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Abstract: We survey the theoretical results obtained for wavelength routing in all–optical networks,
present some new results and propose several open problems. In all–optical networks the vast band-
width available is utilized through wavelength division multiplexing : a single physical optical link
can carry several logical signals, provided that they are transmitted on different wavelengths. The
information, once transmitted as light, reaches its destination without being converted to electronic
form in between, thus reaching high data transmission rates. We consider both networks with arbi-
trary topologies and particular networks of practical interest.
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Problèmes de graphes provenant du routage WDM dans les
réseaux tout-optiques

Résumé : Ce rapport passe en revue les principaux résultats théoriques obtenus dans le cadre du
routage par multiplexage en longueur d’onde (en anglais Wavelength Division Multiplexing : WDM)
dans les réseaux tout–optiques. Nous présentons également des résultats nouveaux et proposons
plusieurs problèmes ouverts. Dans les réseaux tout–optiques, la forte bande passante disponible
est utilisée par le biais de la technologie WDM : une seule fibre optique peut transporter plusieurs
signaux logiques, pourvu qu’ils sont transmis à des longueurs d’onde différentes. L’information, une
fois convertie en lumière, atteint sa destination sans conversion électronique intermédiaire, ce qui
permet d’atteindre des taux de transmission de données élevés. Nous considérons le cas général du
problème de routage tout–optique, ainsi que des cas spécifiques pour des routages et des topologies
d’intérêt pratique.

Mots-clé : Réseaux tout–optiques, multiplexage en longueur d’onde, routage, graphes, coloration.
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1 Introduction

Motivation. Optical networks offer the possibility of interconnecting hundreds to thousands of
users, covering local to wide area, and providing capacities exceeding substantially those of conven-
tional technologies. Traditional networks use the electrical form to switch signals which can be
modulated electronically at a maximum bit rate of the order of 10 Gbps, while the optical fiber
bandwidth is about 10 THz [38], thus several orders of magnitude higher.

Optics is thus emerging as a key technology in state of the art communication networks and is
expected to dominate many applications, such as video conferencing, scientific visualization and
real-time medical imaging, high–speed super-computing and distributed computing [19, 37, 44]. We
refer to the books of Green [19] and McAulay [28] for a comprehensive overview of the physical
theory and applications of this emerging technology.

All–optical (or single–hop, see [31]) communications networks exploit photonic technologies
for the implementation of both switching and transmission functions [18]. These systems provide
all source-destination pairs with end-to-end transparent channels that are identified through a wave-
length and a physical path. Maintaining the signal in optical form allows for high data transmission
rates in these networks since there is no conversion to and from the electronic form. Such an ap-
proach allows thus the elimination of the “electronic bottleneck” of communications networks with
electronic switching.

It is widely accepted that the wavelength–division multiplexing (WDM) [10] approach provides
means to realize high–capacity networks, by partitioning the optical bandwidth into a large numbers
of channels whose rates match those of the electronic transmission [8]. It allows multiple data
streams to be transferred concurrently along the same optical fiber.

The Optical Model. In general, a WDM optical network consists of routing nodes interconnected
by point–to–point fiber-optic links, which can support a certain number of wavelengths. Due to the
electromagnetic interference, the same wavelength on two input ports must be routed to different
output ports. In this paper we consider switched networks with generalized switches, which can be
based on accousto–optic filters [9], as is done in [1, 4, 36]. In this kind of networks, signals for
different requests may travel on a same communication link into a node � (on different wavelengths)
and then exit � along different links, keeping their original wavelength. Thus the photonic switch
can differentiate between several wavelengths coming along a communication line and direct each of
them to a different output of the switch. The only constraint on the solution is that no two paths in the
network sharing the same optical link have the same wavelength assignment. In switched networks it
is possible to “reuse wavelengths” [37], thus obtaining a drastic reduction on the number of required
wavelengths with respect to switchless networks [1].

A switched optical network consists of interconnected nodes which can be terminals, switches,
or both. Terminals send and receive signals, and switches direct their input signals to one or more of
the output links. Each link is bidirectional and actually consists of a pair of unidirectional links [37].

Some authors [33, 1, 36, 4] considered topologies with single undirected fiber links carrying
undirected paths. However, it has since become apparent that optical amplifiers placed on the fi-
ber will be directed devices. Hence we model the optical network as a symmetric directed graph���������	��
��������



, where each arc represents a point–to–point unidirectional fiber-optic link.
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A request consists of an ordered pair of nodes, and an instance of a set of requests. A solution
consists of settings for the switches in the network, and an assignment of wavelengths to the re-
quests, so that there is a directed path (dipath) between the nodes of each request, and that no arc
will carry two different signals on the same wavelength.

The cost and feasibility of switching and amplification devices depend on the number of wave-
lengths they handle. One should be aware of the severe limitations that current optical technologies
impose on the amount of available wavelengths per fiber. While experimental systems report large
number of up to 100 wavelengths per fiber [32], current state of the art manufacturing processes
restrict the number of wavelengths per fiber of commercial WDM multiplexers to as low as 4 (Pi-
relli), 8 (Lucent Technologies), and up to 20 (IBM). Thus our aim is to minimize the number � of
wavelengths used in a solution. If the number of wavelengths required to realize a set of requests
is greater than the number of available wavelengths, then more than one all optical communication
round are to be utilized.

We remark that optical switches do not modulate the wavelengths of the signals passing through
them. If an intermediate node could change the wavelength on which a signal is transmitted, routing
an instance using the minimum number of wavelengths would be equivalent to the integer multicom-
modity flow problem. Unfortunately, current or foreseeable technologies cannot implement such a
photonic switch.

While in WDM technology a fiber link requires different wavelengths for every transmission,
SDM (space division multiplexing) principle allows parallel links for a single wavelength, at an
additional cost. Both techniques are combined in practice to find an efficient tradeoff between the
two approaches. However, we focus our study on the directed WDM model. In fact, obtaining
good bounds on the number of wavelengths provides additional evidence in favour of the WDM
approach [29].

The actual process of setting up switches and routes, and of assigning wavelengths, is done using
an electronic backbone control network. One may wonder at the use of a relatively slow electronic
network to set up these high speed connections. In fact, the major applications for such networks
require connections that last for relatively long periods once set up. Thus the initial overhead is
acceptable as long as sustained throughput at high data rates is subsequently available.

Content of the paper. In this paper we survey the main theoretical results in the area of wavelength–
routing in all–optical networks. To keep our overview as complete and current as possible, we have
included new results not yet published, some of them obtained by different subsets of authors of the
present paper. We have also included several open problems which we hope will stimulate further
research in the area.

2 Definitions

There are several natural ways in which an all–optical network can be modeled. In this paper, we
choose for the most part to model it as a symmetric digraph, that is, a directed graph with vertex set� ����


and arc set
� ����


, such that if
��� � � 
�� � ����


then
� � ��� 
�� ������


. On the other hand, the
definitions given below apply to any (symmetric or not) digraphs, and in some cases we will make

INRIA
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comments about general digraphs. We always denote by
�

the number of vertices in
�

, that is,� ��� � ����
��
.

We also use the following notation:

��� ��� �
	 
 denotes a dipath in
�

from the node
�

to
	

, that is a directed path which consists of a
set of consecutive arcs beginning in

�
and ending in

	
.

��� ��� �
	 
 denotes the distance from
�

to
	

in
�

, that is the length of a shortest dipath � ��� �	 
 .
An algorithm will be said efficient if it is deterministic and runs in polynomial time. We have

chosen not to consider probabilistic algorithms in this paper.

Wavelength-routing problem
� A request is an ordered pair of nodes

��� �
	 

in
�

(corresponding to a message to be sent from�
to
	

).

� An instance � is a collection of requests. Note that a given request
��� �	 


can appear more
than once in an instance.

� A routing � for an instance � in
�

is a set of dipaths � ��� � ��� �	 
�� ��� �
	 
 � ��� .
� The conflict graph associated to a routing � is the undirected graph

� � ��� 
 with vertex set �
and such that two dipaths of R are adjacent if and only if they share an arc of G.

Let
�

be a digraph and � an instance. The problem
�	� � � 
 asks for a routing � for the instance �

and assigning each request
��� �	 
 � � a wavelength, so that no two dipaths of � sharing an arc have

the same wavelength. If we think of wavelengths as colors, the problem
�	� � � 
 seeks a routing � and

a vertex coloring of the conflict graph
� � �� 
 , such that two adjacent vertices are colored differently.

We denote by �� ��� � � � � 
 the chromatic number of
� � ���
 , and by �� ��� � � 
 (or briefly just �� if there is

no ambiguity) the smallest �� ��� � � � � 
 over all routings R. Thus �� ��� � � � � 
 is the minimum number
of wavelengths for a routing � and �� ��� � � 
 the minimum number of wavelengths over all routings
for

�	� � � 
 .
Remark 1 As explained in the introduction, early models of all–optical networks used undirected
graphs, and many results are formulated in that context. In this ‘undirected’ model, to conflict means
to share an edge. All the definitions for the directed case have natural analogues in the undirected
case. Note that we use the same notation

�
for two different objects: an undirected graph or its

induced symmetric digraph obtained by replacing each edge by two opposite arcs. However, in what
follows we will distinguish the directed and undirected concepts by using an arrow over the directed
parameters.

Remark 2 Any routing by undirected paths induces a routing by directed paths, and a coloring of
the undirected paths is also a coloring of the directed paths, as two edge-disjoint paths will become
arc-disjoint dipaths. Hence �� ��� � � 
�� � �	� � � 
 for any problem

��� � � 
 , and every upper bound on �

RR n˚3165
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is an upper bound on �� . At first glance one could think that � � � �� . That is not true as shown by the
case of the instance � � � ��� � � 
�� � � ��� 
� ��� ��� 
 � in the

�
-star network

�
where

���	��
 � ��� �	� � � �
� �
and

���	��
 � � ��� �	� � � ��� � � � � ��� �
� � � . Indeed �� �	� � � 
 ���
and � ��� � � 
 ��

. Furthermore the ratio��� �� may be arbitrarily great: in the class of mesh-like networks given in [1], we can have �� ���
and� ���

, for each positive integer
�

.

Special instances

� The All–to–All instance is ��� ��� ��� �
	 
�� � � ���	��
� 	 � � ����
����� 	 � .
� A One–to–All instance is a set ��� � � ����� �	 
 � 	 � ���	��
�
	��� ��� � , where

��� � � ����

.

A One–to–Many instance is a subset of some instance ��� .
� A � -relation is an instance ��� in which each node is a source and a destination of no more than
� requests. A

�
-relation is also known as a permutation instance. Note also that the instance

��� is an
� ��� � 


-relation.

3 A related parameter

� Given a network
�

and a routing � for an instance � , the load of an arc � � � ����

in the

routing � , denoted by � �	� � � � � � � 
 , is the number of dipaths of � containing � . The load
(also called congestion) of

�
in the routing � , denoted by � ��� � � � � 
 , is the maximum load

of any arc of
�

in the routing R, that is, � �	� � � � � 
 ��!#"%$�&(' �*),+.- � ��� � � � � � � 
 .
� The load of

�
for an instance � , denoted by � ��� � � 
 , or � if there is no ambiguity, is the mini-

mum load of
�

in any routing � for � , that is, � �	� � � 
 �/!103254 � ��� � � � � 
 . For the All–to–All
instance �	� , � ��� � �6� 
 (respectively  ��� � �	� 
 ) is called the arc forwarding index (resp. edge
forwarding index, see [23, 40]) of

�
.

The relevance of this parameter to our problem is shown by the following lemma:

Lemma 3 �� ��� � � 
87 � ��� � � 
 for any instance � in any network
�

.

In other words, to solve a given problem
�	� � � 
 one has to use a number of wavelengths at least

equal to the maximum number of dipaths having to share an arc. The inequality can be strict, as
shown by Figure 1, analogous to an example from [29].

INRIA
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Figure 1: A routing for five requests in a tree and its associated conflict graph.

Indeed for this instance � in the tree
�

, the load is � ��� � � 
 � �
but �� ��� � � 
 � �

, since the
conflict graph is a pentagon which has chromatic number

�
.

In general, minimizing the number of wavelengths is not the same problem as that of realizing
a routing that minimizes the number of dipaths sharing an arc. Indeed, our problem is made much
harder due to the further requirement of wavelengths assignment on the dipaths. In order to get
equality in Lemma 3, one should find a routing � such that � �	� � � � � 
 � � ��� � � 
 , for which the
associated conflict graph is � �	� � � 
 –vertex colorable.

Question 4 Does there always exist a routing � such that � �	� � � � � 
 � � ��� � � 
 and at the same time
�� ��� � � � � 
 � �� ��� � � 
 ?

Theorem 5 Determining � �	� � � 
 in the general case is NP–complete.

Sketch of proof. We first observe that determining � ��� � � 
 is equivalent to solving the integral
multicommodity directed flow problem with constant capacities. It is shown in [13] that this problem
is NP–complete even for two commodities and all capacities equal to one.

�

For some special problems, � ��� � � 
 can be efficiently determined. That is obviously the case for
trees, where we always have a unique routing. That is also the case of the One–to–Many instances
where the problem can be reduced to a flow problem (in the graph obtained from

�
by considering

the sender node as the source, giving a capacity � to each arc of
�

, and joining all the vertices of
�

to a sink � with arcs of capacity
�
).

Remark 6 We can define analogously the load  �	� � � 
 for an undirected graph and we can prove that
� �	� � � 
 �  ��� � � 
 � � � ��� � � 
 . For One–to–Many instances, we can also show that � �  .

Question 7 Does the equality � �	� � ��� 
 ���  �	� � �6� 
 � ��� always hold ?

The following question was also asked in [23]:

Question 8 What is the complexity of determining � �	� � � � 
 ?

Let the arc expansion � �	��
 of a directed graph
�

having
�

nodes be the minimum, over all
subsets of nodes �	� � ����
 of size

� � � � � � � , of the ratio of the number of arcs with origin in �
and destination outside of � , to the size of � . It follows from [40] that � �	� � � � 
 7 
�� ),+.- .

RR n˚3165
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4 Arbitrary networks

4.1 Arbitrary instances

For a general network
�

and an arbitrary instance � , the problem of determining �� ��� � � 
 has been
proved to be NP–hard in [11]. In particular, it has been proved that determining �� �	� � � 
 is
NP–hard for trees and cycles. In [12] these results have been extended to binary trees and meshes.
NP–completeness results in the undirected model were known much earlier (actually, well before the
advent of the WDM technology). In particular, in [17] it is proved that the problem of determining� �	� � � 
 is NP–complete for trees. This result has been extended in [11] to cycles, while in [12] it
has been proved that the problem is efficiently solvable for bounded degree trees.

In view of this last result and of the NP–hardness of determining �� ��� � � 
 for binary trees, it might
seem that the problem of computing �� �	� � � 
 is harder than that of computing � ��� � � 
 . This is not
true in general. For instance, the determination of � ��� � � 
 remains NP–complete when

�
is a star

network, whereas �� ��� � � 
 can be efficiently computed. Indeed, in the undirected model this problem
corresponds to edge-coloring a multigraph [24], each node of which corresponds to a branch in the
star network. In the directed case, the same problem becomes equivalent to edge-coloring a bipartite
multigraph, efficiently solvable by König’s theorem.

In [1] is given an upper bound in the undirected model, which also holds in the directed case:

Theorem 9 (Aggarwal et al. [1]). For any problem
�	� � � 
 , where

�
has � arcs,

�� ��� � � 
�� � � ��� � � 
�� ���
Let � be a routing for an instance � in a network

�
. Let � be the maximum length of its

dipaths and � the maximum degree of its conflict graph. It is clear that � � � � ��� � � � � 
 . By a
greedy coloring we know that

� ��� � 

wavelengths are sufficient to solve the problem

�	� � � 
 . Thus
�� �
	 � � � 
 and similarly � �
	 � �  
 . A set of critical undirected problems reaching asymptotically
this upper bound (and that of Theorem 9) has been given in mesh-like networks (see [1]). By
adapting their examples (orienting alternately the vertical links up and down), we obtain the same
result in general (not symmetric) digraphs:

Theorem 10 For every  and � , there exists a directed graph
�

and an instance � such that
� �	� � � 
 �  , � �/!#" $ )��� �	- '�� � ��� �	 
 and �� ��� � � 
 �
� �  � 
 .
Question 11 Does Theorem 10 hold for symmetric digraphs ?

4.2 Permutations and � -relations

By deriving a lower bound on the number of links used in the worst case and an upper bound on the
total number of links in the network, Pankaj [33, 34] obtained in his thesis results in the undirected
model that are easy to translate in the directed model:

Theorem 12 For every symmetric digraph
�

of maximum degree � , there exists a worst case per-
mutation instance ��� such that

�� �	� � ��� 
 7���������� 
 �! � �
�

INRIA
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Theorem 13 For every vertex transitive symmetric digraph
�

of diameter
�

and degree � , there
exists a worst case permutation instance � � such that

�� ��� � � � 
 7�� �
��� �

In addition, Pankaj obtained the lower bound
� ! 032 � � � � � � � � ��������� 
 �! � � � 
 for a worst case

� -relation � � , showing in terms of growth rate that the necessary number of wavelengths is� � ��� �	� 
� � �
� � 
 .
In the undirected model, Raghavan and Upfal [36] have shown an existential lower bound which

relates the number of wavelengths and the edge expansion, by starting from the same example that
we can find in [1]. In the same way that we have obtained Theorem 10, we obtain an existential
lower bound for digraphs:

Theorem 14 For every � � �
and

� � � � �
, there exists a problem

��� � � � 
 for a � -relation ��� in
a digraph

�
with arc expansion � , such that

�� �	� � � � 
 � � � � � � � 
 �
Question 15 Does Theorem 14 hold for symmetric digraphs ?

Finding a routing � for an instance � in a network
�

and minimizing the load � ��� � � � � 
 of
�

in � corresponds to an integer multicommodity flow problem. When � is a permutation instance,
Leighton and Rao (see Theorem 2 in [27]) have given an efficient algorithm to obtain an integer flow
with maximum load and dilatation (length of a longest dipath) both

	 � ����� � � � �	��
 
 . Since each
vertex in the conflict graph of the resulting routing has degree upper bounded by (load � dilation),
the greedy coloring algorithm allows to use

	 � ����� � � � � � 
 colors, as it has been noticed in [4]. By
Hall’s theorem, this implies a result for � -relations in the directed model:

Theorem 16 There is an efficient algorithm to solve the problem
��� � � 
 for every � -relation � � in

any bounded degree network
�

with arc expansion � , using at most
	 � � � ��� � � � � � 
 wavelengths.

Note that this result almost matches the
� � � � � � 
 existential lower bound of Theorem 14. We

can also put �� ��� � � 
 in relation with the arc connectivity � of
�

. A digraph
�

has arc connectivity� if the minimum number of arcs to remove in order to disconnect
�

is � . Using a theorem of Shi-
loach [39], we can prove the following result:

Theorem 17 There is an efficient algorithm to solve the problem
��� � � 
 for every instance � in any

symmetric digraph
�

with arc connectivity � , using at most
�
� � � � � � wavelengths. Moreover, this

bound is best possible for worst case instances.

4.3 Other specific instances

The following theorem gives the exact value of �� �	� � ��� 
 for a worst case instance ��� in various
classes of important networks, namely the maximally arc connected digraphs, including the wide
class of vertex transitive digraphs. A digraph

�
is maximally arc connected if its minimum degree

is equal to its arc connectivity.

RR n˚3165
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Theorem 18 (Bermond et al. [7]). For a worst case One–to–All instance �%� in a maximally arc
connected digraph

�
of minimum degree

� ����

,

�� ��� � �	� 
 � � ��� � �	� 
 � � ��� �
� ����
 � �

In addition, an efficient network flow based algorithm is given to solve the problem
�	� � � 
 with

�� ��� � � 
 wavelengths, for any One–to–Many instance � in any network
�

. We have recently genera-
lized the last theorem:

Theorem 19 �� ��� � � 
 � � ��� � � 
 , for any One–to–Many instance � in any digraph
�

.

We have the following question. Two of the present authors believe the answer is positive, other
two believe it is negative and the last two carefully abstain.

Question 20 Does the equality �� ��� � ��� 
 � � ��� � �6� 
 hold for the All–to–All instance ��� in any
symmetric digraph

�
?

5 Specific networks

5.1 Trees

The case of trees is particularly interesting as many practical networks, e.g., in the telecommunica-
tions industry, have a tree-like structure (see [29]). Let us consider first the case when the network�

is a symmetric subdivided star, that is, when
�

is a symmetric tree with at most one node with
outdegree greater than 2. In this case, for every instance � , �� ��� � � 
 � � ��� � � 
 . Actually, when�

is a path this is equivalent to the fact that the chromatic number of an interval graph is equal to
the maximum size of its cliques. When

�
is a star this is equivalent to the fact that in a bipartite

graph the edge chromatic index is equal to its maximum degree. When
�

is a subdivided star, we
can combine these two approaches. It is not difficult to observe that the converse also holds, i.e.,
when � is a symmetric tree other than a subdivided star, then there exists an instance � such that
�� ��� � � 
 �� � �	� � � 
 :
Theorem 21 Let

�
be a symmetric tree. Then for all instances � �� �	� � � 
 � � ��� � � 
 if and only if�

is a subdivided star.

In fact, a tree other than a subdivided star is a subdivision of the graph shown in Figure 1, thus
we can always choose requests such that the conflict graph is a pentagon; thus �� �/�

, � � �
. It was

generally believed [29] until very recently that in a symmetric tree the ratio ���� � was never greater
than

� � � . However, Jansen [25] constructed a problem
�	� � � 
 (where

�
is a symmetric tree) with

�� ��� , � �/�
. Moreover, the following result has been obtained by Kaklamanis and Persiano and

subsequently found by Erlebach and Jansen:

Theorem 22 ([26]). Let
�

be a symmetric tree. Then for all instances � we have
�� ��� � � 
���� � ��� � � 
 � � , and there is an efficient algorithm to find a

� � ��� � � 
 � � -coloring.

INRIA



Graph Problems Arising from Wavelength–Routing in All–Optical Networks 11

We now show that in a tree network there exist problems with arbitrarily great load � , such that
the ratio ���� � is greater than

� � � . We start from the problem
��� � � 
 shown in Figure 1. For every

natural number
�

, let ��� denote the instance made of
�

copies of � (each request of � is repeated
�

times). Coloring the conflict graph associated to the problem
��� � � � 
 becomes then a multicoloring

problem for the pentagon, and from what is known about this problem (see [22]) we obtain:

Theorem 23 For every  there exists a problem
�	� � � 
 in a tree

�
, such that � ��� � � 
 7  and

�� ��� � � 
 7�� � ��� � � 
 � � .

Question 24 Can the constant of Theorem 23 be raised ?

Note that Theorem 22 implies an approximation algorithm to solve the problem
�	� � � 
 in a

symmetric tree G with at most
� �� ��� � � 
 � � wavelengths. For undirected graphs, there is a better

result:

Theorem 25 (Erlebach and Jansen [11]). There is an efficient algorithm to solve the problem
��� � � 


for any instance � in any tree network
�

, using at most � � � � � ��� � � 
 � � � �  wavelengths.

In the case of subdivided stars above the problem of determining �� can be efficiently solved,
since that is the case for the chromatic number of interval graphs and the chromatic index of bipartite
graphs.

In the case of undirected trees
�

, Tarjan [42] proved that � �	� � � 
 � �  ��� � � 
 � � , and this bound
is achieved in the example of Remark 2. Edge-coloring of multigraphs is an NP–complete pro-
blem [24], and since to each multigraph corresponds the conflict graph of some instance � in some
star

�
, the computation of � in stars (and hence trees) is NP–complete.

Theorem 26 (Gargano, Hell and Pérennes [16]). For the All-to-All instance � � in any symmetric
tree

�
we have �� �	� � � 
 � � �	� � � 
 , and there is an efficient algorithm to find a � ��� � � 
 -coloring.

In the undirected model, there are examples where the ratio � �	� � � � 
 �  ��� � � � 
 can tend asymp-
totically to

� � � . For instance, it is the case for the family of trees having three branches of equal
size.

Question 27 Can the problem
��� � ��� 
 for every undirected tree

�
be efficiently solved, using exactly� �	� � �6� 
 wavelengths ?

Golumbic and Jamison [17] proved that the conflict graph of a set of undirected paths in a tree
satisfies the strong perfect graph conjecture, and that the problem of finding a clique of maximum
cardinality can be efficiently solved.

To our knowledge, the particular case of permutation instances in tree networks has not been
studied in the literature. By adapting the example shown in Figure 1, it follows that we can have
�� ��� � � � 
 �/� � ��� � � � 
 � � for a permutation instance � � in a tree network

�
.

Finally, it is worth pointing out that when
�

is an oriented tree (each edge oriented in exactly
one way), Monma and Wei [30] have proved that for any instance � , we have �� ��� � � 
 � � ��� � � 
 and
�� ��� � � 
 can be efficiently computed.
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5.2 Rings, tori and meshes

Theorem 28 (Frank et al. [14]). There is an linear time algorithm to find a routing � for any
instance � in any undirected ring network

�
, such that  �	� � � � � 
 �  �	� � � 
 .

Question 29 Does Theorem 28 also hold in the directed model ?

A routing being fixed in a ring network, the wavelength assignment becomes in both models a
vertex coloring of circular arc graph, which in the general case is proved to be NP–complete in [15].
As observed earlier, also the general problem in both models of determining �� or � is NP–hard for
ring networks (see [11]). Nevertheless there are some approximation results.

Given a routing � for an instance � in a ring
�

, Tucker [43] gave an efficient algorithm to solve
the wavelengths assignment problem, using at most

� � � � � 
 wavelengths. Combined with Theorem
28, this result gives an efficient approximation algorithm of ratio two for the problem

�	� � � 
 in
undirected ring networks

�
. Using the same idea as Tucker, such approximation algorithms have

been shown in the undirected model in [36] and in the directed model in [29]. In addition, Tucker
showed examples with arbitrarily great � necessitating the use of

� � � � � 
 wavelengths. For instance,
it is the case for the five distinct requests

��� �
� � � ! � � � 
 in the
�
-ring.

The following result is the first per-instance approximation algorithm for bounded dimension
meshes and it also holds for bounded dimension tori. We give here its directed version.

Theorem 30 (Aumann and Rabani [4]). There is an efficient algorithm to solve the problem
�	� � � 


for any instance � in any bounded dimension mesh network
�

, using at most
	 � ����� � � ��� � � � � �	� � � 
 


wavelengths.

Rabani [35] improved recently the previous approximation results obtained for the square meshes,
although the hidden constants are huge:

Theorem 31 (Rabani [35]).There is an efficient algorithm to solve the problem
�	� � � 
 for any

instance � in any square mesh network
�

, using at most poly
� � ��� � ��� � 
 � �� ��� � � 
 wavelengths, where

poly denotes a polynomial function.

This result also holds in the directed model and it has been given in addition an efficient algorithm
to determine � in square meshes with a constant approximation ratio.

Regarding the All–to–All instance � � , the following two theorems extend results of [2]:

Theorem 32 (Bermond et al. [7]).For the All–to–All instance ��� in the ring network
�

with
�

nodes,
�� ��� � �6� 
 � � ��� � �6� 
 ����� � � � ��� � ��� .

Theorem 33 (Beauquier [6]). For the All–to–All instance ��� in the
�
-dimensional square torus

�
with even side, �� ��� � � � 
 � � ��� � � � 
 � �	��
�� � � .
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5.3 Hypercubes

Following the idea of [4], Gu and Tamaki [20] proved that � wavelengths are sufficient to realize a
permutation in undirected hypercubes. In the directed model, they obtained the following theorem,
not far from Szymanski’s conjecture [41] stating that one wavelength is sufficient:

Theorem 34 (Gu and Tamaki [21]). For any permutation instance ��� in any symmetric directed
hypercube

�
, the problem

�	� � � � 
 can be efficiently solved with
�

wavelengths.

For the All–to–All instance ��� , the following result uses the idea developped for hypercubes
in [33] and independently in [7]. It also follows from the study of compound graphs in [3].

Theorem 35 (Beauquier [6]). For the All–to–All instance ��� in any cartesian sum
�

of complete
graphs, the problem

�	� � ��� 
 can be efficiently solved with �� �	� � ��� 
 � � ��� � �6� 
 wavelengths.

6 Final remarks

We gave a survey of the main theoretical results arising from wavelength–routing in all–optical
networks and posed several questions for future research. Hopefully we have shown the reader how
graph theoretic tools can help in the design of all–optical networks.

Finally, it is worth pointing out that another very important line of research is that of on–line
routing in optical networks. In this scenario, requests can dynamically change and are given at
different times. We refer to [5] and references therein for an account of this area.
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