
2005 IEEE International Symposium on Cluster Computing and the Grid

SEMPLAR: High-Performance Remote Parallel 1/0 over SRB *

Nawab Ali and Mario Lauria
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{alin, lauria}@cse.ohio-state.edu

Abstract
One ofthe challenges in high-performance computing is

to provide users with reliable, remote data access in a dis-
tributed, heterogeneous environment. The increasing pop-
ularity of high-speed wide area networks and centralized
data repositories lead to the possibility ofdirect high-speed
access to remote data sets from within a parallel applica-
tion. In this paper we describe SEMPLAR, a library for
remote, parallel I/O that combines the standard program-
ming interface ofMPI-IO with the remote storagefunction-
ality of the SDSC Storage Resource Broker (SRB). SEM-
PLAR relies on parallel TCP streams to maximize the re-
mote data throughput in a design that preserves the par-
allelism of the access all the way from the storage to the
application. We have provided I/O performance resultsfor
a high-performance computing workload on three differ-
ent clusters. On the NCSA TeraGrid cluster, the ROMIO
perf benchmark attained an aggregate read bandwidth of
291Mbps with 18 processors. The NAS btio benchmark
achieved an aggregate write bandwidth of 74Mbps with 16
processors. The benchmark results are encouraging and
show that SEMPLAR provides applications with scalable,
high-bandwidth I/O across wide area networks.

1 Introduction
Recent trends in high-performance computing have seen

a shift towards distributed resource management. High-
performance applications are increasingly accessing data
stored in remote locations. This trend is a marked devia-
tion from the earlier norm of co-location of application and
its data. This paradigm shift has been brought about partly
by the availability ofhigh-speed wide area networks and the
large amounts of data generated by these applications [16].

This work is supported in part by the National Partnership for Ad-
vanced Computational Infrastructure, and by the Ohio Supercomputer
Center through grants PAS0036 and PAS0121. Mario Lauria is partially
supported by NSF DBI-0317335. Support from Hewlett-Packard is also
gratefully acknowledged.

Data-intensive scientific applications in experimental
physics, computational genomics and other engineering
fields generate large volumes of data. This data is of the
order of terabytes and petabytes and is shared by the en-
tire scientific community. The sheer magnitude of this data
makes it impossible for researchers to own individual copies
of datasets.

Traditionally, researchers working with remote datasets
have manually transferred data to their local filesystems us-
ing protocols such as FTP. This process, known as staging
[16] is then reversed for the resulting output data. There are
a few drawbacks associated with staging. It requires that the
researcher be aware of the filesystem details of the remote
data location. This technique also prevents the overlapping
of data transfer and computation, resulting in suboptimal
application performance. Staging also goes against the re-
quirement of seamless integration of remote I/O with the
distributed computing environment [16].

This paper presents a new data access technique that mit-
igates the problems associated with staging. We have de-
veloped a scalable, high-performance, remote I/O library
called SEMPLAR that performns 110 over the Internet. We
have integrated our library with MPI-I0 [14] thereby en-
abling remote data access from within a parallel application.
SEMPLAR is based on the SDSC Storage Resource Bro-

ker (SRB) [8, 4]. SRB is a middleware which provides ap-
plications with a uniform interface to distributed, heteroge-
neous storage resources. The storage resources consist of
filesystems, databases and archival storage media. SEM-
PLAR uses multiple, parallel TCP streams [21, 6] across
several cluster nodes to connect to SRB's data grid inter-
face. The storage virtualization provided by SRB coupled
with remote, parallel data access provides applications with
high I/O bandwidth for remote data.

Given the availability of high-speed wide area networks,
the main performance bottleneck in remote storage access is
frequently the TCP protocol processing overhead at the end-
points [12]. In the remaining cases, the limiting factor is one
of the intervening routers along the connection. Multiple,

0-7803-9074-1/05J$20.00 ©2005 IEEE 366

parallel connections mitigate the performance bottleneck is-
sue provided the connections have separate endpoints. By
using a cluster on the client side and a multiprocessor ma-
chine with multiple Gigabit Ethernet interfaces on the server
side, we effectively take advantage of the parallelism on the
two sides to achieve scalable throughput. By adopting a par-
allel I/O interface such as MPI-I0, the parallelism is main-
tained all the way from the storage to the application.

This paper describes an I/O library that integrates par-
allel I/O with remote storage access. We study the perfor-
mance that such 1/0 libraries achieve on typical clusters us-
ing benchmarks and application kernels. We also demon-
strate the scalability of our approach vis-a-vis traditional
data transfer techniques.

The rest of the paper is organized as follows. Section 2
summarizes the prior research that has been done in remote
I/O. Section 3 presents an overview of SRB. Section 4 char-
acterizes some of the issues related to the design and imple-
mentation of SEMPLAR. Section 5 and Section 6 present
our experimental setup and benchmarks respectively. Sec-
tion 7 discusses the results. We end by presenting our con-
clusions and future work in Section 8.

2 Related Work
High-performance remote I/O is an active area of re-

search. Foster et al. [16] proposed a remote I1/0 library,
RIO which is used by applications to access distributed
filesystems. RIO uses parallel I/O interfaces to provide
high-performance end-to-end data transfer. Another appli-
cation that provides high-performance bulk data transfer is
GridFTP [17, 6]. GridFTP is an extension to the FIP proto-
col. It uses among other things, network striping to increase
the end-to-end I/O bandwidth of applications.

Distributed filesystems such as NFS [22], AFS [19] and
DFS provide a uniform interface for remote I/O. How-
ever, the above filesystems are geared more towards desk-
top workloads as opposed to high-performance computing
workloads. To illustrate, the NFS bandwidth over an Eth-
ernet LAN is around 1-3Mbps, which is significantly less
than the I/O bandwidth offered by an optimized remote I/O
library (-lOMbps) [16].

Parallel filesystems such as PVFS [11] and PIOFS are
optimized for high aggregate I/O bandwidth on local clus-
ters. They are not designed to deal with the issues of secu-
rity, high network latency and other performance tradeoffs
that are associated with wide area networks. The Condor
computing system uses remote procedure calls (RPC) for
I/O. Applications running on Condor are linked to a runtime
library that replaces the 110 system calls with RPCs. The
I/O system calls are executed on the host that submitted the
job [18]. Condor however was designed for a workstation
environment. It does not provide any support for caching or
pipelining.

Other researchers have worked on grid middleware ser-
vices such as SRB [8] and the Globus Toolkit [15]. Nalli-
pogu et al. [20] proposed a mechanism to increase the data
transfer throughput by pipelining the various data transfer
stages such as disk access and network transfer. Bell et
al. [9] optimized the SRB protocol by overlapping the net-
work communication and disk access. Globus Access to
Secondary Storage (GASS) [11] provides high-performance
remote file access by using aggressive caching schemes.
GASS however, is not a general purpose distributed filesys-
tem. Rather, it provides support for some common grid file
access patterns.

3 Storage Resource Broker
The Storage Resource Broker (SRB) was developed by

the San Diego Supercomputer Center (SDSC) to provide
support for data-intensive computing. SRB aims to provide
high-performance 11O to scientific applications which ac-
cess large volumes of data. It was also designed to provide
efficient search, storage and retrieval ofdata stored in digital
libraries [8, 20, 4].
SRB is a middleware that provides a uniform interface

to distributed and heterogeneous storage resources. It pro-
vides applications with a Logical Storage Resource (LSR)
[8]. The LSR abstracts the location and filesystem informa-
tion associated with each physical resource, thus presenting
a simple, uniform interface to data stored in a distributed
environment. The SRB API is semantically similar to the
POSIX file 110 API.

The SRB system consists of SRB clients, SRB servers
and the Metadata Catalog Service (MCAT). Each SRB
server controls a fixed set of physical storage resources.
Multiple SRB servers interact with each other to provide
a federated operation. During a federated operation, one
SRB server acts as a client to other servers. The SRB server
consists of a Master daemon process and SRB agents. The
Master daemon listens on a well-known port for connection
requests from clients. Clients and servers communicate us-
ing TCP/IP. On receiving a client request, the SRB Master
spawns a SRB Agent to service the client request.

The Metadata Catalog Service manages the attributes as-
sociated with the SRB system resources. The SRB object
metadata consists of information used to locate and control
access to data. Applications can query the MCAT to search
and locate the required data. They can then access the data
by using the SRB API.

4 High-Performance Remote I/O
High-performance computing applications in fields such

as high energy physics, genomics and astronomy generate
large datasets. These datasets are commonly held at spe-
cialized facilities, typically regional supercomputer centers.

367

At the same time, due to recent technological trends and
investments in grid infrastructure, production clusters are
frequently connected to high-speed wide area networks and
national or regional high capacity backbones. In this con-
text it is interesting to study I/O techniques that can provide
high speed access to remote datasets. SEMPLAR was de-
signed to provide applications with high-bandwidth, remote
data access using a parallel I/O programming interface.

4.1 Concurrent Parallel TCP Flows
TCP/IP connections when used for remote data access

represent a well-known performance bottleneck. Depend-
ing on the specific configuration, the origin of the bot-
tleneck can either be traced to the routing along the path
of the connection or the protocol processing overhead at
the endpoints. An analysis of concurrent TCP flows has
shown that using multiple, parallel TCP streams across
wide area networks can lead to a significant increase in
the aggregate bandwidth when compared to a single TCP
stream [21, 6, 17].

However, using concurrent TCP streams for data trans-
fer does not help in situations where the protocol processing
overhead is likely to be the main performance bottleneck.
This is true for example in situations where the compute
cluster and the storage cluster are co-located in the same
computing facility or have privileged access to a common
backbone. This scenario is bound to become more frequent
as more supercomputer centers assume the responsibility of
hosting large, scientific datasets and get connected to one
of the growing number of high-speed regional or national
backbones. The most general solution to high-speed remote
data access thus requires addressing both sources of over-
head simultaneously.
SEMPLAR uses multiple, concurrent TCP streams for

I/O with separate endpoints for each TCP stream. It es-
tablishes a separate connection between each [/0 node on
the source and destination clusters. Since I/O data is al-
ready partitioned across cluster nodes during parallel [/0,
the data scattering across multiple endpoints does not rep-
resent a problem on the source side. On the server side,
we exploit the growing trend to use dedicated, parallel ma-
chines as high-performance storage servers [20, 9, 7]. In our
experiments the server is a 36x SMP machine with 6 Giga-
bit Ethernet interfaces. Other centers use dedicated clusters
as storage servers. These machines typically have state-of-
the-art local file systems dimensioned for high-throughput
data access.

4.2 SEMPLAR Design Issues
SEMPLAR was designed to provide storage virtualiza-

tion and high I/O bandwidth to data-intensive applications
performing I/O over wide area networks. One of its objec-
tives was to provide an application interface to parallel data

streams such that the parallelism was maintained all the way
from the storage to the application. We achieved this objec-
tive by using multiple, parallel TCP streams to transfer data
and by integrating the SRB-enabled [/0 library with MPI-
10.
We also had to decide on the SRB API to implement the

[/0 library. SRB offers two sets of C APIs to interface with
the remote SRB server. The SRB high-level API handles
data objects that use the MCAT server for metadata man-
agement. The high-level API registers the data object in the
MCAT server and the MCAT maintains the metadata infor-
mation associated with the object. The low-level SRB API
does not register the data object with the MCAT server, re-
sulting in lower overhead during [/0. SEMPLAR uses the
high-level SRB API for [/0 in spite of the overhead asso-
ciated with maintaining metadata information in the MCAT
server. The decision to use the high-level SRB API was
made primarily to take advantage of the storage virtualiza-
tion offered by the MCAT server.

Another design issue involved the synchronization of
reads and writes on the SRB server. Multiple client nodes
performing [/0 simultaneously on a single file can poten-
tially lead to incorrect ordering of data. SEMPLAR uses
explicit file offsets to synchronize the multiple [/0 streams
on the SRB server. By specifying the offset, each client
writes to a predefined section of the file. The application
specifies the file offset by making a call to the MPI func-
tion, MPIFile-set-view.

4.3 SEMPLAR Implementation
The MPI-2 standard [14] defined a new API for parallel

[/0 called MPI-IO. MPI-IO is an extensive API designed
specifically for portable, high-performance [/0. Thakur et
al. defined an Abstract-Device Interface for I/O (ADIO)
[23, 24] which is used to implement parallel [/O APIs. A
parallel [/0 API can be implemented portably across diverse
filesystems by implementing it over ADIO. The ADIO in-
terface is then implemented for each specific filesystem [3].
This provides a portable implementation of the parallel [/0
API while exploiting the specific high-performance features
of individual filesystems.

Figure 1: The ADIO Architecture

368

We have provided a high-performance implementation
of ADIO for the SRB filesystem. The ADIO implemen-
tation connects to the remote SRB server over TCP/IP to
perform parallel 110. Each cluster node performing I/O on
the file stored in the SRB repository opens an individual
TCP connection to the SRB server. The connection is
established during the call to the MPIFile-open func-
tion. The file is logically divided into segments using the
MPI-ile-set-view call and each node performs 110
on its segment independent of the other nodes. The par-
allelism associated with multiple nodes performing I/O si-
multaneously on smaller segments of a large file results in
higher data throughput. Since each I/O node uses a sep-
arate TCP connection to transfer data to the SRB server,
we are better able to utilize the available network band-
width.- The connection to the SRB server is terminated by
the MPKFile close function. The SRB ADIO imple-
mentation provides support for collective and non-collective
1/0. Table 1 provides a mapping between some of the basic
MPI-IO, ADIO and SRB calls.

MPI-IO API f ADIO API SRB API
MPITile-open ADIO-Open srbObjOpen
MPILFile-read ADIOReadContig srbObjRead
MPIJFile-write ADIOWriteContig srbObjWrite
MPIFile-close ADIO-Close srbObjClose

Table 1: Mapping between MPI-1O, ADIO and SRB API

5 Experimental Setup
This section describes the setup that we used to evaluate

the performance of SEMPLAR.

DAS-2 Cnkfr
Aumtena

SMbp6

SRB Sencr
SmDkg CA

NCSATG user
QuwtyEL

11Mbps OSCP 4clefr
Cal,OH

Figure 2: The Experiment Topology

SDSC SRB Server - The SDSC SRB team man-
ages a production SRB server (version 3.2.1) on
orion.sdsc.edu. orion is a high-end SUN Fire
15000 machine. It contains 36 900MHz SPARC III+ pro-
cessors, 144GB of memory, 6 Gigabit Ethernet interfaces
for data, 1 Gigabit Ethernet interface for control information
and 16 T9940B tape drives. The machine runs the Solaris 9
operating system.

Distributed ASCI Supercomputer 2 - DAS-2 [5] is a
wide-area distributed cluster designed by the Advanced
School for Computing and Imaging (ASCI) in the Nether-
lands. It consists of 200 Dual Pentium-Ill nodes. Each node
contains two IGHz Pentium-Ill processors, 1GB of RAM,
a 20 GB local IDE disk, a Myrinet interface card and an on-
board Fast Ethemet interface. Each compute node is con-
nected to the outside world by a 100Mbps link. The nodes
run the Red Hat Enterprise Linux operating system.

OSC Pentium 4 Xeon Cluster - The Ohio Supercom-
puter Center [2] Pentium 4 cluster is a distributed/shared
memory hybrid system. The cluster consists of 512, 2.4GHz
Intel Xeon processors. Each node has two 2.4GHz proces-
sors, 4 GB of memory, a 100Base-T Ethernet interface and
one Gigabit Ethemet interface. The nodes run the Red Hat
Enterprise Linux operating system.

NCSA TeraGrid cluster - The TeraGrid cluster at the
National Center for Supercomputing Applications (NCSA),
consists of 887 IBM cluster nodes. Each of the 256 Phase
I nodes contains dual 1.3 GHz Intel Itanium 2 processors
while the remaining 631 Phase 2 nodes contain dual 1.5
GHz Intel Itanium 2 processors each. The Phase 2 nodes
are equipped with 4GB of memory. Half of the Phase I
nodes contain 4GB of memory while the remaining nodes
are large-memory processors with 12GB of memory per
node. Each node is also equipped with a Gigabit Ether-
net interface. The cluster runs the SuSE Linux operating
system.

6 Benchmarks
We used two microbenchmarks and an application to

evaluate SEMPLAR. This section gives a brief description
of the benchmarks.

ROMIO perf - per f is a sample MPI-IO program in-
cluded in the ROMIO source code. It measures the read
and write performance of a filesystem. Each process con-
tains a data array which is written to a fixed location in
the file using MPIFile.write. The array is then read
back using MPIKFile.read. The location from which
a process reads and writes data in the file depends on its
rank. There are two variations to this benchmark. per f re-
ports I/O bandwidth measurements with and without mak-
ing calls to MPIYile-sync. The MPI2ile_sync call
is made before read operations and after write operations.
per f essentially provides an upper-bound on the MPI-IO
performance that can be expected from a filesystem [7].

NAS btio - The NAS Parallel Benchmarks (NPB) are a
small set of programs derived from computational fluid dy-
namics (CFD) applications. The NPB applications are de-
signed to evaluate the performance of parallel supercomput-
ers [1]. The btio benchmark is a variation of the bt appli-

369

t0 t5 2D 25

Number of Processors

(a) DAS-2

0 5 10 15 2D 25

Nwube of Processors

(c) OSC

9 450
4e:c 400

J:- 350.

3O 300
X 250

0 200
o iso

50

o l 9w-
0 5 10 15 20 25 X

Numberof Processo

(b) DAS-2 Local

300, a

9

- 25D.0

mtO

co
50

0 2 4 6 8 12 14 16 18

Nnberof Processors

(d) TG-NCSA

Figure 3: perf I/O Performance

cation from the NPB suite. The bt application solves sys-
tems of block-tridiagonal equations in parallel. The bt io
benchmark added several different methods of doing peri-
odic solution checkpointing in parallel, including Fortran
direct unformatted I1/0 and MPI-IO [7].

Ground Motion Simulation - Ground Motion Simula-
tions are used to model geological phenomena. Besides be-
ing compute-intensive, these simulations also produce large
datasets. We have used a basic version of the Dynamic Fault
Model (DFM) rupture dynamics simulation as one of our

benchmarks. This version does not contain the entire earth-
quake modeling code but the MPI-IO functions are the same
as the ones used in the full DFM simulation.
DFM models spontaneous fractures on a planar fault

within a 3D isotropic, viscoelastic solid [13]. The simula-
tion uses domain decomposition to achieve parallelization.
It performs I1/0 using the collective MPI-IO API.

7 Results
This section presents the I/O performance results for

perf, btio and the DFM benchmarks. We ran the bench-
marks on the DAS-2, NCSA TeraGrid and the OSC P4
Xeon clusters.

The SDSC SRB server (version 3.2.1) running on

orion.sdsc.edu was used to interface with the data
repository at SDSC. We have integrated our remote I1/0 li-
brary with mpich-1 . 2. 6. The MPI library uses TCP/IP
for communication between the nodes. We have also com-
pared SEMPLAR's I/O bandwidth with the available net-
work bandwidth between the individual clusters and the
SRB server 1. We measured the available network band-
width using Iper f and TTCP 2. Iper f enabled us to mea-
-.sure the network bandwidth using multiple, parallel TCP
streams. We were restricted to a single TCP stream with
TTCP. We used the default value of the TCP buffer size on
each cluster.

ROMIO perf - Figure 3(a) shows the SEMPLAR I/O

results for the per f benchmark on the DAS-2 cluster. The
compute nodes in DAS-2 are connected to the outside world
over a 100Mbps link. Each node reads and writes an array

of size 32MB to the remote SRB server. The perf bench-
mark achieves an aggregate read and write bandwidth of
68Mbps and 98Mbps respectively for 25 processors. These

'The network bandwidth measurements were conducted between the
clusters and another machine on the same LAN as the SRB server. This
was done because we did not have ssh access to the machine running the
SRB server.

2The Iperf binary is not available on the NCSA TeraGrid cluster.
We have used TTCP instead to measure the available network bandwidth
between NCSA and SDSC.

370

_; a

=6

m6 5
Is

20
.;

/~~~~
SEMPLARWrie
LOCalWre

90

2Z80-
n 70-

2 0

m1 30-

g: 20

10

* ssEMPARRead
* SEDARWWie
- STCP

10 20 30

Nunoberf Processors

500

X 450

0 350

3000

S Z 250
o 1SO-
-D 100-

50_

o4

0 s

* SESULRWiib
* Lo=Wrile

_ A lozf

10 20 30

Number of Processors

(b) OSC(a) DAS-2

0
6000-

'a 400

m
0 200

100

2 4 6 8 lo 12 14

Numberof Processors

(c) TG-NCSA

Figure 4: bt io Class C Write Performance

numbers are encouraging considering the high average net-
work latency (- 182ms) between the DAS-2 cluster and the
SDSC SRB server. The aggregate write bandwidth ofper f
is 20 times the available network bandwidth between the in-
dividual DAS-2 nodes and the SRB server (5Mbps). Simi-
larly, the aggregate read bandwidth is 14 times the available
network bandwidth. These numbers put into perspective the
significant performance potential of SEMPLAR. It is also
interesting to note that SEMPLAR's aggregate, remote I/O
bandwidth scales with the number of processors.

Figure 3(b) compares the local I/O performance ofper f
with remote I/O over wide area networks. We configured
perf to write to the local filesystem for this experiment.
As expected, the local I/O results are better than the re-

mote 110 results. The maximum SEMPLAR I/O bandwidth
(98Mbps) is about 6 times smaller than the maximum local
I/O bandwidth (584Mbps).
We ran the per f benchmark on the OSC P4 Xeon clus-

ter to evaluate the performance of SEMPLAR in a high-
bandwidth, low-latency environment. Each node in the
P4 cluster is equipped with a Gigabit Ethernet interface.
The average network latency between OSC and SDSC is
around 31ms. Figure 3(c) shows the SEMPLAR 1/0 per-

formance on the OSC P4 cluster. The I/O bandwidth in-
creases with the number of processors till the curves flatten
around 25 processors. The network is almost completely
saturated at this point and increasing the number of proces-
sors does not increase the I/O bandwidth. The maximum
per f write bandwidth (76Mbps) is 7 times the average ob-
served network bandwidth (11 Mbps). The maximum perf
read bandwidth (83Mbps) is 7.5 times the average observed
network bandwidth at each node.

The average SEMPLAR I/O bandwidth observed on the
OSC P4 cluster (80Mbps) is less than the average 110 band-
width observed on the DAS-2 cluster (83Mbps). The reason

why per f reports low I/O bandwidth on the OSC cluster is
that the individual cluster nodes do not have a public IP ad-
dress. The nodes are connected to the outside world via a

Network Address Translation (NAT) host. As the numberof
processors increase, the NAT host becomes the bottleneck.

Figure 3(d) shows the performance of the perf bench-
mark on the NCSA TeraGrid cluster. perf achieves
an aggregate read and write bandwidth of 291Mbps and
139Mbps respectively for 18 processors. The maximum
perf write bandwidth is 6 times the average observed
network bandwidth (46Mbps). The maximum perf read
bandwidth is 3 times the average observed network band-
width at each node. These results are significantly better
than the other two clusters because of the relatively low la-
tency (-30ms) and high-bandwidth between the TeraGrid
cluster and the SRB server.

NAS btio The NAS btio data access pattern is non-
contiguous and is therefore difficult to handle efficiently
with the traditional POSIX 1/0 interface. We used the full
version of btio in our experiments. Thefull version of this
benchmark uses collective I/O calls to perform the I/O. The
collective I/O functions merge the data accesses of differ-
ent processes and make large, well-formed V/O requests to
the filesystem [1 1]. We used the bt io Class C benchmark
to measure the write performance ofSEMPLAR. The Class
C benchmark uses a 162x162x162 element array. It writes
about 6.7GB of data to the filesystem.

Figure 4 shows the btio performance results for the
DAS-2, OSC P4 and the NCSA TeraGrid cluster. We see

a marked increase in the aggregate SEMPLAR 1/0 band-
width with the increase in the number of processors. The
SEMPLAR 1/0 bandwidth peaks at 56Mbps for 49 proces-

sors on the DAS-2 cluster. This is 11 times the available
network bandwidth at each node (5Mbps). The btio curve

for the local ext 3 filesystem peaks at 240Mbps for 25 pro-

cessors. The local I/O bandwidth decreases with the subse-
quent increase in the number of processors suggesting the
saturation of the local disk bandwidth.

The btio benchmark on the OSC P4 cluster achieves
a peak I/O bandwidth of 70Mbps for the SRB filesystem.

371

,0 230
B

3

00

M50

m
o

* SEMPtARWrk
* Local W50
AW*

p

1-4

* SB0MPARWrki
a LocaW00
- TTCP

A * A

-0. 4;l
40 16 18 A40

350 __

* SEMPLAR00iO
loo a LOWWi

50 A LcejW" + ST

A _ . -- 4
0 2 3 4 5 6 9 5 11

Nw Processos

(b) OSC

Figure 5: DFM Performance

This is 6.3 times the available network bandwidth at each
node (11 Mbps). Since the individual compute nodes do not
have a public IP address, the NAT host is once again the
bottleneck for the OSC P4 cluster. The V/O performance of
SEMPLAR on the NCSA TeraGrid cluster is significantly
better than the other two clusters. This is mostly due to
the fact that the TeraGrid cluster is connected to a high-
bandwidth (40Gbps) backbone. btio attains an aggregate
write bandwidth of 74Mbps with 16 processors, achiev-
ing about 1.6 times the the available network bandwidth
(46Mbps) at each compute node.

The results for the btio benchmark show that SEM-
PLAR consistently provides applications with high I/O

bandwidth across different network topologies. The I/O
bandwidth also scales with the number of processors due
to the parallelism incorporated in the design of SEMPLAR.

Dynamic Fault Model - We have used DFM as an exam-

ple of a real-world scientific application. We ran the simu-
lation on the SRB as well as the local filesystem. The DFM
simulation used a model size of 141x221x221 nodes inte-
grated over 10 time steps. During the first run, DFM was

configured to write its dataset to the remote SRB filesystem.
In the second run, we configured DFM to write to the local
filesystem. We noted the total execution time of the sim-
ulation in both the cases. We also noted the time required
to manually transfer DFM's dataset to a remote repository
after having stored it in the local filesystem.

Figure 5 shows the execution time ofDFM on the DAS-
2, OSC P4 and the NCSA TeraGrid cluster. DFM's average

execution time (660s) on the DAS-2 cluster for the SRB
filesystem was about one order of magnitude more than on

the local filesystem (13s). We also noticed a marked re-

duction in DFM's execution time with the increase in the
number of processors for the SRB filesystem. This can be
attributed to the higher data throughput resulting from mul-
tiple, parallel TCP streams. DFM took the longest (973s)
when data was written to the local filesystem and then man-

ually transferred to the remote SRB repository. The appli-
cation execution time was 47% more than in the case when
data was written to the SRB filesystem directly.
We observed similar results on the OSC P4 cluster.

DFM's average execution time (237s) on the SRB filesys-
tem was about one order of magnitude more than on the
local filesystem (I ls). However, the application execution
time when data was written to the SRB filesystem directly
was 46% less than the time taken when data was written
to the local filesystem and then manually transferred to
the remote SRB repository. The average execution time of
DFM for the SRB filesystem on the NCSA TeraGrid cluster
(222s) was 39% less than the time taken for its execution
on the local filesystem followed by staging the data to the
remote SRB repository.

8 Conclusions and Future Work

High-performance computing applications increasingly
need to access large datasets which are of the order of ter-
abytes and petabytes. These datasets are usually stored in
remote data repositories. One of the challenges in high-
performance computing is to provide users with reliable,
remote data and metadata access in a distributed, hetero-
geneous environment.
We have designed a high-performance, remote I/O li-

brary that provides parallel applications with high I/O band-
width over wide area networks. Our library is based on the
SDSC Storage Resource Broker (SRB). SRB is a middle-
ware that provides applications with a uniform interface to
distributed and heterogeneous storage resources. We have
leveraged the high aggregate network bandwidth resulting
from multiple, parallel TCP streams with the data ubiq-
uity provided by SRB to develop a remote, scalable, high-
performance V/O library.
We evaluated our library using two microbenchmarks

and an application. On the NCSA TeraGrid cluster,
the ROMIO perf benchmark attained an aggregate read

372

E
ceo tLeii

130110

cleo ALeW\3700 \
SDO~~~~~~~~~~~~~S

200* LoalSWde + ST
i00

.. _. _.,. .

0510 1s5 25 3D 36

E

Neesb of Processors

40

2DE 1zoe

100

50-

0

(a) DAS-2

6A A A A

o 2 3 4 s 6 7 8 9 lo 11

Nwus of Processors

(c) TG-NCSA

* SEMPLARtWde
* LocalWde
A Locai Wie. ST

=-.. m

j

bandwidth of 291Mbps with 18 processors. The NAS
btio benchmark achieved an aggregate write bandwidth
of 74Mbps with 16 processors. The bandwidth observed by
these benchmarks scaled with the number of processors.

In the future, we plan to work on client-side data caching
to improve SRB's available data bandwidth. We would also
like to quantitatively analyze the performance offered by
asynchronous parallel 1/0 on the SRB filesystem.

9 Acknowledgments
We wish to thank Reagan Moore, Marcio Faerman and

Arcot Rajasekar of the Data Intensive Group (DICE) at the
San Diego Supercomputer Center for giving us access to
the SRB source. We would also like to thank Geoffrey Ely,
UCSD for providing us with parts of the DFM source code.
We are especially indebted to Henri Bal of Vrije Univer-
siteit, Amsterdam for giving us access to the DAS-2 cluster.
We also wish to thank Rob Pennington and Ruth Aydt at the
National Center for Supercomputing Applications (NCSA)
for allowing us to use the NCSA TeraGrid cluster for our
experiments.

References

[1] NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB.

[2] Ohio Supercomputer Center. http://www.osc.edu.
[3] ROMIO: A High-Performance, Portable MPI-IO Implemen-

tation. http://www.mcs.anl.govlromio.
[4] SDSC Storage Resource Broker. http://www.sdsc.edu/srb.
[5] The Distributed ASCI Supercomputer 2.

http:Hlwww.cs.vu.nlldas2.
[6] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Fos-

ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel,
and S. Tuecke. Data Management and Transfer in High-
Performance Computational Grid Environments. Paralel
Computing, 28(5):749-771, 2002.

[7] T. Baer. Parallel I/O Experiences on an SGI 750 Cluster.
http://www.osc.edu/-troy/cug2002.

[8] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC
Storage Resource Broker. In Proceedings of the 1998 Con-
ference of the Centre for Advanced Studies on Collaborative
Research, Toronto, Canada, 1998.

[9] K. Bell, A. Chien, and M. Lauria. A High-Performance Clus-
ter Storage Server. In Proceedings ofthe 11th IEEE Interna-
tional Symposium on High Performance Distributed Comput-
ing, pages 311-320, 2002.

[10] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke.
GASS: A Data Movement and Access Service for Wide Area
Computing Systems. In Proceedings of the Sixth Workshop
on I/O in Parallel and Distributed Systems, pages 78-88,
May 1999.

[11] P. H. Cams, W. B. Ligon III, R. B. Ross, and R. Thakur.
PVFS: A Parallel File System for Linux Clusters. In Pro-
ceedings ofthe 4th Annual Linuix Showcase and Conference,
pages 317-327, 2000.

[12] D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An Anal-
ysis of TCP Processing Overhead. IEEE Communications,
27(6):23-29, 1989.

[13] G. Ely, Q. Xin, M. Faerman, G. Kremenek, B. Shkoller,
S. Day, K. Olsen, B. Minster, and R. Moore. Data Han-
dling of a High Resolution Ground Motion Simulation.
http://epicenter.usc.edu/cmeportal/docs/
RDMDescription.pdf.

[14] M. P. I. Forum. MPI-2: Extensions to the Message-Passing
Interface. http://www.mpi-forum.org/docs/docs.html, 1997.

[15] I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. The International Journal of Suiper-
computer Applications and High Performance Computing,
11(2):115-128, 1997.

[16] I. Foster, D. Kohr, Jr., R. Krishnaiyer, and J. Mogill. Remote
11O: Fast Access to Distant Storage. In Proceedings of the
Fifth Workshop on Input/Output in Parallel and Distributed
Systems, pages 14-25, San Jose, CA, 1997.

[17] J. Lee, D. Gunter, B. Tierney, B. Allcock, J. Bester, J. Bres-
nahan, and S. Tuecke. Applied Techniques for High Band-
width Data Transfers Across Wide Area Networks. In Pro-
ceedings ofInternational Conference on Computing in High
Energy and Nuclear Physics, Beijing, China, September
2001.

[18] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A
Hunter of Idle Workstations. In Proceedings of the 8th In-
ternational Conference of Distributed Computing Systems,
pages 104-111, June 1988.

[19] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H.
Howard, D. S. Rosenthal, and F. D. Smith. Andrew: A Dis-
tributed Personal Computing Environment. Communications
of the ACM, 29(3):184-201, 1986.

[20] E. Nallipogu, F. Ozguner, and M. Lauria. Improving the
Throughput of Remote Storage Access through Pipelining.
In Proceedings of the Third International Workshop on Grid
Computing, pages 305-316, 2002.

[21] L. Qiu, Y. Zhang, and S. Keshav. On Individual and Aggre-
gate TCP Performance. In Proceedings ofthe Seventh Annual
International Conference on Network Protocols, pages 203-
212, 1999.

[22] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and Implementation of the Sun Network
Filesystem. In Proceedings of the USENIX 1985 Summer
Technical Conference, pages 119-130, Portland OR, 1985.

[23] R. Thakur, W. Gropp, and E. Lusk. An Abstract-Device In-
terface for Implementing Portable Parallel-1/O Interfaces. In
Proceedings ofthe Sixth Symposium on the Frontiers ofMas-
sively Parallel Computation, pages 180-187, 1996.

[24] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-
10 Portably and with High Performance. In Proceedings
of the Sixth Workshop on Input/Output in Parallel and Dis-
tributed Systems, pages 23-32, 1999.

373

