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Abstract

This paper studies the problems of broadcasting and gossiping in optical networks. In such networks the vast bandwidth
available is utilized through wavelength division multiplezing: a single physical optical link can carry several logical signals,
provided that they are transmitted on different wavelengths. In this paper we consider both single-hop and multihop
optical networks. In single-hop networks the information, once transmitted as light, reaches its destination without being
converted to electronic form in between, thus reaching high speed communication. In multi hop networks a packet may
have to be routed through a few intermediate nodes before reaching its final destination. In both models, we give efficient
broadcasting and gossiping algorithms, in terms of time and number of wavelengths. We consider both networks with

arbitrary topologies and particular networks of practical interest. Several of our algorithms exhibit optimal performances.

1 Introduction

Motivations. Optical networks offer the possibility of interconnecting hundreds to thousands of users,
covering local to wide area and providing capacities exceeding those of traditional technologies by
several orders of magnitude. Optical-fiber transmission systems also achieve very low bit error rate
compared to their copper-wire predecessors, typically 10~ compared to 107°. Optics is thus emerging
as a key technology in state-of-the—art communication networks and is expecting to dominate many
applications. The most popular approach to realize these high—capacity networks appears to divide the
optical spectrum into many different channels, each channel corresponding to a different wavelength.
This approach, called wavelength-division multiplezing (WDM) [11] allows multiple data streams to
be transferred concurrently along the same fiber—optic, with different streams assigned separate wave-
lengths.

The major applications for such networks are video conferencing, scientific visualisation and real-
time medical imaging, high—speed super-computing and distributed computing [18, 40, 44]. We refer
to the books of Green [18] and McAulay [30] for a presentation of the physical theory and applications
of this emerging technology.

In order to state the new algorithmic issues and challenges concerning data communication in optical
networks, we need first to describe the most accepted models of optical networks architectures.

The Optical Model. In WDM optical networks, the bandwidth available in optical fiber is utilised
by partitioning it into several channels, each at a different wavelength. FEach wavelength can carry a
separate stream of data. In general, such a network consists of routing nodes interconnected by point—
to—point fiber optic links. Each link can support a certain number of wavelengths. The routing nodes in
the network are capable of routing a wavelength coming in on an input port to one or more output ports,
independently of the other wavelengths. The same wavelength on two input ports cannot be routed to
a same output port. WDM lightwave networks can be classified into two categories: switchless (also
called broadcast-and-select or non-reconfigurable) and switched (also called reconfigurable). Each of
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these in turn can be classified as either single-hop (also called all-optical) or multihop [40]. In switchless
networks, the transmission from each station is broadcast to all stations in the network. At the receiver,
the desired signal is then extracted from all the signals. These networks are practically important since
the whole network can be constructed out of passive optical components, hence it is reliable and easy to
operate. However, switchless networks suffer of severe limitations that make problematic their extension
to wide area networks. Indeed it has been proven in [1] that switchless networks require a large number
of wavelengths to support even simple traflic patterns. Other drawbacks of switchless networks are
discussed in [40]. Therefore, optical switches are required to build large networks.

A switched optical network consists of nodes interconnected by point—to—point optic communication
lines. Each of the fiber—optic links supports a given number of wavelengths. The nodes can be terminals,
switches, or both. Terminals send and receive signals. Switches direct their input signals to one or more
of the output links. Each link is bidirectional and actually consists of a pair of unidirectional links [40].
In this paper we consider switched networks with generalised switches, as done in [1, 5, 10, 39]. In
this kind of networks, signals for different requests may travel on a same communication link into a
node v (on different wavelengths) and then exit v along different links. Thus the photonic switch can
differentiate between several wavelengths coming along a communication link and direct each of them
to a different output of the switch. The only constraint is that no two paths in the network sharing
same optical link have the same wavelength assignment. In switched networks it is possible to “reuse
wavelengths” [40], thus obtaining a drastic reduction on the number of required wavelengths with
respect to switchless networks [1]. We remark that optical switches do not modulate the wavelengths
of the signals passing through them; rather, they direct the incoming waves to one or more of their
outputs.

Single-hop networks (or all-optical networks) are networks where the information, once transmitted
as light, reaches its final destination directly without being converted to electronic form in between.
Maintaining the signal in optic form allows to reach high speed in these networks since there is no
overhead due to conversions to and from the electronic form. However, engineering reasons [40] suggest
that in some situations the multihop approach can be preferable. In these networks, a packet from a
terminal node may have to be routed trough a few terminal nodes before reaching its final destination.
At each terminal node, the packet is converted from light to electronic form and retransmitted on an
other wavelength. See [33, 34] for more on these questions. In the present paper we consider both
switched single-hop and switched multihop networks.

Our results. In this paper we initiate the study of the problem of designing efficient algorithms for
collective communication in switched optical networks.

Collective communication among the processors is one of the most important issues in multi-
processor systems. The need for collective communication arises in many problems of parallel and
distributed computing including many scientific computations [9, 12, 15] and database management
[17, 45]. Due to the considerable practical relevance in parallel and distributed computation and the
related interesting theoretical issues, collective communication problems have been extensively studied
in the literature (see the surveys [20, 25, 16]). In this paper we will consider the design of efficient algo-
rithms for two widely used operations: Broadcasting and Gossiping (also called all-to-all broadcasting).
Formally the broadcasting and gossiping processes can be described as follows.

Broadcasting: One terminal node v, called the source, has a block of data B(v). The goal is to
disseminate this block so that each other terminal node in the network gets B(v).

Gossiping: Each terminal node v in the network has a block of data B(v). The goal is to disseminate
these blocks so that each terminal node gets all the blocks B(u), for each terminal » in the network.

We first consider single-hop networks. In this case we design broadcasting and gossiping algorithms
that do not need buffering at intermediate nodes. The algorithms have to guarantee that there is a path
between each pair of nodes requiring communication and no link will carry two different signals on the
same wavelength. For our purposes, a wavelength will be an integer in the interval [1, W]. Generally,



we wish to minimise the quantity W, since the cost of switching and amplification devices depends on
the number of wavelengths they handle. For single-hop networks we obtain:

e Optimal broadcasting algorithms for all maximally edge—connected graphs;

e An optimal gossiping algorithm for hypercubes;

e Upper and lower bounds on the number of wavelengths necessary to gossip in arbitrary graphs in
terms of the edge—expansion factor.

o Quasi-oplimal gossiping algorithms for toruses.

We also consider multihop networks. In this case we derive non—trivial tradeoffs between the number
of wavelengths and the number of hops (rounds) necessary to complete the process. We obtain, among
several results:

e Asymptotically tight bounds for bounded degree networks;
e Tight bounds for hypercubes, meshes, and toruses.

Related previous work. Although our work seems to be the first that has addressed the problem
of collective communication in switched optical networks, there is a substantial body of literature that
has considered related problems. Optical routing in arbitrary networks has been recently considered in
[1, 5,31, 39]. Above papers contain also efficient algorithms for routing in networks of practical interest.
Routing in hypercube based networks has been considered by [5, 35, 39]. Lower bounds on the number of
wavelengths necessary for routing permutations have been given in [35, 6, 38]. Gossiping in broadcast—
and-select optical networks has been considered in [1]. Other work related to ours is contained in
[13, 23, 14, 24, 25]. In these papers the problem of designing efficient broadcasting and gossiping
algorithms in traditional networks has been considered under the assumption that data exchange can
take place through edge-disjoint paths in the network. In particular the results of [13] and [23] can
be seen as particular cases of some of our results for multihop networks when only one wavelength is
available.

Due to space limitations, some proofs are omitted and others are given in the appendices that can
be read at the discretion of the Program Committee.

2 Notations and Definitions

We represent the network as a graph G = (V(G), E(G)). For physical reasons, each edge in G is to
be considered bidirectional and consisting of a pair of unidirectional optical links [40, 31]. In graph—
theoretic language, this is equivalent to say that the network should be represented by a directed
symmelric graph. For sake of simplicity, we prefer to consider G as an undirected graph. However,
we will be always careful to count the number of signals crossing an edge taking into account their
directions, that is, our algorithms will always assign different wavelengths to signals crossing an edge in
the same direction. We will use the term graph and network interchangeably. The number of vertices
of G will be always denoted by n. Given v € V(G), we denote with d(v) the degree of v, with dpyax and
dmin We denote the maximum and minimum degree of GG, respectively.

Processes are accomplished by a set of calls; a call consists of the transmission of a message from
some node z to some destination node y along a path from z to y in G. Each call requires one round
and is assigned a fixed wavelength. A node can be involved in an arbitrary number of calls during each
round, but we require that if two calls share an edge in the same direction during the same round then
they must be assigned different wavelengths.

Given a network GG, a node z € V(G), and an integer ¢, we denote by wb(G, z,t) the minimum
possible number of wavelengths necessary to complete the broadcasting in G in at most ¢ rounds, when
z is the source of the broadcast; we set wb(G,t) = max ey (g) wb(G, z,t). Analogously, with wg(G,t) we
shall denote the minimum possible number of wavelengths necessary to complete the gossiping process
in G in at most ¢ rounds.

Given G, a node z € V(G), and an integer w, we denote by tb(G,z,w) the minimum possible
number of rounds necessary to complete the broadcasting process in G using up to w wavelengths per



round, when z is the source of the broadcast; we set tb(G, w) = max ey (g) tb(G, z,w). We denote by
tg(G, w) the minimum possible number of rounds necessary to complete the gossiping process using up
to w wavelengths per round.

The edge—expansion §(G) of G [27], (also called isoperimetric number in [32, 43] and conductance in
[28]) is the minimum over all subsets of nodes S C V(G) of size |S| < n/2, of the ratio of the number
of edges having exactly one endpoint in .S to the size of S.

A graph G is said k—edge—connected if £ is the minimum number of edges that must be removed to
disconnect GG, (G is said mazimally edge—connected if its edge—connectivity equals its minimum degree.

A routing for a graph G is a set of n(n — 1) paths R ={ Ry, | z,y € V(G), ¢ # y}, where R, is
a path in G from z to y. Given a routing R for the graph G, the load of an edge e € E(G), denoted
by load(R,e), is the number of paths of R going through e in either directions. The edge-forwarding
index of G [21], denoted by 7((), is the minimum over all routings R for GG of the maximum over all the
edges of & of the load posed by the routing R on the edge, that is, 7(G) = ming max.eg () Lload(R, ).
It is known that [43]

(1)

Unless otherwise specified, all logarithms in this paper are in base 2.

3 Single-Hop Networks

In this section we consider the number of wavelengths necessary to realize the broadcasting and gossiping
processes in single-hop (all-optical) networks.

In the single-hop model it is sufficient to study the number of wavelengths necessary when only one
communication round is used. Indeed, any one-round algorithm that uses w wavelengths can also be
executed in ¢ rounds using [w/t] wavelengths per round, that is,

wg(G,1) < [wg(G, 1)/t],  wb(G,t) < [wb(G, 1)/t] . 2)

On the other hand, the assumption of a single—hop system implies that if we have a realization of a
process in ¢ rounds using up to w wavelengths per round, we can easily obtain a new realization using
wt wavelengths and one round. Therefore, in the sequel of this section we will focus on one-round
algorithms; we will write wb(() and wg(G) to denote wb(G, 1) and wg(G, 1), respectively.

3.1 Broadcasting

Given a graph G and a node v € V(G), when v is the source of the broadcasting process there must
exist at least (n — 1)/d(v) calls of the n — 1 originated at v that share a same edge incident on v.
Therefore,

Lemma 3.1 For each graph G on n nodes

We give now an upper bound that allows to determine the exact value of wb(G) for all maximally
edge—connected graphs and, therefore, for most of the used interconnection networks.

Theorem 3.1 For each k-edge—connected graph G on n nodes

wb(G) < [(n — 1)/k].



Proof. Let node v be the source of the broadcast. Partition, in an arbitrary way, the node set
V(G) — {v} into w = [(n — 1)/k] subsets, say Vi,...,V,, of size at most k each. Since G is k—edge-
connected, for each ¢ = 1,...,w, it is possible to choose k edge-disjoint paths to connect v to the k
nodes in V; (see [8], Corollary 3, p. 167); therefore, it is possible to inform all nodes in V; in one round
using the same wavelength. Hence, the information from v to each other node in G can be routed in
one round using a total of at most w = [(n — 1)/k| wavelengths. O

Corollary 3.1 If G is maximally edge—connected then

wb(G) = [#‘éﬂ .

The above corollary gives the exact value of the number of wavelengths necessary to broadcast in one
round in various classes of important networks. Notice that every vertex transitive graph is maximally
edge—connected [29]. In particular we have

o for the d-dimensional hypercube H; wb(Hy) = [(2‘1 — 1)/d1 ;

o for the r x s mesh M, wb(M, ) = [(rs —1)/2];

e for the d dimensional torus C'% wb(CL) = [(md — 1)/(2d)l ;
o for any Cayley graph G of degree d  wb(G) = [(n —1)/d].

The last result on Cayley graphs includes, among others, the star interconnection network and the
pancake interconnection network [2].

3.2 Gossiping

In this section we study the minimum possible number of wavelengths necessary to perform gossiping
in a single-hop network in exactly one round.

Lemma 3.2 For each graph G il holds thal
wg(G) > 7(G) /2.

Proof. Since each node v has to send its block of information B(v) to each other node in the graph G,
to perform gossiping in one round we need to choose n(n — 1) paths in G and use them concurrently
to route all blocks of data. Therefore, the number of paths crossing an edge in either directions cannot
be less than the edge—forwarding index of (G; since at least half of them cross the edge in the same
direction, the number of wavelengths must be at least 7(G)/2. o

Minimising the number of wavelengths is in general not the same problem as that of realizing a
routing that minimises the number of paths sharing a same edge. Indeed, our problem is made much
harder due to the further requirement of wavelengths assignment on the paths. In order to get equality
in Lemma 3.2 one should find a routing R achieving the bound 7(G) /2 for which the associated conflict
graph, that is, the graph with a node for each path in R and an edge between any two paths sharing an
edge in the same direction, is 7(()/2-vertex colorable. We also notice that the problem of determining
the edge—forwarding index of a graph is NP-complete [42].

In the rest of this section we will put in relation the minimum possible number of wavelengths
necessary to perform gossiping in G' in one round with the edge—expansion of G. From Lemma 3.2 and
(1) we get the universal lower bound wg(G) = Q(n/B(G)). Moreover, employing the same example used
in Theorem 1 of [39], we can prove that for each § < 1 there exists G such that §(G) = 3, for which

wg(G) = Q(n/p*(G)). (3)

We now show that gossiping can be efficiently realized in any bounded degree graph with a number of
wavelengths within a log®n factor from the optimal. In order to gossip in one round one has to choose



a path for each pair of nodes and use these paths contemporarily, this is equivalent to the problem
of embedding the nodes of the complete graph K, in G and route the edges of K, as paths in G.
For a bounded degree graph G, Leighton and Rao [27] showed that this problem can be efficiently
solved with congestion O(nﬁlfg)n) and dilation O(E)(gGTS)' Since each vertex in the conflict graph of

nlog?n

the resulting routing has degree upper bounded by (congestion x dilation)= O( 52(G) ), the greedy

colouring algorithm can be used to colour the vertices of the conflict graph with O(ng—f‘(@;—)n) colours,

that is, it can be used to assign O(%) wavelengths to the paths of the routing so that no two paths

sharing an edge have the same wavelength assignment. Summarising,

Theorem 3.2 In any bounded degree graph G on n nodes

nlog? n
wg(G) =0 .
8(@) ( 7(0) )

Computing 3(G) seems an hard computational problem (see [32]), therefore it can be useful also
to relate wg((G) with easy computable parameters of . In particular, we can obtain bounds on wg(G)
in terms of the spectrum of matrices associated to G. Recalling that the Laplacian of a graph with
adjacency matrix A and degree function d(-) is the n x n matrix with entries d(z)é,, — A, where

g,y 1s the Kronecker symbol, from Lemma 2.1 of [3], Theorem 4.2 of [32], Lemma 3.2, Theorem 3.2,
and formulee (1), (3) of the present paper we get:

Theorem 3.3 Let A be the second smallest eigenvalue of the Laplacian associated to G. We have

n

B B (nlog?n)
wg(G) = Q ( ez /\)) and wg(G) =0 (T) .

Moreover, there exists a graph G such that

#8(6) =2 (5

We show now that for some classes of important networks the lower bound on wg(G) given in Lemma
3.2 can be efficiently reached.

In case of the path F, and the ring C),, on n nodes it is not hard to prove that the shortest
path routing gives rise to a set of paths which can be coloured with 7(FB,)/2 and [7(C),)/2]| colours,
respectively, so that all paths sharing an edge in the same direction have different colours.

Theorem 3.4 Let P, and C), be the path and the ring on n nodes, respectively. Then

wro= " =i[5] e -]

Theorem 3.5 Let H; be the d-dimenstonal hypercube. We have

wg(Hy) = m(Hy)/2 =271

Proof. It is known that 7(Hy) = 2¢ [21]. Therefore, from Lemma 3.2 we have wg(Hy) > 2971, We
give a routing which attains this bound and we show how to colour the paths of the routing with 291
colours so that for any edge all the 29=! paths crossing that edge in a same direction have different
colours.

A path (xg,x1,...,x;) from node xg to xi, denoted with x¢ ~ xj, is called ascending if for
each ¢« = 1,...,k the node x; is obtained from x;_; by complementing the bit in position p;, with
p1 < p2 < ...<pg. We will consider ascending paths only.



To each ascending path u ~ v let us associate the vector s(u~» v) = v & u, where & denotes the
componentwise vector addition modulo 2. Moreover, let us denote by e; € {0,1}% the vector with i-th
component equal to 1 and all the remaining equal to 0. We first remark that for each binary vector
a € {0,1}% and for each edge (z,z @ e;) there exists at most one path u~> v such that s(u~ v) = a
crossing (z,zde;), i.e., such that u ~ v = (u = x¢, X1, ..., Xp—1, X = V), with x; = z and x;41 = zPe;
for some j. In order to prove this, let a = a; ...aq and consider the vectors a’,a” € {0,1}¢, with

a =a;...q;0...0, a":O...Oai...adE{O,l}d.
Notice that, since we are considering ascending paths only and we know that a = v ¢ u, we have
u=z®a and v=zda”.

Obviously, if a¢; = 0 no such a path exists.
We associate now to each vector a = a; ...aq the vector c(a) =b = by ...bg_; € {0,1}%7! with

bi =a; B a4

foreach i = 1,...,d — 1. Notice that c(a) and any a; uniquely determine a. The colouring of the paths
is now defined as follows:

to each path u~+ v associate the colour c(u~+ v) = c(v@u) € {0,1}%%.

This colouring obviously uses 29=! colours. We prove now that each edge (z,z®e;) is crossed by exactly
one path of any colour ¢ € {0,1}%! in the direction from z to z @ e;.

Indeed, if a path u~+ v crosses (z,z @ e;) we know that the associate vector s(u~ v)=vgu=a
has a; = 1. Therefore, from ¢ = c(a) and a; = 1 we can recover uniquely a and, as observed before, we
can say that there exists an unique path u~> v that has a as associated vector and crosses (z,z & €;)
in the direction from z to z @ e;. O

We can show the following result whose proof is omitted from this extended abstract.

Theorem 3.6 For the k x k torus C} it holds that k|k*/4]/2 < wg(C?) < k|k*/4].

4 Multihop Networks

In this section we show that by exploiting the capabilities of the multihop optical model, a drastic
reduction on the number of wavelengths can be obtained with respect to (2).

As a first example, gossiping in a graph G can be accomplished in ¢ > 1 rounds by performing
during each round an h-permutation, with ~ = @(n%)7 that can be realized with O(n% log® n/3%(@G))
wavelengths whenever GG is a bounded degree graph (see [5]). Therefore,

Lemma 4.1 For any bounded degree graph G on n nodes wg(G,t) = O(n% log?n/3?(G)).

We remark that the trivial algorithm obtainable from relations (2) that uses wg(G, 1)/t wavelengths has
worse performance. In fact from (3) and (2) we get that there exists a graph for which wg(G, 1)/t =
Q(n/(t B*(G))).

In the following, we will be mostly interested in investigating broadcasting algorithms. Indeed, as
it is well known, the gossiping process can be accomplished by first accumulating all blocks at one node
and then broadcasting the resulting message from this node. Since accumulation corresponds to the
inverse process of broadcasting we get the obvious result

Lemma 4.2 For each graph G and number w of wavelengths tb(G,w) < tg(G,w) < 2 tb(G, w).



4.1 Lower Bounds

Lemma 4.3 For each graph G on n nodes of minimum degree duyin and maximum degree dpax

1+ (TL - 1)dmax/dmin)-‘
log(wdmax + 1) '

b(Gw) > [10g< (4)

Proof . In Appendix A a

Lemma 4.4 Given a graph G on n nodes of marimum degree d, let to = tb(G,w). It is possible to
perform gossiping on GG in t rounds using w wavelengths only if

(wd+ 1) —1

2(n—1) 7

+ (2t — t)(wd + 1)L > 7(G)/ (2w).

Proof. Omitted. O

Remark. We point out that the lower bounds on tb(G,w) and tg(G,w) given in Lemma 4.3 and
Lemma 4.4 cannot be improved for any graph. In fact, Lemma 4.3 is tight for G = C);, and Lemma 4.4
is tight for the cycle C,, and YVw > 6. The tightness of Lemma 4.4 for the cycle also implies that the
trivial upper bound on tg(G, w) given in Lemma 4.2 is tight for C), and Yw > 6.

4.2 Upper Bounds

In order to obtain our general upper bound on the number of rounds to broadcast in G with a fixed
number of wavelengths, we need the following covering property.

Definition 4.1 An s—tree cover for a tree T is a family F of induced subtrees of T such that:
1. UperV(F) =V (T);
2. For each F,F' € F it holds |V(F)NV(F')| < 1;
3. For each F' € F il holds |V (F)| < s.

The s—tree cover number of T is the minimum size of an s—tree cover for T.

The following result upper bounds the s—tree cover number of any tree; its proof also furnishes an
efficient way to determine an s—tree cover which attains the bound. The proof is in Appendix B.

Lemma 4.5 For each tree T on n nodes and bound s, the s—tree cover number of T is upper bounded
by 2n/s.
Before giving the upper bound on the broadcasting time in general graphs, we notice the following

application of Lemma 4.5 to the function wb(-). The proof is given in Appendix C.

Theorem 4.1 For each k-edge connecled graph G on n nodes

\/1+(n_1)dmax/dmin_1-‘ SWb(G,Q)SIV 2?71-‘

dmax

By using Lemma 4.5 we can prove a general upper bound on tb(G,w) for any w > 2; in the case
w =1 the bound tb(G, 1) < [logn| has been given in [13].

Theorem 4.2 For each graph G on n nodes and number of wavelengths w > 2

tb(G, w) = O(log,, | n).



]

747! By Lemma 4.5 we can construct for T an

Proof. Let T be any spanning tree of G and s = |
s—tree cover F = {F,..., F,}; with

< 2n <w+1 and |F|< [Q"Wf'1

—— <w an | <s=|——], fori=1,...,p.
P=Ton/(wt )] = w1 P

In the first round the source of the process v can inform one node in each F;, for 2 = 1,..., p, apart the
one containing v itself. Since no two trees in F share an edge the process can proceed independently
and recursively in each tree F; € F. Therefore, tb(G, w) < [log n/(log(w + 1) — 1)]. o

By Lemma 4.3 and Theorem 4.2 we get

Corollary 4.1 For each bounded degree graph G on n nodes
tb(G, w) = O(log,, | n).

We give now a sharper bound on the broadcasting time in the hypercube in terms of the maximum
number of wavelengths. In the special case w =1 it is proved in [23] that tb(Hy, 1) = O(d/ logd).

Theorem 4.3 For each d and number of wavelengths w

d

[rmEsy d

-‘ < tb(Hg, w) < ¢(d, w)m—l— 2
1 if logw = o(d),

with ¢(d, w) < 3.5 and limg_, o, c(d, w) < {3/2 olherwise.

Proof. The lower bound is given in Lemma 4.3. We prove here the upper bound. Given a sequence

a=ay...ar € {0,1}", for some 1 < L < d — 1, denote by H (a) the subcube of dimension d — L of H,

consisting of all nodes x = zy...z4_ra.

We recall that a path (xg,x1, ..., x;) from node xg to node xy is called ascending if foreach i =1,...,k

the node x; is obtained from x;_; by complementing the bit in position p; with p; < py < ... < pg.
Without loss of generality we assume that the source of the broadcasting process is node 0. Let

L = [log(wd + 1), (5)

and A = {0,1}" — {0”} be the set of all sequences of length L containing at least one 1. We first
establish in Hy paths from 0 to one node in each subcube H (a), for a € A, so that any edge is crossed
by no more than w paths. The paths are assigned as follows:

i) Select in A pairwise disjoint subsets Ay,..., Ar such that
A;c{a=uay,...,ar | a;=1} and |A)|=w, foreachi=1,...,L.

For each a € A;, for i = 1,...,L, the path P(a) from 0 to 09 %a is obtained as follows: if a; =
.= a;_1 = 0 then P(a) is the ascending path from 0 to 09La, otherwise P(a) is formed by the
ascending path from 0 to 04-L+i=1g. .. ar followed by the ascending path from 0d—L+i-lg.  a; to
the destination node 09 ta = 0%Lq,...az.
ii) Consider now the set of sequences B=A — A; — ... — A = {by,...,byr_1_,1}. By (5), we can
assign to each b € B an integer f(b) < d — L so that no more that w element of B have the same value
of f. Let 0°~Lb & €f(b) be the node obtained from 09~“b by complementing the bit in position f(b).
The path P(b) is formed by the edge (0, eyp)) followed by the ascending path from ey, to the end

node erb) d 0% Lp,

The above set of paths P(a), for a € A, establish in Hy paths from 0 to one node in each subcube H (a)
so that any edge is crossed by no more than w paths. Therefore, in the first round the source 0 can send



10

out the information along the paths P(a), for a € A, and informe one node in each (d — L)-dimensional
subcube H(a), a € {0, 1}, of Hy; in H(0) the informed node is the source 0.

In the subsequent rounds each node can iterate the process independently in the (d — L)-dimensional
subcube to which it belongs. The above reasoning implies that in one round the given procedure reduces
the dimension of the problem from d to d — |log(wd 4 1) ], that is,

th(Hg, w) < 1+ tb(Hy|log(wd+1)]s W)- (6)

We show now that (6) gives the desired upper bound on tb(Hy, w). Let us first notice that tb(Hg, w) = 1
whenever w > (27 — 1)/d. Let then
w= (2"~ 1)/d (7)

for some 0 < a < 1; this implies [log(wd + 1)] = |ad].
Define A as the maximum integer such that w > (22 — 1)/A. By (6) we have

o lad] =11 o
eo(Hyw) < Pwd—l—l)—QL dJ"_I_ > P_l“'

|ad | w = | wi
Therefore,
d+1 _2|_o<dJ [od]-1 22 [ovd] 1
ob(Hyw) < 4T 2 b2tlad-A-Y —
|ad | w = ow o
Lovd]
(wd + 1) — 2l 2led] 1
< 2 d] — A - —
= adjo  t ([ad] = 2pw T 21 [ad] gzw
plod) ¢ 1\ dw+tl ed
< - 2 d] - A - —
- w <Ladj -2 Lozdj) + |avd | w +2+4 [ad] Z; iw
led] -1
d 2 2
= —(1+ ——— d| - A+2- — .
o (1 fagrmg) o -8+ 2 it wlad](ed] -9
By definition of A and (7) we get |ad| — A < —loga and
tb(Hg, w) < d <1+ 2 ) 1 +2 < d <1+ 2 1 )+2
PO Tadl U T (ed —2)) T YT Tad) U T ad) —2 R
which, being — log o = log(d/ log(wd + 1)), gives the desired upper bound. O

Theorem 4.4 Let My, i, and Cy, x, be the ki X ky mesh and torus, respectively, on the n = kiky nodes
in the set {(z1,22) @ 0<w; <k; t=1,2}. For each w, k and ky,ky < k

log(2n — 1) log k
R T S < tb(M, < _ 1
[log(élw + 1)-‘ S (M 0) < Logbﬂlw + 1] +

[ logn " < b(C ) < log k
log(4w+1)| — Faka W) = log| V4w + 1] |

Proof (sketch). The lower bounds follow from Lemma 4.3. We prove now the upper bounds.

We consider the mesh first. Denote as central node in the mesh the node (|k1/2], [k2/2]). Eventually,
use the first round to send the message to the central node z of the mesh. It is not hard to see that from
the central node of the mesh it is possible to inform all the nodes in one round whenever k£ < |/4w + 1].
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For larger values of k partition the mesh into |v/4w + 1]? submeshes with each dimension not larger
than k; = [k/b/élw + 1H and send a message from z to a central node in each submesh. Now it is
possible to iterate the process in each submesh until we get to submeshes with each dimension not

larger than [/4w + 1], that is, for a total of [log k/log| V4w + 1H + 1 rounds.

In C, k,, the first round is not needed, since each node can be seen as the center of a k; X ky mesh.
O

5 Conclusions and Open Problems

In this paper we have initiated the study of efficient collective communication in switched optical
networks. Although we have obtained a number of results, several open problems can be individuated
for future lines of research. We list the most important of them here.

e The computation complexity of the quantities wb(G,t), wg(G,t), tb(G, w), tg(G, w) deserves to be
investigated. It is likely that for some of them it is NP—hard. In this view, approximation algorithms
in the sense of [41] and [19] could be interesting to design.

e Our algorithm require a centralised control. This seems not to be a severe limitation in that the major
applications for optical networks require connections that last for long periods once set up; therefore,
the initial overhead is acceptable as long as sustained throughput at high data rates is subsequently
available [39]. Still distributed algorithms are worth investigating.

e We did not consider fault tolerant issues here. See the recent survey [36] for an account of the vast
literature on fault—tolerance in traditional networks.

e Some of our results are susceptible of improvements. In particular, we ask the following question: Is
the lower bound wg(G) > [7(G)/2] given in Lemma 3.2 always reachable? Although our intuition says
“no”, we do not have an example to prove this.
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A Appendix

Proof of Lemma 4.3. Let the source of the broadcast be a node z of degree d(z) = dpin. Indicate
by n; the maximum number of nodes that can be informed after 7 rounds; initially we have ng = 1.

During round ¢ > 1 node z can send the message to up to wdpyi, nodes, whereas any node y that has
received the message by round ¢ — 1 can inform up to w d(y) < w dpax other nodes. Therefore, we have

g S ni_1 + U)dmin + (ni—l - 1)wdmax = ni—l(wdmax + 1) - (dmax - dmin)w7 (8)
By iterating (8) we get

j—

—_

n; S (wdmax + 1)]712_] - (dmax - dmin)w E(wdmax + 1)l
£=0
, dmax +1)7 — 1
= (wdmax + 1)]ni—j - (dmax - dmin) (w d—l_ ) )
for each j = 1,...2. When j = i, being ng = 1, we get
Uz S (deax + 1)2 (dmin/dmax) +1- dmin/dmax- (9)

Since it is possible to complete the broadcasting in ¢ rounds only if
t > min{i | n; > n},
from (9) we get the following inequality

dmin dmin
+1-

dmax dmax

n < (wdmax + 1)°

that implies

;> [10g(1 + (’IZ - 1)dmax/dmin)-‘
- log(wdmax + 1) '

B Appendix

Proof of Lemma 4.5 Fix s and consider a tree 7" on n nodes. We will need the following simple and
known fact, which can be easily proved by induction: There exist a node in T such that each subtree
T; formed by removing from 7' this node and all incident edges, satisfies |1;| < n/2. In the sequel we
denote by r such a node and by T4,...,T;_1,T; = {r} the subtrees obtained by removing all edges
incident on r; such subtrees are indexed in order of non increasing number of nodes, that is,

n/2> Ty > ...> Ty = 1. (10)
Moreover, we indicate by m > 0 the largest index such that

|Ty|+ | T+ ..+ |Tw| < s (11)
If n < s then a 1-tree cover of T consists of T itself. Let

s<mn < 3s/2.
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In this case we will consider the s—tree cover F = {F}, F3}, where:
Fy is the induced subtree of T consisting of all nodes in the trees 11, ...,7T,,,T; and
F is the induced subtree of T’ consisting of all nodes in the trees T, 41,...,7}.
Since |T1| < n/2 < s we have that m > 1. Moreover, by (11) we have

|F1| S S.
We show now that |F3| < s. Consider first the case m = 1. If we suppose that
|F2| =n - |T1| = |T2|—|——|—|Tt| > s

we get |T1] < n — s < s/2 which implies that |Ty| + |T5| < 2|Ty| < s, contradicting the assumption that
m = 1 is the largest integer such that (11) holds.

Suppose now that m > 2. We have |Tp,42| + ...+ |T¢| < n — s and |T,41] < |T5] < n/3. Therefore,
|Fy| = [Ty + .-+ |1 < n/34+n—s < s. Since properties 1., 2., and 3. of Definition 4.1 hold for
F, the lemma holds in this case.

Consider now
3s/2 < mn < 2s.

In this case we can consider the s—tree cover F = {F}, F3, F3}, where:

Fy is the induced subtree of T consisting of all nodes in the trees Ty, ..., T, 1%,

F2 = Tm+1, and

F3 is the induced subtree of T’ consisting of all nodes in the trees T, 49,...,7T}.
Indeed, by (11) we have |Fy| = |T1|+ ...+ [T+ 1 < s, and |Fs5| = [Tpg2| + ...+ |1 <n—s <s;
moreover, || = |Th41] < n/(m+1) < n/2 <s. Since properties 1., 2., and 3. of Definition 4.1 hold
for F, the lemma holds in this case.

Suppose now that the property holds for each n’ < (¢ — 1)s and consider n such that
(t—1)s<n<is, ©>3.

We distinguish two cases on the value of |T7].
If |T1| < s, we can consider the s-tree cover F = {Fy, F5} UF’, where:

Fy is the induced subtree of T consisting of all nodes in Ty, ..., T, T},

F2 = Tm+1, and

F' is the s—tree cover of the induced subtree of T consisting of all nodes in T,,12,...,T}.
By (11) we have |Fy| < s; moreover |Fy| = |Tp41| < |T1] < s. Finally, |Tpq2|+. . 4|1t < n—s < (i—1)s.
Therefore, by inductive hypothesis
2Tyl 4.+ L) _ 20

|F'| < —2

s s
in case |Tpq2| + ...+ |Ti] > s, otherwise |F'| = 1. Therefore, |F| = 2 + |F'| < 2n/s. Moreover,
properties 1. and 2. of Definition 4.1 holds for F, and the lemma holds in this case.

If |T}| > s, we can consider the s-tree cover F = F; U Fy, where:

F1 is the s-tree cover of the tree Ty, and

F is the s-tree cover of the induced subtree of T' consisting of all nodes in T3, ..., T}.
We have s < |T1]| < n/2 < (i — 1)s. Moreover, T3+ ...|T:| =n—|Ti| > n/2 > (i — 1)s/2 > s and
| T3]+ ...|Te = n—|T1] < n—s < (i — 1)s. Therefore, the inductive hypothesis implies

ATy| | 2(n—|T2)) _ 2n
S

+ =

S S

|F| = |Fi| + | F2| <

Since Properties 1., 2., and 3. of Definition 4.1 holds for F, the lemma holds. a
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C Appendix

Proof of Theorem 4.1. The lower bound follows from Lemma 4.3. Let T" be any spanning tree of GG
and s = [\/Qn/kw. By Lemma 4.5 we can construct for 7" an s—tree cover F = {F},..., F,}, with

p<2n/[y/2n/k] and |F|<s= [\/Q'n/k-‘ ,fori=1,...,p.

Since G is k—edge connected, it is possible to find & edge—disjoint paths each connecting the source of
the broadcasting process to one of k arbitrary other nodes in the graph (cfr. [8]). From this we get
that in the first round of the broadcasting process, it is possible to inform one node in each F;, for

[p/k] < [y 2n/k]

Since no two elements of F share an edge, in the second round the informed nodes of each tree F; can

t=1,...,p, using at most

wavelengths.

independently broadcast the information to all the other nodes of F; using at most

|Fi| — 1 < s=[y/2n/k]

wavelengths. m



