

Reducing the Requirement in FEC Codes via Capillary Routing

Emin Gabrielyan
Switzernet Sàrl and EPFL

Lausanne, Switzerland
emin.gabrielyan@switzernet.com

Roger D. Hersch
École Polytechnique Fédérale de
Lausanne (EPFL), Switzerland

rd.hersch@epfl.ch

Abstract

In off-line packetized streaming, rateless Forward
Error Correction (FEC) codes spectacularly improve
the reliability of transmission over lossy networks. This
success relies on time diversity, which in its turn relies
on unrestricted buffering time at the receiver. In real-
time streaming the playback buffering time is very
limited (shorter than one second) and even strong FEC
codes cannot protect single path communication
against failures lasting longer than the buffering time
at the receiver. Path diversity is a strategy that is
orthogonal to time diversity and can make FEC
applicable also in case of limited buffering time of
real-time streaming. In this paper we introduce
capillary routing algorithm offering layer by layer a
wide range of multi-path routing topologies of
increasing path diversity. We introduce Redundancy
Overall Requirement (ROR), which for a given multi-
path routing is the coefficient of the total number of
redundant FEC packets to be transmitted by the sender
for protecting the communication against non-
simultaneous link failures. A dozen of capillary routing
layers, built on several hundreds of network samples
obtained from a random walk wireless Mobile Ad-Hoc
Network (MANET), are rated with ROR. We show that
flow diversity patterns built by capillary routing
algorithm reduce substantially the amount of FEC
codes required for protection of communication.

1. Introduction

Erasure resilient FEC codes achieve high reliability
in off-line streaming in most challenging network
conditions [1], [2], [3], [4]. Third Generation
Partnership Project (3GPP), recently adopted Raptor
[1] as a mandatory code in Multimedia
Broadcast/Multicast Service (MBMS), for its
significant performance in file transfer.

The above examples of off-line streaming can
significantly benefit from FEC due to the fact that in

contrary to real-time streaming, the receiver is not
obliged to deliver in time the “fresh” packets to the
user and long buffering is not a concern. When
buffering time is restricted, FEC can only mitigate
short granular failures. Many studies reported weak or
negligible improvements from applications of FEC to
real-time streaming. In [5] it has been shown
improvements from the application of FEC only if the
stochastic packet losses range is between 1% and 5%.
For real-time packetized streaming the author of [6]
proposed to combine FEC with retransmissions. In [7]
a high overhead has been reported from the use of FEC
during bursts. The author of [8] claims that for delay-
sensitive real-time communications, the application of
FEC on the packet level can not give any valuable
results at all.

In real time streaming packets representing the
same information cannot be collected at very remote
periods of time. However, there is an emerging body of
a literature showing the applicability of FEC in real-
time streaming with path diversity. Studies stressing
the poor FEC efficiency assumed that the media stream
follows a single path. Author of [9] shows that strong
FEC improves video communication following two
disjoint paths and that in two correlated paths weak
FEC is still advantageous. Authors of [10], [11] and
[12] studied the path diversity in MANET. Authors of
[13] and [14] studied video streaming from multiple
servers. The same author [15] later studied real-time
streaming over two paths using a static Reed-Solomon
RS(30,23) code (blocks carrying 23 source packets and
7 redundant packets). However the path diversity in
these studies is limited to either two (possibly
correlated) paths or in the best case to a sequence of
parallel and serial links. Various routing topologies, so
far, were not regarded as a ground for searching a FEC
effective pattern.

In this paper we try to present a comparative study
for various multi-path routing patterns. Single path
routing, being considered as too hostile, is excluded
from our comparisons. Steadily diversifying routing
patters are built by capillary routing algorithm where

the routing suggestions are proposed layer by layer
(sections 3 and 4).

In order to compare multi-path routing patterns, we
introduce Redundancy Overall Requirement (ROR), a
routing coefficient relying on the sender’s transmission
rate increases in response to individual link failures. By
default, the sender is streaming the media with a static
amount of FEC codes in order to tolerate a certain
packet loss rate. The packet loss rate is measured at the
receiver and is constantly reported back to the sender
e.g. with Real-time Transport Control Protocol
(RTCP). The sender increases the FEC overhead
whenever the packet loss rate is about to exceed the
tolerable limit. This end-to-end adaptive FEC
mechanism is implemented entirely on the end nodes,
at the application level, and is not aware of the
underlying routing scheme [16], [17], [5], [6] and [7].
The overall number of transmitted adaptive redundant
packets for protecting the communication against link
failures is proportional (1) to the usual packet
transmission rate of the sender, (2) to the duration of
the communication, (3) to the single link failure rate,
(4) to the single link failure duration and (5) to the
ROR coefficient of the routing followed by the
communication flow. The novelty brought by ROR is
that a routing topology of any complexity can be rated
by a single scalar value (section 2).

In section 5, we present ROR coefficients of
different routing layers built by capillary routing
algorithm. Network samples are obtained from a
wireless random walk Mobile Ad-hoc Network
(MANET) with several hundreds of nodes. Path
diversity increase achieved by capillary routing
algorithm reduces substantially the amount of FEC
codes required from the sender.

2. Redundancy Overall Requirement

We propose to combine the little static tolerance of
the media stream, combating weak failures, with a
dynamically added adaptive FEC combating the strong
failures exceeding the tolerable packet loss rate.

For a given routing scheme, ROR is defined as the
sum of all transmission rate overheads required from
the sender for combating correspondingly all non-
simultaneous link failures. For example, if the
communication footprint consists of five links, and in
response to each individual link failure the sender
increases the packet transmission rate by 25%, then
ROR will be equal to the sum of these five FEC
transmission rate increases, i.e. 25.1%255 =⋅=ROR .
If P is the usual packet transmission rate and lP is the
increased rate of the sender, responding to the failure
of a link Ll∈ , where L is the set of all links, then:

∑
∈

⎟
⎠
⎞

⎜
⎝
⎛ −=

Ll

l

P
PROR 1 (1)

Let us consider a long communication, and let D be
the total failure time of a single network link during the
whole duration of the communication. D is the product
of the average duration of a single link failure, the
frequency of a single link failure and the total
communication time. According to equation (1):

RORPD ⋅⋅ ∑
∈

⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅=

Ll

l

P
PPD 1 (2)

()∑
∈

⋅−⋅=
Ll

l PDPD (3)

Assuming a single link failure at a time and a
uniform probability and duration of link failures,
according to equation (3), RORPD ⋅⋅ is the number of
adaptive redundant packets that the sender actually
needs to transmit in order to compensate for all
network failures occurring during the total
communication time. Therefore ROR is a routing
coefficient of the overall amount of required
redundancy.

Redundant packets are injected into the original
media stream for every block of M source packets
using systematic erasure resilient codes. During
streaming, M is supposed to stay constant. However,
the number of redundant packets for each block of M
media packets is variable, depending on the conditions
of the erasure channel. The M source packets with their
related redundant packets form a FEC block. Let us
denote by pFEC the FEC block size chosen by the
sender in response to a packet loss rate p. We assume
that by default the media is streamed in FEC blocks of
length of tFEC such that the flow has a static
tolerance to losses 10 <≤ t . When the loss rate p
measured at the receiver is about to exceed the
tolerable limit t, the sender increases its transmission
rate by injecting additional redundant packets.

The random packet loss rate, observed at the
receiver during the failure time of a link in the
communication path, is the portion of the traffic being
still routed toward the faulty link. Thus a complete
failure of a link l carrying according to the routing
pattern a relative traffic load of 1)(0 ≤≤ lr will
produce at the receiver a packet loss rate equal to the
same relative traffic load)(lr .

Equation (1) for ROR can thus be re-written as
follows:

=ROR ∑
<≤∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1)(|

)(1
lrtLl t

lr

FEC
FEC

a sum over all links carrying a flow
exceeding the tolerable loss limit

(4)

The links carrying the entire traffic are skipped in
the sum index of equation (4), since the FEC required
for the compensation of failures of such links is
infinite. By construction (sections 3 and 4) none of the
considered multi-path routing schemes passes its entire
traffic through a non-critical single link.

We compute the pFEC function assuming a
Maximum Distance Separable (MDS) code [18], [19].
With MDS code we can successfully decode the M
source packets if we receive any M packets of the
transmission FEC block.

In order to collect a mean of M packets at the
receiver under random loss rate p,)1/(pM − packets
must be transmitted at the sender. However the
probability of receiving 1−M packets or 2−M
packets (which makes the decoding impossible)
remains high. In order to maintain a very low
probability δ of receiving less than M packets, we
must send much more redundant packets in the block
than is necessary to receive an average of M packets at
the receiver side. We must fix the acceptable Decoding
Error Rate (DER), such that DER≤δ , in order to
compute the MFECp ≥ function.

The probability of having exactly n losses
(erasures) in a block of N packets with a random loss
probability p is computed according to the binomial
distribution:

nNn qp
n
N −⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ , where
)!(!

!
nNn

N
n
N

−⋅
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ and pq −=1

The probability of having 1+−MN or more
losses, i.e. the decoding failure probability, is
computed as follows:

∑
+−=

−⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

MNn

nNn qp
n
N

1
δ (5)

Therefore for computing the carrier block’s
minimal length for a satisfactory communication, it is
sufficient to steadily increase the block length N until
the desired decoding error rate (DER) is met.

Transmission rate increase factors (MFEC p /) for

M from 1 to 10 are plotted in Fig. 1 (for 510−=DER).
The MFEC p / functions of Fig. 1 are compared with
the lowest theoretically possible transmission rate
increase factor)1/(1 p− . The higher the number of
media packets in the block the closer the transmission
rate increase can approach the lowest theoretical limit.

0
1
2
3
4
5
6
7
8
9

10
11
12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
packet loss rate (p)

tra
ns

m
is

si
on

 ra
te

 in
cr

ea
se

 fa
ct

or

FEC(p)/M 1/(1-p)

 M = 1, 2, 3, 4, 5 … 10

Fig. 1. Transmission rate increase factor as a function from the
packet loss rate (510−=DER)

By default, the playback buffer at the receiving side
of the media application is designed to compensate for
the network jitter and to reorder packets arriving in the
wrong order. For streaming with redundant packets, the
receiver must also hold in the playback buffer enough
packets to restore the recoverable losses. The larger the
number of media packets M in the FEC block, the
smaller the cost of FEC overhead is, but the longer the
buffering time at the receiver must be. In VOIP, for
example, with a 20 ms sampling rate (of g729r8 or
AMR codec) the number of media packets M in a
single FEC block must not exceed 20 – 25 packets.

The next two sections present capillary routing
construction algorithms. Section 5 presents ROR
ratings of the routing layers built by capillary routing
algorithm.

3. Capillary Routing

Capillary routing may be implemented by an
iterative Linear Programming (LP) process
transforming a single-path flow into a capillary route.
First minimize the maximal value of the load of links
by minimizing an upper bound value applied to all
links. The full mass of the flow will be split equally
across the available parallel routes. Find the bottleneck
links of the first layer (see section 4). By maintaining
the first upper bound (applied to all links) on its
minimal level, minimize the maximal load of the
remaining links by minimizing a new upper bound
value applied to all links except the bottleneck links of
the first layer. This second iteration discovers the sub-
routes and the sub-bottlenecks of the second layer.
Continue by minimizing the maximal load of the
remaining links, now also without the bottlenecks of
the second layer (maintaining the first and the second
upper bounds at their lowest level). Repeat the iteration
until the entire communication footprint of the flow is

discovered. A flow traversing a large dense network
with hundreds of nodes may have hundreds of capillary
routing layers.

Fig. 2, Fig. 3 and Fig. 4 show three layers of the
capillary routing on a small network example. The top
node on the diagrams is the sender and the bottom
node is the receiver. All links are oriented from top to
bottom.

Fig. 2. In the first
layer the flow is
equally split across
two paths, two links
of which, marked by
thick dashes, are the
bottlenecks.

Fig. 3. The second
layer minimizes to
1/3 the maximal load
of the remaining
seven links and
identifies three
bottlenecks.

Fig. 4. The third layer
minimizes to 1/4 the
maximal load of the
remaining four links
and identifies two
bottlenecks.

Although the described LP process is completely
valid, it is numerically instable, the precision errors,
propagating through the layers of capillary routing,
reach noticeable sizes and, when dealing with tiny
loads, result in infeasible LP problems. We have found
a different, stable LP method maintaining the values of
parameters and variables always in the same scale.

Instead of decreasing the maximal value of loads of
the links, the routing path is discovered by solving max
flow problems defined by the flow-out coefficients at
each node. Initially only the peer nodes have non-zero
flow-out coefficients: +1 for the source and –1 for the
sink (Fig. 5 and Fig. 6). At each subsequent layer (Fig.
7 to Fig. 10) we have a bounded multi-source/multi-
sink problem: a uniform flow from a set of sources to a
set of sinks, where all rates of transmissions by sources
and all rates of receptions by sinks increase
proportionally in respect to each node’s flow-out
coefficient (either positive or negative). The multi-
source/multi-sink problems arise, since the LP problem
at each successive layer is obtained by complete
removal of the bottlenecks from the previous LP
problem, adjusting correspondingly the flow-out
coefficients of the adjacent nodes (to respect the flow
conservation rule) and thus possibly producing new
sources and sinks in the network. Except for the
unicast problem of the first layer, the successive layer
problems do not belong in general to the simple class
of “network linear programs” [20].

Fig. 5. Initial
problem with one
source and one sink
node

Fig. 6. Maximize the
flow, fix the new
flow-out coefficients
at the nodes and find
the bottleneck links
(layer 1, 21 =F)

Fig. 7. Remove the
bottleneck links from
the network and adjust
the flow-out
coefficients at the
adjacent nodes

Fig. 8. Maximize the
flow in the new sub-
problem, fix the new
flow-out coefficients
at the nodes and find
the new bottlenecks
(layer 2, 5.12 =F)

Fig. 9. Again
remove the
bottleneck links
from the network
and adjust
correspondingly the
flow-out coefficients
at the adjacent nodes

Fig. 10. Maximize the
flow in the obtained
new problem fixing the
new resulting flow-out
coefficients at the
nodes and find the new
bottlenecks (layer 3,

3/43 =F)

 We define the bounded multi-source/multi-sink
problem at layer l by the sets of nodes and links and by
the flow-out coefficients for sources and sinks (all
indexed with an upper index l) as follows:

- set of nodes lN ,
- set of links lLji ∈),(, where lNi∈ and lNj ∈ ,
- and flow-out coefficients l

if for all lNi∈
- at layer l the max-flow solution yields the flow

increase factor lF and the set of bottlenecks lB ,
where ll LB ⊂
Then, the equations for computing the sets 1+lN ,

1+lL and the flow-out coefficients 1+lf of the next
layer are as follows:

- ll NN =+1 (6)
- lll BLL −=+1 (7)
- ll

j
l
j Fff ⋅=+1

)1(

),(
∑
∈

++
lBji

add 1 for each
incoming bottleneck

link (i, j)

∑
∈

−+
lBkj),(

)1(

subtract 1 for each
outgoing bottleneck

link (j, k)

(8)

+2

–4/3

+2/3

–4/3

+1.5

–1

+0.5

–1

+1.5

–3

+1.5

+1

–2

+1

+2

–2

+1

–1

3
13

1

6
1

2
12

1

3
1

3
1

6
1

2
1

12
1

6
14

1

3
1

2
1

4
1

3
1

3
1

2
1

2
1

2
1

2
1

2
1

After a certain number of applications of the max-
flow objective with corresponding modifications of the
problem, we will finally obtain a network having no
source and sink nodes. At this moment the iteration
stops. All links followed by the flow in the capillary
routing are enclosed in bottlenecks of one of the layers.

In order to restore the original proportions of the
flow, the flow increases, induced by the preceding
max-flow solutions must all be compensated. The true
value of flow jir , traversing the bottleneck link

lBji ∈),(of layer l is the initial single unit of flow
divided by the product of the flow increase factors iF
(where li ≤≤1) of the present and all preceding
layers:

∏
=

= l

i

i
ji

F
r

1

,
1 where l is the

layer for which
lBji ∈),(

(9)

The max-flow approach proves to be very stable,
because it maintains all values of variables and
parameters within a close range of unity (even for very
deep layers with tiny loads) and also because it enables
to validate and if necessary re-calibrate all possible
errors in the flow-out coefficients of the LP problem
formulated for the next layer of capillary routing.

In the next section we show how to identify
bottlenecks after the max-flow solution of the capillary
routing layer is found.

4. Bottleneck hunting loop

Bottlenecks of each max-flow solution are
discovered in a bottleneck hunting loop. Each iteration
of the hunting loop is an LP cost minimizing problem
that reduces the load of the traffic over all links having
maximal load and being suspected as bottlenecks. Only
links maintaining their load at the initial maximal level
will be passed to the next iteration of the hunting loop.
Links whose load has been reduced under the LP
objective are not bottlenecks and removed from the list
of candidates. The bottleneck hunting iteration stops if
there are no more links to remove.

Let us show the bottleneck hunting on the example
of Fig. 11 with three transmitting nodes and two
receiving nodes. The flow can be proportionally
increased at most by a factor of 4/3, such that each
flow-out coefficient at sources become equal to 4/3 and
each flow-in coefficient at sinks become equal to 2−
(see Fig. 12). The bottleneck links are among four
maximally loaded suspected links {a, b, d, e}, marked
in Fig. 12 by thick dashes.

Fig. 11. An example of a
bounded multi-source/multi-
sink problem (obtained during
construction of the capillary
routing from a network with one
source and one destination
nodes)

Fig. 12. A max-flow solution with
the flow increase factor of 4/3,
containing four maximally loaded
candidate links {a, b, d, e}

An LP cost-minimizing objective can reduce the
sum of loads of all four suspected links from the initial
value of 4 (see Fig. 12) to the minimal value of 3 (see
Fig. 13). In this min-cost solution previously suspected
link d does not maintain anymore its load on the
maximum and thus there left only three suspected links
{a, b, e}, marked in Fig. 13 by thick dashes.

Fig. 13. Cost reduction applied to
four fully loaded links of Fig. 12
reduces the load of suspected link
d, and the suspect list is now {a,
b, e}.

Fig. 14. Cost reduction applied to
the three fully loaded links of Fig.
13 reduces the load of another
suspected link a, and the true
bottleneck links are {b, e}.

The sum of loads of now three suspected links can
be further reduced from the value of 3 (see Fig. 13) to a
minimal value of 2 (see Fig. 14). Now there are only
two links {b, e} maintaining their loads at the maximal
value, marked in Fig. 14 by thick dashes. These two
remaining links are the true bottleneck links, since
additional applications of the LP cost minimizing
objective does not result in any further reduction of the
sum of loads.

In this example the two bottlenecks were found in
two iterations; for larger networks with hundreds of
nodes the bottleneck hunting of each capillary routing
layer can take dozens of iterations.

For capillary routing patterns, built simultaneously
on 200 unbounded networks samples with 300 nodes in
each (total 60,000 nodes and 511,140 links), Fig. 15
shows the decrease of the number of suspected links
during the bottleneck hunting loop of each capillary
routing layer. Depending on the layer of the capillary
routing (1 to 10), the bottleneck hunting loop takes 14
to 23 iterations.

4/3 4/3

–2 –2

4/3
1/3 2/3

a
b

e c
d

4/34/3 4/3

–2 –2

2/3 1/3

a
b

e c
d

4/3 4/3

–2 –2

4/3
2/32/3

a
b

c
d

e

+1

–1.5

+1 +1

–1.5

1

10

100

1000

la
ye

r1
la

ye
r2

la
ye

r3

la
ye

r4

la
ye

r5

la
ye

r6

la
ye

r7

la
ye

r8

la
ye

r9

la
ye

r1
0

Iterations of the hunting loop (from 14 to 23) for the layers
of the capillary routing (from 1 to 10)

av
er

ag
e

nu
m

be
r o

f s
us

pe
ct

ed
 li

nk
s

Fig. 15. Decrease of the number of suspected links during the
bottleneck hunting loop of each of 10 capillary routing layers

Each iteration of the bottleneck hunting loop
removes from the suspect list numerous non-bottleneck
links. At the end of each hunting loop the suspect list
consists of only true bottleneck links. The average
number of true bottleneck links at each layer is
between 5.9 and 9.9.

5. FEC requirement in capillary routing

We compute the average ROR coefficient
simultaneously over several networks for capillary
routing layers 1 to 10. In Fig. 16, we considered eight
different sets of samples, each containing 25 distinct
networks. At the same time we consider also media
streaming at different default intensities of the static
FEC codes tolerating respectively packet loss rates
from 3.3% to 7.5%. For each set of samples and for
each static FEC intensity we show how the average
ROR coefficient changes as the capillary routing layer
increases.

0
5

10
15
20
25
30
35
40
45
50
55
60

capillary layers 1 to 10 for each network sample set

A
ve

ra
ge

 R
O

R
 ra

tin
g

3.3%

3.9%
4.5%
5.1%

7.5%
…

layers: |1…10 |1…10 |1…10 |1…10 |1…10 |1…10 |1…10 |1…10

Set2 Set3 Set4 Set5 Set6 Set7 Set8Set1

Fig. 16. Average ROR as a function of the capillary routing layer
(the static tolerance of the stream from 3.3%, for the upper curves, to
7.5%, for the lower curves, by a step of 0.6%)

The drawback of path diversity is that long paths
can be formed increasing unjustifiably the number of
links in the path, consecutively the overall failure rate,
and finally the overall requirement in FEC codes. Our
measurements show that despite the communication
footprint becomes larger, with the routing patters built
by capillary routing algorithm, the requirement in
redundant packets decreases noticeably most of the
time.

Logically, the ROR curve of the media stream is
shifted down as the statically added tolerance
increases. At the same time the presence of a higher
static tolerance yields a much stronger efficiency gain
achieved by the deeper routing layers.

Although there are hundreds layers in the complete
capillary routing, the first few layers alone reduce the
average FEC effort of the sender by a factor of four.
According to the chart, streams tolerating a 6% or
higher packet loss rate almost do not gain from
spreading beyond layer 8.

The exact pattern of the ROR improvement curve,
as a function of the layer, depends on the distance
between the peers, the network size and its density.
The network samples for the above chart are drawn
from a random walk wireless Mobile Ad-hoc Network
(MANET). Initially the nodes are randomly distributed
on a rectangular area, and then, at every timeframe,
they move according to a random walk algorithm. If
two nodes are close enough (and are within the
coverage range) then there is a link between them. In
the above example, there are 300 nodes and 200 time-
frames, each leading to a separate network sample (all
of which are distributed into eight sets represented on
the above chart).

The ROR rating of routing samples is computed by
equation (4), where the FEC block size (as function of
the packet loss rate p) is computed according equation
(5). The number of media packets (M) per transmission
block is 20 and the desired decoding failure rate (DER)
is 510− .

6. Path diversity for off-line streaming

In off-line applications the number of source
packets M per transmission block can be very large. In
file transfers for example, M can be the number of all
packets in the entire file, or in one-way video, the
buffering time can be a few minutes long, with
thousands of media packets within each single FEC
block. When the number of packets in the transmission
block is very large, for a given probability p of packet
losses, the proportion of actually received packets
remains very close to p−1 . Although for very large
numbers of source packets MDS codes do not exist,

several other capacity approaching codes, such as
erasure resilient fountain codes [21] can practically
reach the theoretical limit. A packet loss rate p can be
thus compensated by an increase of the encoded stream
transmission rate by the lowest possible theoretical
factor of)1/(1 p− .

Path diversity can be required in off-line streaming
applications or in long downloads for avoiding the idle
times of the last kilometer bottleneck occurring during
arbitrary failures within the lossy Internet. Thanks to
the sender’s adaptive transmission rate and to multi-
path routing, one may feed the last kilometer
bottleneck link constantly at its maximal bandwidth
(see [13] and [14] for video streaming from multiple
servers). Since the buffering is not a concern the
application may use a capacity approaching fountain
code, such that each individual network failure causing
a packet loss rate p can be compensated by an increase
of the transmission rate only by a theoretical factor of

)1/(1 p− . It depends now on the choice of multi-path
routing pattern how much the overall amount of FEC
codes required from the sender will be. The ROR
coefficient of the routing pattern can be computed with
the following equation derived from equation (4):

∑
<≤∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=
1)(|

1
)(1

1
lrtLl lr

tROR (10)

For the same set of 200 network samples presented
in section 5, we computed the average ROR
coefficients now according to equation (10). As in Fig.
16 the network samples are distributed into eight sets.
Off-line streaming ROR coefficients, for various
intensities of static tolerance, as functions from
capillary routing layers (1 to 10) are presented in Fig.
17.

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

1..10 1..10 1..10 1..10 1..10 1..10 1..10 1..10

capillary layers 1 to 10 for each network sample set

R
O

R
 ra

tin
g

fo
r o

ff-
lin

e
str

ea
m

in
g

Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8

3.3%
3.9%
4.5%
5.1%

7.5%
…

layers:

Fig. 17. Average off-line streaming ROR as a function from the
capillary routing layer

In off-line streaming (Fig. 17) the Redundancy
Overall Requirement is twice as low as in real-time

streaming (Fig. 16), but the capillarization of routing is
beneficiary in both cases.

7. Applications of capillary routing

Multi-path routing suggestions for fault-tolerant
streaming are applicable not only to ad-hoc or sensor
networks, but also to mobile networks, where wireless
content can be streamed to and from the user via
multiple base stations; or to the public internet, where,
if the physical routing cannot be accessed, path
diversity can be still obtained at the application level.

Spreading in IP networks (without having access to
the physical routing) can be achieved transparently by
splitting the flow at the source across VPN tunnel
interfaces leading to several VPN gateways scattered
across the network. Alternatively, path diversity can be
also obtained by assigning to media gateways several
IP interfaces connected to networks of different
Internet Service Providers (ISP). A more flexible
method relies on overlay networks over the public
Internet using peer-to-peer relay nodes (see [15] and
[22]).

Modifying the physical routing by the ISP requires
the least overhead. Most of the UDP packets carry
streaming media, and since capillary routing is good
for any type of real-time or off-line streaming media,
an ISP can simply spread out the routing of the entire
mix of UDP packets traversing its network. The ISP
needs to properly balance at each router the outgoing
traffic across its outgoing interfaces. Most IP routers,
provide load balancing in static routing mode or in
Enhanced Interior Gateway Routing Protocol (EIGRP)
mode (which must be used in the packet load balance
mode instead of the typical session load balance
mode).

8. Conclusions

The quality and reliability issues concerning real-
time streaming over packet networks are of growing
importance. Commercial real-time streaming
applications however do not consider channel coding
as a serious solution for improving the reliability of
communication. In single path communications, even
heavy FEC overheads cannot protect against failures
lasting more than the short duration of the playback
buffer. Recent studies demonstrated that path diversity
makes FEC applicable for real-time streaming. By
studying a wide range of routing topologies, we show
that the proper choice of the routing pattern can make
FEC extremely efficient. Combination of channel
coding with appropriate multi-path routing improves

the reliability of real-time packetized communications
even in the case of very short playback buffers.

We introduce a layer by layer strategy for building
multi-path capillary routings. The first layer provides a
simple max-flow solution. As the layer number
increases, the spreading of the underlying routing
scheme makes the network more secure for real-time
streaming. For a given source and destination there
exists only one solution of capillary routing and it does
not depend on the particular characteristics of the
streaming (buffer size, coding method, etc).

We introduce ROR, a method for rating multi-path
routing patterns by a single scalar value. The ROR
rating corresponds to the total redundancy overhead
that the sending node must provide in order to combat
the losses occurring from non-simultaneous failures of
links in the communication path.

Despite the fact that spreading out of the routing
results in the increase of the failure rate of underlying
links and consecutively also of the transmissions of
adaptive FEC codes; however, by using routing
patterns built by capillary routing algorithm, the
overall amount of FEC codes decreases substantially.

9. References

[1] Amin Shokrollahi, “Raptor codes”, ISIT’04, June 27 –
July 2, page 36

[2] Loring Wirbel, “Deal pushes algorithms into digital
radio”, April 13, 2004,
http://www.commsdesign.com/showArticle.jhtml?artic
leID=18901216

[3] Michael Luby, “LT codes”, FOCS’02, November 16-
19, pp. 271-280

[4] Mark Fritz, “Digital Dailies Flow Freely from
Fountain”, April 1, 2003,
http://www.emedialive.com/Articles/ReadArticle.aspx
?CategoryID=45&ArticleID=5077

[5] Ingemar Johansson, Tomas Frankkila, Per Synnergren,
“Bandwidth efficient AMR operation for VoIP”,
Speech Coding 2002, Oct 6-9, pp. 150-152

[6] Yicheng Huang, Jari Korhonen, Ye Wang,
“Optimization of Source and Channel Coding for
Voice Over IP”, ICME’05, Jul 06, pp. 173-176

[7] Chinmay Padhye, Kenneth J. Christensen, Wilfrido
Moreno, “A new adaptive FEC loss control algorithm
for voice over IP applications”, IPCCC’00, Feb 20-22,
pp. 307-313

[8] Eitan Altman, Chadi Barakat, Victor M. Ramos,
“Queueing analysis of simple FEC schemes for IP
telephony”, INFOCOM 2001, Vol. 2, Ap 22-26, pp.
796-804

[9] Qi Qu, Ivan V. Bajic, Xusheng Tian, James W.
Modestino, “On the effects of path correlation in multi-
path video communications using FEC over lossy
packet networks”, IEEE GLOBECOM’04 Vol. 2, Nov
29 - Dec 3, pp. 977-981

[10] Tawan Thongpook, “Load balancing of adaptive zone
routing in ad hoc networks”, TENCON 2004, Vol. B,
Nov 21-24, pp. 672-675

[11] Rui Ma, Jacek Ilow, “Reliable multipath routing with
fixed delays in MANET using regenerating nodes”,
LCN’03, Oct 20-24, pp. 719-725

[12] Rui Ma, Jacek Ilow, “Regenerating nodes for real-time
transmissions in multi-hop wireless networks”,
LCN’04, Nov 16-18, pp. 378-384

[13] Thinh Nguyen, Avideh Zakhor, “Protocols for
distributed video streaming”, Image Processing 2002,
Vol. 3, Jun 24-28, pp. 185-188

[14] John W. Byers, Michael Luby, Michale Mitzenmacher,
“Accessing multiple mirror sites in parallel: using
Tornado codes to speed up downloads”, INFOCOM
1999, Vol. 1, Mar 21-25, pp. 275-283

[15] Thinh Nguyen, P. Mehra, Avideh Zakhor, “Path
diversity and bandwidth allocation for multimedia
streaming”, ICME’03 Vol. 1, Jul 6-9, pp. 663-672

[16] Seong-ryong Kang, Dmitri Loguinov, “Impact of FEC
overhead on scalable video streaming”,
NOSSDAV’05, Jun 12-14, pp. 123-128

[17] Youshi Xu, Tingting Zhang, “An adaptive redundancy
technique for wireless indoor multicasting”, ISCC
2000, Jul 3-6, pp. 607-614

[18] Gadiel Seroussi, Ron M. Roth, On MDS extensions of
generalized Reed- Solomon codes, IEEE Transactions
on Information Theory, Vol. 32, Issue 3, May 1986,
pp. 349-354

[19] Thomas S. J. Schwarz, Generalized Reed Solomon
codes for erasure correction in SDDS, In Workshop on
Distributed Data and Structures, WDAS 2002, Paris,
Mar 2002

[20] Robert Fourer, A modeling language for mathematical
programming, Thomson – Brooks/Cole, second
edition, 2003, page 343

[21] David J. C. MacKay, “Fountain codes”, IEE
Communications, Vol. 152 Issue 6, Dec 2005, pp.
1062-1068

[22] Tuna Guven, Chris Kommareddy, Richard J. La, Mark
A. Shayman, Bobby Bhattacharjee “Measurement
based optimal multi-path routing”, INFOCOM 2004,
Vol. 1, Mar 7-11, pp. 187-196

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

