run on a receiving processing element is executed when the
receive request is set up (e.g. MPI_Recv, MPI_Irecv) or when the completion
of the receive is checked (e.g. MPI_Wait) by the message passing application.

All this helps to keep the communication libraries small and fast. The main
drawback of the Intelligent Sender Concept is that a receive of a message, which
can be sent by any process of the application, needs a locking mechanism increas-
ing the latency. Additionally, the necessary entries in the distributed tables must
be sent to all (or at least a set of 5) processes, which consumes network band-
width. A solution to overcome these problems is to avoid such receive requests
in the application software whenever possible.

5 This is a possible improvement of the Intelligent Sender Concept: Such receive re-
quests need to be accessible only for the group of processes that is allowed to send
the message. FCI knows and handles process groups. Process groups are for example
defined by MPI communicators.

YF]',F.

Proceedings of the ACM/IEEE SC99 Conference (SC’'99) COMPUTER
1-58113-091-0/99 $ 17.00 © 1999 IEEE SOCIETY



3 Concept of the Communication Network T-NET

T-NET is a high-bandwidth, low-latency System Area Network (SAN) designed
for the Swiss-T1 and Swiss-T2 commodity supercomputers. T-NET consists of
communication adapters, 12 x 12 crossbar routers, electrical or optical bidirec-
tional links, and a service network with service workstation. Figure 4 shows an
example of a T-NET network, where 4 crossbar routers are connected in a ring.
Each crossbar router has 10 communication adapters attached. A communication
adapter connects one host © to the network. A standard Ethernet LAN is used
as service network. It connects the 4 crossbar routers to the service workstation.

ost9 Crossbar Crossbar
Host 0 Router Router  Host o

Service
Workstation

Fig. 4. Example of a T-NET network with 4 crossbar routers and 40 hosts

T-NET is compliant to the Network Hardware Interface (NHI) Specification. The
NHI specifies the functionality which has to be implemented in the communica-
tion hardware to be used with the Fast Communication Interface (FCI). T-NET
provides a large set of features. Some of these features are mandatory, others are
optional. The most important features are described in the following sections.

3.1 Flexible Network Architecture

T-NET is very flexible regarding topology, dimensions, and size of the network.
Any topology can be realized, e.g. 2D-Mesh, 3D-Torus, Hypercube, Multistage,
Fat Tree. The dimensions of such a network are restricted by the maximum link
length which is 25 m for electrical and 1 km for optical links. An off-the-shelf
Media Interface Adapter (MIA) can be used to interface between the two medias.
The maximum number of addressable communication adapters in the network
is limited to 216.

3.2 Fast and Efficient Communication

The fast and efficient communication in T-NET is based on the Remote Store
Concept (see 2.1). Since reading data remotely is far more expensive than reading

5 PC, Workstation, or Server with one or several processing elements
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it locally, Remote Store allows writes as well as reads in the local host, but only
writes and no reads in the remote host. The concept demands that the transferred
data is directly stored at the the correct location in the memory of the remote
host. T-NET accomplishes this with an address translation mechanism in the
communication adapter. No obligations are made by the concept about how
data has to be transferred from the host to the network and vice versa. T-NET
provides in both directions a Direct Memory Access (DMA) engine located in
the communication adapter. To transfer data from the host to the network, the
DMA is set up by the host and executed by the communication adapter. To
transfer data from the network to the host, the DMA is set up and executed
directly by the communication adapter without using any CPU time. Because
the DMA initialization costs for small data transfers to the network are higher
than for long data transfers, the T-NET communication adapter can also be
accessed in Programmed I/O (PIO) mode. This allows the usage of either PIO
or DMA for transferring data to the network, whatever is more efficient.

3.3 Reliable Communication

T-NET transfers data from one host to another in packets. The packet flow is
controlled by an acknowledge/retransmission protocol on a per-link basis. To
detect transmission errors, each packet is tailed by a CRC. This CRC is gen-
erated once in the source communication adapter and checked throughout the
network in every crossbar router with a final check in the destination communica-
tion adapter. In the crossbar router, cut-through routing techniques are used. In
cut-through routing, packets are, whenever possible, immediately routed further
without prior buffering. This reduces latency but prohibits the crossbar router
from removing erroneous packets. When packets cannot be routed immediately
because the desired output link is busy, they have to be buffered temporarily
in a so-called receive buffer located in the crossbar router. This of course adds
additional latency, but allows the crossbar router to discard erroneous packets.
In contrast to the crossbar routers, the communication adapters use store-and-
forward flow control. In this type of flow control, the entire packet is stored
temporarily in a receive buffer before it is forwarded to the host. This allows to
detect any transmission errors in time, but in turn, incurs one store-and-forward
delay 7. An additional store-and-forward delay is incurred by the source commu-
nication adapter. The communication adapter, in order to reduce the protocol
overhead added by the insertion of a packet header, is designed to transmit when-
ever possible packets that are filled with the maximum payload. Because data
for the payload of the packet normally does not arrive from the host in one single
burst, the communication adapter has to buffer the packet until enough data has
been obtained. To be able to perform a packet retransmission on a per-link basis,
each crossbar router and communication adapter stores temporarily all packets
with outstanding acknowledgment in a so-called retransmit buffer. This allows
to retransmit packets when necessary. The T-NET acknowledge/retransmission

" the delay incurred by storing the entire packet before forwarding it
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protocol, together with additional error detection on the physical layer of the
link, reduces the error rate per link to less than 10720,

3.4 Multi-Channel Support

T-NET is designed to support several communication channels per communica-
tion adapter. This allows concurrent processes of a parallel application on the
same host. Each process can use an own private channel. For performance rea-
sons, it is only interesting to run several processes on a single host when each
process can also run on a private processing element. Thus, the T-NET multi-
channel support is important on Symmetric Multi Processor (SMP) hosts, where
several processes running on different processing elements share one communica-
tion adapter. In the near future, T-NET will offer an additional channel that is
reserved for the operating system. This channel can be used to transfer system
data that is currently transported over Ethernet. This will speed up applications
using sockets, such as PVM [11] and MPICH [9].

3.5 Protected Communication

T-NET provides several mechanisms to guarantee a protected communication. In
a machine running several different parallel applications, where each application
runs on a private set of hosts, it is necessary to prevent hosts from one application
from being accessed by a host of another application. This prohibits erroneous
applications from disturbing other applications. In T-NET, each packet carries
an identification number in its header. According to this ID, packets are routed
over the network to their destination host. Each communication adapter stores
an ID validation bit for all of these IDs in a so-called ID validation table. Be-
fore transmitting a packet, the communication adapter checks if the appropriate
ID validation bit is set. Packets for which the validation bit is not set are au-
tomatically discarded by the communication adapter and a notification is sent
to the host. An additional protection mechanism prevents an application from
accessing memory in a remote host that does not belong to the application. The
communication adapter checks for accesses to unauthorized memory locations
and discards them when necessary. To protect the T-NET system channel (see
3.4) from being used by erroneous applications, the communication adapter offers
a private set of system channel communication control registers. These registers
are located in a separate address range so that they can only be accessed by the
system.

3.6 Multicast Capability

T-NET offers the ability to perform multicasts directly in hardware. A multicast
packet carries a multicast group ID & in its header. The crossbar router supports
multicasts with its ability to concurrently route a multicast packet from one

8 an unique ID for each group of processes participating in the same multicast
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input link to all required output links, according to the multicast group ID.
The crossbar router obtains the information required to route the packet from
the routing table located in the crossbar router. The destination communica-
tion adapter supports multicasts by translating the multicast group ID into a
process-specific virtual address, making use of an index-to-address translation
table, for which the multicast group ID serves as index. Because the virtual
address is derived in the destination communication adapter by use of a table,
this type of communication is called table-mapped. This in contrast to direct-
mapped communication used for unicasts. In direct-mapped communication, the
virtual address is directly sent along with each packet to the destination adapter.
The index-to-address translation table is located in the communication adapter
and is designed to store more than only one virtual address per ID. This fea-
ture, together with the ability of the communication adapter to replicate received
packets, allows to expand the multicast support to several processes on the same
host.

3.7 Address Translation Mechanism

T-NET provides, in addition to the address translation mechanism offered by
direct-mapped and table-mapped communication (see 3.6), the ability to re-
map data from the network before forwarding it to the host memory. For re-
mapping, a page table located in the communication adapter is used. This feature
allows the main memory allocated in the host for communication purposes to
be built out of non-contiguous memory blocks. No specialized memory manager
which allocates the necessary space in one single contiguous block is necessary.
Independent of contiguous or non-contiguous memory allocation is the fact that
the allocated memory is not allowed to be swappable. This is no real drawback,
since for performance reasons, a Swiss-Tx machine should not swap.

3.8 Smart Packet Routing

T-NET offers a set of routing-related features, allowing smart packet routing.
Features concerning the crossbar router include the ability to connect the 12
different input links of the crossbar router independently to one or several of the
12 output links, with the only restriction that the desired output link is not busy.
The information to decide how to connect an input to an output link is stored in
tables located in the crossbar routers. These tables can be configured either over
the service network or over the T-NET network. The configuration can take place
whenever required, making on-the-fly reconfiguration possible. An additional
feature of the T-NET network is the ability to perform static as well as adaptive
packet routing. Packets can be assigned to be routed in a static or adaptive way,
whatever is preferred. To avoid deadlocks, the crossbar routers provide deadlock
detection and multi-level deadlock resolving mechanisms directly in hardware.
Information about potential deadlocks as well as other network related status
information can be obtained over the service network and viewed on the service
workstation.
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4 TImplementation of the Communication Network
T-NET

4.1 Communication Adapter

The T-NET communication adapter is a 32 bit PCI adapter board with DMA
capabilities, offering one bidirectional link to the T-NET network with a peak
bandwidth of 100 Mbyte/s in each direction. The adapter board is functionally
partitioned into four subsystems: the PCI bridge, the communication controller,
the link controller and the link transceiver. FIFO buffers, one for data to the
network (TX-FIFO) and one for data from the network (RX-FIFO), decouple the
communication and the link controller. Additional on-board memory is used to
store communication related tables, i.e. the ID validation table, the page table,
and the index-to-address translation table (see figure 5).

ID Validation
Table
TX-FIFO -
e . in
PCI Communication Link Toana

Controller

Bridge Controller

!

Page Table,
Index-to-Address
v Translation Table

PCI

Fig. 5. T-NET PCI adapter block diagram

The communication controller is responsible for packet generation, packet ex-
traction, communication protection and address translation. The link controller
is responsible for the acknowledge/retransmission protocol. It accepts data to
be transmitted from the TX-FIFO and stores it temporarily in its transmission
buffer. As soon as at least one complete packet is in the transmit buffer, the
link controller starts forwarding the packet to the link transceiver. In the other
direction, the link controller accepts data from the link transceiver, computes
the CRC and stores it temporarily in its receive buffer. After the reception of
a complete packet, the link controller compares the received with the locally
computed CRC and determines whether the packet has to be discarded or can
be written to the RX-FIFO. The link controller, as already described in 3.3,
incurs two store-and-forward delays, one on the outgoing and one on the incom-
ing packet. The link transceiver is a 1.25 Gbit/s Fibre Channel [16] transceiver.
It encodes the data before transmitting it serially over the link, allowing clock
recovery and low-level error detection in the receiver.

YF]',F.

Proceedings of the ACM/IEEE SC99 Conference (SC’'99) COMPUTER
1-58113-091-0/99 $ 17.00 © 1999 IEEE SOCIETY



14

4.2 Crossbar Router

The T-NET crossbar router has 12 bidirectional ports with a peak bandwidth
of 100 Mbyte/s per port and direction. It can achieve a maximum throughput of
1.2 Gbyte/s, while adding a maximum latency of less that 0.5 ps. The design is
functionally partitioned into 12 identical link transceiver/link controller pairs, a
crossbar, a routing controller, a service controller and a performance collector.
Additional on-board memory is used to store routing related tables (see figure
6).

Header Bus

<< 77 — Service
v Network
I I b
I
<§§ corvi Per-
) = Routing le=p| SCFVice | | formance
- Link Crossbar Controller Controller Collector
Controller

12 Links
Routing
Table

Fig. 6. T-NET router block diagram

The crossbar features 12 input and 12 output ports as well as one bidirec-
tional port. The 12 input and output ports connect to the 12 link transceiver /link
controller pairs whereas the bidirectional port connects to the routing controller
(see figure 6). Packets can be routed from any of the 12 input ports to any of the
12 output ports as well as from any of the 12 input ports to the bidirectional port
or from the bidirectional port to any of the 12 output ports. The bidirectional
port is used to temporarily store packets in the routing controller for deadlock
resolve purposes and to configure the routing table directly over the T-NET
network. The routing controller is connected to the 12 link controllers over the
so-called header bus. From the link controllers, the routing controller can obtain
over the header bus the headers of all packets which have to be routed. Based
on the header information and the information stored in the routing table, the
routing controller determines the output links to which a specific packet has to
be routed to and establishes the appropriate crossbar connections whenever pos-
sible. Routes which cannot be established immediately are set back temporarily
for the benefit of another connection. Reasons preventing an immediate estab-
lishment of a connection are the ownership of an output link by another input
link or the lack of space in the transmit buffer of an output link controller.
The link controller is responsible for the acknowledge/retransmission protocol.
It accepts data to be transmitted from the crossbar and stores it temporarily
in its transmit buffer. As soon as there is data in the transmission buffer, the
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link controller starts to forward it to the link transceiver. In the other direction,
the link controller accepts data from the link transceiver, computes the CRC
and stores it temporarily in its receive buffer. As soon as at least the header
is stored in the receive buffer, the link controller signals the routing controller
the availability of a new packet. Therefore, the link controller in the router,
unlike the link controller on the communication adapter, does not incur any ad-
ditional store-and-forward delays to a packet. The link transceiver is identical
to its counterpart on the communication adapter as described in 4.1. The per-
formance collector collects performance data from the 12 link controllers. This
includes the total time a link controller spends waiting for the establishment
of a crossbar connection, the total number of communicated packets, the total
number of words communicated within these packets, the number of packet re-
transmissions performed, and the number of link errors detected. The service
controller connects the routing controller and the performance collector to the
service network, allowing for routing table configuration as well as performance
and status data exchange between the router and the service workstation.

5 Conclusions and Future Work

Swiss-Tx is the first research project in Switzerland in the field of commodity
supercomputing. The communication hardware and software has been developed
with reasonable manpower in only three years. Therefore, a sophisticated overall
concept is necessary to make the project possible. The main goals of the com-
munication network are to reach high-bandwidth, low-latency, and portability
while system stability and security should be still maintained. Hardware and
software dovetail well. We believe that the Intelligent Sender Concept is a good
way to provide fast message passing. It is fully designed on top of the efficient
and easy to implement programming paradigm Remote Store. The communica-
tion hardware is flexible and supports multicast sends, automatic routing, and
a set of communication channels. A machine using the T-NET network can be
partitioned to run several applications concurrently and protected from others.

By the end of July 1999, the T-NET-based Swiss-T1 is still under construc-
tion and useful benchmark results cannot be presented for this machine. Mea-
surements on a development machine, consisting of eight standard 233 MHz
Intel Pentium PCs connected by the bus-based EasyNet network, proved that
our communication architecture enables low-latency and high-bandwidth data
transfers. In this machine, EasyNet transmits 32 bits in parallel and runs at
12 MHz. The maximum possible bandwidth is 48 Mbyte/s. The average one-
way latency is about 10 us for a Swiss-Tx MPI message without payload, and
5 us for a Remote Store 4-byte-packet. The highest bandwidth measured is ap-
proximately 46 Mbyte/s in both cases.

In the near future, an enhanced version of the T-NET communication adapter
with 64 bit 66 MHz PCI interface and two independent bidirectional T-NET
links will be available. First samples of such boards are already under test. The
crossbar router will also be improved so that adaptive routing will be possible.
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This new communication hardware will offer a higher overall communication
performance. It will be probably used in the Swiss-T2 tera-flop supercomputer.

A lot of work has still to be done. This includes further improvements and op-
timizations of the hardware and software, the implementation of parts of MPI-2
[8], as well as the necessity to provide an efficient resource management (e.g.
a user-friendly runtime environment and parallel debugging capabilities) and
useful programming tools (e.g. compilers and performance tools).

References

1. Swiss-Tx Architecture. Swiss Federal Institute of Technology Lausanne (EPFL),
http://capawww.epfl.ch/swiss-tx/index.html

2. Gruber, R., Gunzinger, A.: The Swiss-Tx Supercomputer Project. EPFL Supercom-
puting Review, 9 (1997) 21-23

3. Gruber, R., Dubois-Pélerin, Y., Swiss-Tx Group: Swiss-Tx: First Experiences on
the TO System. EPFL Supercomputing Review, 10 (1998) 19-23

4. Brauss, S., Nemecek, J.: The FCI Reference Manual. Swiss Federal Institute of
Technology Zurich (ETHZ), http://www.ife.ee.ethz.ch/hpc/fci

5. Araki, S., Bilas, A., Dubnicki, C., Edler, J., Konishi, K., Philbin, J.: User-Space
Communication: A Quantitative Study.
http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/
Bilas820/index.htm

6. Proti¢, J., TomaSevi¢, M., Milutinovié, V.: Distributed Shared Memory: Concepts
and Systems. University of Belgrade, IEEE Parallel and Distributed Technology
(Summer 1996)

7. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard. Uni-
versity of Tennessee (1995),
http://www.mpi-forum.org/docs/mpi-11.ps

8. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing Inter-
face. University of Tennessee (1997),
http://www.mpi-forum.org/docs/mpi-20.ps

9. MPICH - A Portable Implementation of MPI. University of Tennessee,
http://www-unix.mcs.anl.gov/mpi/mpich/

10. Gropp, W., Lusk, E.: The implementation of the second generation MPICH ADI.
University of Chicago,
http://www.mcs.anl.gov/mpi/mpich/workingnote/adi2impl/note.html

11. PVM: Parallel Virtual Machine. Oak Ridge National Laboratory,
http://www.epm.ornl.gov/pvm/pvm_home.html

12. Boden, N., Cohen, D., Felderman, R., Kulawik, A., Seitz, C., Seizovic, J., Su, W.:
Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro Vol. 15, No. 1
(1995)

13. Pakin, S., Lauria, M., Chien, A.: High Performance Messaging on Workstations:
Tllinois Fast Messages (FM) on Myrinet.
http://www-csag.ucsd.edu/papers/csag/external/HPVMFM-p.html

14. Chun, B., Mainwaring, A., Culler, D.: Virtual Network Transport Protocols for
Myrinet. IEEE Micro, Vol. 18, No. 1 (1998)

15. Fillo, M., Gillett, R.: Architecture and Implementation of MEMORY CHANNEL2.
Compaq Computer Corporation,
http://www.digital.com/info/DTJPO3/DTJPO3HM. HTM

YF]',F.

Proceedings of the ACM/IEEE SC99 Conference (SC’'99) COMPUTER
1-58113-091-0/99 $ 17.00 © 1999 IEEE SOCIETY



17

16. Fibre Channel Working Set. American National Standards Institute.
ISBN 1-57053-009-2 (1994)

17. Postel, J.: Internet Protocol. University of Southern California, RFC791,
http://www.cis.ohio-state.edu/htbin/rfc/rfc791.html

18. Postel, J.: Transmission Control Protocol. University of Southern California,
RFC793,
http://www.cis.ohio-state.edu/htbin/rfc/rfc793.html

YF]',F.

Proceedings of the ACM/IEEE SC99 Conference (SC’'99) COMPUTER
1-58113-091-0/99 $ 17.00 © 1999 IEEE SOCIETY



