
LT Codes

Michael Luby
Digital Fountain, Inc.

luby@digitalfountain.com

Abstract

We introduce LT codes, the first rateless erasure codes
that are very efficient as the data length grows.

Keywords: erasure codes, rateless codes, universal codes,
reliable transport, balls and bins, randomized algorithms

1. Introduction

LT codes are the first realization of a class of erasure
codes that we call universal erasure codes. The symbol
length for the codes can be arbitrary, from one-bit binary
symbols to general �-bit symbols. We analyze the run time
of the encoder and decoder in terms of symbol operations,
where a symbol operation is either an exclusive-or of one
symbol into another or a copy of one symbol to another. If
the original data consists of k input symbols then each en-
coding symbol can be generated, independently of all other
encoding symbols, on average by O(ln(k/δ)) symbol op-
erations, and the k original input symbols can be recovered
from any k+O(

√
k ln2(k/δ)) of the encoding symbols with

probability 1 − δ by on average O(k · ln(k/δ)) symbol op-
erations.

LT codes are rateless, i.e., the number of encoding sym-
bols that can be generated from the data is potentially lim-
itless. Furthermore, encoding symbols can be generated on
the fly, as few or as many as needed. Also, the decoder can
recover an exact copy of the data from any set of the gen-
erated encoding symbols that in aggregate are only slightly
longer in length than the data. Thus, no matter what the
loss model is on the erasure channel, encoding symbols can
be generated as needed and sent over the erasure channel
until a sufficient number have arrived at the decoder in or-
der to recover the data. Since the decoder can recover the
data from nearly the minimal number of encoding symbols
possible, this implies that LT codes are near optimal with
respect to any erasure channel. Furthermore, the encoding
and decoding times are asymptotically very efficient as a
function of the data length. Thus, LT codes are universal
in the sense that they are simultaneously near optimal for

every erasure channel and they are very efficient as the data
length grows.

The analysis of LT codes is quite different than the anal-
ysis of Tornado codes [16] [17] [15]. In particular, the Tor-
nado codes analysis is only applicable to graphs with con-
stant maximum degree, and LT codes use graphs of logarith-
mic density, and thus the Tornado codes analysis does not
apply. Furthermore, the Tornado codes analysis relies on
techniques that lead to a reception overhead that is inher-
ently at least a constant fraction of the data length, whereas
the analysis of LT codes shows that the reception overhead
is an asymptotically vanishing fraction of the data length,
albeit at the cost of slightly higher asymptotic encoding and
decoding times.

The key to the design and analysis of the LT codes is the
introduction and analysis of the LT process. This process
and its analysis is a novel generalization of the classical pro-
cess and analysis of throwing balls randomly into bins and
it may be of independent interest. We provide a full analy-
sis of the behavior of the LT process using first principles of
probability theory, which precisely captures the behavior of
the data recovery process.

The “digital fountain approach” concept introduced in
[7] [6] is similar to that of a universal erasure code, and LT
codes are the first full realization of this concept. This pa-
per describes some of the theoretical underpinnings of some
portions of the work described in [12] [13].

1.1 Some encoding details

The process of generating an encoding symbol is con-
ceptually very easy to describe:

• Randomly choose the degree d of the encoding symbol
from a degree distribution. The design and analysis of
a good degree distribution is a primary focus of the
remainder of this paper.

• Choose uniformly at random d distinct input symbols
as neighbors of the encoding symbol.

• The value of the encoding symbol is the exclusive-or
of the d neighbors.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)

$ IEEE

When using the encoding symbols to recover the original
input symbols of the data, the decoder needs to know the de-
gree and set of neighbors of each encoding symbol. There
are many different ways of communicating this information
to the decoder, depending on the application. For exam-
ple, the degree and a list of neighbor indices may be given
explicitly to the decoder for each encoding symbol. As an-
other example, the degree and neighboring indices of each
encoding symbol may be computed by the decoder implic-
itly based for example on the timing of the reception of the
encoding symbol or the position of the encoding symbol rel-
ative to the positions of other encoding symbols. As another
example, a key may be associated with each encoding sym-
bol and then both the encoder and decoder apply the same
function to the key to produce the degree and set of neigh-
bors of the encoding symbol. In this case, the encoder may
randomly choose each key it uses to generate an encoding
symbol and keys may be passed to the decoder along with
the encoding symbols. Each key may instead be produced
for example by a deterministic process, e.g., each key may
be one larger than the previous key. The encoder and de-
coder may have access to the same set of random bits, and
the key may be used as the seed to a pseudo-random gener-
ator that uses these random bits to produce the degree and
the neighbors of the encoding symbol. There are a variety
of ways to associate a degree and a set of neighbors with an
encoding symbol depending on the application, and these
implementation details are beyond the scope of this paper.

1.2 Comparison to traditional erasure codes

Traditional erasure codes are typically block codes with
a fixed rate, i.e., k input symbols are used to generate
n − k redundant symbols for a total of n encoding sym-
bols, and the rate of the code is k/n. For example, research
in networking has suggested using implementations of both
Reed-Solomon and Tornado codes for reliable data distri-
bution applications, and in these cases both k and n either
are limited to fairly small values due to practical consider-
ations or are fixed before the encoding process begins, see
e.g. [21] [26] [2] [7] [6]. Ideally, as is the case with a Reed-
Solomon code [25], any k of the n encoding symbols is
sufficient to recover the original k input symbols (see for
example [18]). Sometimes, as is the case with a Tornado
code [16] [17], slightly more than k of the n encoding sym-
bols are needed to recover the original k input symbols.

Reed-Solomon codes in practice are only efficient for
relative small settings of k and n. The reason is that for a
standard implementation of Reed-Solomon codes [26] [2],
k(n − k)A/2 symbol operations are needed to produce the
n encoding symbols, where A is the size of the finite field
used. Decoding times are similar. Although there are the-
oretical algorithms for implementing Reed-Solomon codes

that are asymptotically faster for both encoding and decod-
ing, i.e., k times polylogarithmic in n, the quadratic time
implementations are faster in practice for values of k and n
of interest.

Tornado codes are block erasure codes that have linear in
n encoding and decoding times [16] [17] [7] [6]. LT codes
are somewhat similar to Tornado codes. For example, they
use a similar rule to recover the data, and the degree dis-
tributions used for Tornado codes is superficially similar to
the degree distributions used for LT codes. However, the ac-
tual degree distribution used for Tornado codes turns out to
be inapplicable to LT codes. For Tornado codes the degree
distribution on input symbols is similar to the Soliton dis-
tribution described later and the degree distribution on the
first layer of redundant symbols is close to the Poisson dis-
tribution. The Soliton distribution on input symbols is inap-
plicable for LT codes, as this distribution cannot be the re-
sulting degree distribution on input symbols when encoding
symbols are generated independently, no matter what the
distribution on neighbors of encoding symbols is chosen to
be. One could imagine flipping the distributions on Tornado
codes so that, like the LT codes, the Poisson distribution
is on the input symbols and the Soliton distribution is on
the redundant symbols. However, the distribution induced
on the redundant symbols by the missing input symbols in
the Tornado code graph is far from the Soliton distribution,
and applying the recovery rule to the induced distributions
clearly won’t lead to a reasonable reception overhead.

Beyond the differences between LT codes and Tornado
codes mentioned previously, LT codes have significant ap-
plication advantages over Tornado codes. Let c = n/k be
the constant stretch factor of the Tornado code design. Once
k and n have been fixed the Tornado encoder produces n en-
coding symbols, and cannot produce further encoding sym-
bols on the fly if the demand arises. In contrast, the encoder
can generate as few or as many encoding symbols as needed
on demand.

Tornado codes use a cascading sequence of bipartite
graphs between several layers of symbols, where the in-
put symbols are at the first layer and redundant symbols are
at each subsequent layer. In practice, this requires either
prior construction of the exact same graph structure at both
the encoder and decoder, or prior construction of the graph
structure at the encoder that is then communicated to the
decoder. This preprocessing is quite cumbersome in either
case, and in particular the graph structure size is propor-
tional to n = ck. Although the amortized overhead is less-
ened if the same length data is to be encoded and decoded
repeatedly, a different graph structure is required for each
data length and thus the preprocessing is quite a large draw-
back if each data is of a different length. In contrast, the
degree distributions used by LT codes are easily computed
based on the data length, and this is the only preprocessing

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)

$ IEEE

needed prior to invoking either the encoder or the decoder.
For the Tornado codes the decoding depends on having

a sufficient number of distinct encoding symbols from the
n encoding symbols. In some transport applications, the to-
tal number of encoding symbols transmitted from a sender
is several times the number of encoding symbols than can
be reasonably generated by the Tornado encoder. For these
applications, in some cases a good policy is to randomly se-
lect an encoding symbol each time a symbol is to be sent.
In this case, it is not hard to see that the average number
of encoding symbols that a receiver needs to receive to ob-
tain k distinct encoding symbols among the n = ck en-
coding symbols is ck ln(c/(c − 1)). (Recall that at least k
distinct encoding symbols are required to recover the data).
Thus, for example, if c = 2 then the client needs to receive
1.386k encoding symbols on average in order to receive k
distinct encoding symbols. To make this more acceptable,
e.g., reception of 1.05k encoding symbols, requires c > 10.
These values for c makes the Tornado codes unattractive for
these types of applications because the encoder and decoder
memory usage and the decoding time is proportional to c
times the data length. In contrast, for LT codes the encoder
and decoder memory usage is proportional to the data length
and the decoding time depends only on the data length, in-
dependent of how many encoding symbols are generated
and sent by the encoder.

Both Reed-Solomon and Tornado codes are systematic
codes, i.e. all the input symbols that constitute the data are
directly included among the encoding symbols, whereas LT
codes are not systematic.

1.3 Applications

Normally when data is to be transmitted on an IP based
network, it is partitioned into equal length pieces and placed
into packets. Any transmission protocol that uses this type
of protocol must be able to ensure the reception of all pack-
ets by receivers. This is why for example TCP receiver ac-
knowledges each received packet and a TCP sender retrans-
mits unacknowledged packets. Because of these properties,
TCP/IP does not scale well to transmission over networks
with high latencies, to transmission over networks with high
loss rates, or to highly concurrent transmission of the same
content to multiple clients.

Erasure codes have been proposed to provide reliabil-
ity for a variety of data delivery applications. For one-to-
one delivery, there are advantages in designing the reliabil-
ity mechanism independently from the flow and congestion
control mechanism, as outlined in [1]. The advantage of us-
ing erasure codes in one-to-one data delivery is that it makes
it easier to design the flow and congestion control mecha-
nisms independently of reliability.

For the one-to-many data delivery problem, where scal-

ability of the sender and the network is of paramount im-
portance, feedback to the sender needs to be limited and
sending packets that are redundant for some receivers is
wasteful, reliability may be able to be provided using era-
sure codes as described in [21], [28], [26], [27], [22], [23],
[9] [7] [6]. The attractiveness of this approach is that if the
erasure codes are powerful enough then a single sender can
potentially be used to reliably deliver data efficiently to a
large number of concurrent receivers without feedback.

The one-to-many problem is even more difficult when
different receivers have different bandwidth connections to
the sender and it is desired that each receiver obtain the data
at the fastest possible speed independent of other receivers.
Receiver-driven congestion control protocols have been de-
signed independently of a reliability protocol that scalably
delivers a different fraction of the packets generated to each
receiver depending on current network conditions and the
receivers bandwidth connection to the sender [19] [30] [4]
[14]. Erasure codes can be used in conjunction with these
congestion control protocols to help provide a complete re-
liable delivery transport.

For many-to-one delivery it is useful for receivers to be
able to concurrently receive packets for the same data from
multiple senders potentially at different locations. In this
case receiving redundant packets is a concern, and erasure
codes can be used to minimize delivery of redundant pack-
ets. This application is considered in [5], and a partial solu-
tion is given based on Tornado codes [16] [17].

LT codes offers compelling advantages for all these dif-
ferent types of data delivery applications that no previous
erasure codes provides. Using LT codes, close to the mini-
mal number of encoding symbols can be generated and sent
in packets to receivers, and the number of packets each re-
ceiver needs before it is able to recover the original data is
asymptotically close to the minimal possible. When tradi-
tional erasure codes are used in these solutions, the num-
ber of packets to generate is fixed based on a best guess
of network conditions prior to producing any packets, and
inevitably this guess is either too high or too low.

There are a variety of other applications of LT codes,
including robust distributed storage, delivery of streaming
content, delivery of content to mobile clients in wireless
networks, peer-to-peer applications [3], delivery of content
along multiple paths to ensure resiliency to network disrup-
tions [24], and a number of other applications too numerous
to detail in this paper.

2. LT Codes Design

The length � of the encoding symbols can be chosen as
desired. The overall encoding and decoding is more effi-
cient in practice for larger values of � because of overheads
with bookkeeping operations, but the value of � has no bear-

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)

$ IEEE

ing on the theory. In transport applications � is sometimes
chosen to be close to the length of the packet payload.

The encoder works as follows. The data of length N is
partitioned into k = N/� input symbols, i.e., each input
symbol is of length �. Each encoding symbol is generated
as described in Subsection 1.1.

Given an ensemble of encoding symbols and some repre-
sentation of their associated degrees and sets of neighbors,
the decoder repeatedly recovers input symbols using the fol-
lowing rule as long as it applies.

Definition 1 (decoder recovery rule): If there is at least
one encoding symbol that has exactly one neighbor then the
neighbor can be recovered immediately since it is a copy of
the encoding symbol. The value of the recovered input sym-
bol is exclusive-ored into any remaining encoding symbols
that also have that input symbol as a neighbor, the recov-
ered input symbol is removed as a neighbor from each of
these encoding symbols and the degree of each such encod-
ing symbol is decreased by one to reflect this removal.

2.1 The LT process

We introduce the LT process to help describe the design
and analysis of a good degree distribution for LT codes. Let
K be the total number of encoding symbols to be considered
in the analysis (typically K is slightly larger than k). The LT
process is a novel generalization of the classical process of
throwing balls randomly into bins. A well known analysis
of the classical process shows that K = k · ln(k/δ) balls
are necessary on average to ensure that each of the k bins
is covered by at least one ball with probability at least 1 −
δ. In the analysis of the LT process, encoding symbols are
analogous to balls and input symbols are analogous to bins,
and the process succeeds if at the end all input symbols are
covered.

Definition 2 (LT process): All input symbols are intially
uncovered. At the first step all encoding symbols with one
neighbor are released to cover their unique neighbor. The
set of covered input symbols that have not yet been pro-
cessed is called the ripple, and thus at this point all covered
input symbols are in the ripple. At each subsequent step
one input symbol in the ripple is processed: it is removed
as a neighbor from all encoding symbols which have it as a
neighbor and all such encoding symbols that subsequently
have exactly one remaining neighbor are released to cover
their remaining neighbor. Some of these neighbors may
have been previously uncovered, causing the ripple to grow,
while others of these neighbors may have already been in
the ripple, causing no growth in the ripple. The process
ends when the ripple is empty at the end of some step. The

process fails if there is at least one uncovered input symbol
at the end. The process succeeds if all input symbols are
covered by the end.

In the classical balls and bins process, all the balls are
thrown at once. Because of the high probability of colli-
sions, i.e., multiple balls covering the same bin, many more
balls must be thrown to cover all bins than there are bins.
In contrast, the proper design of the degree distribution en-
sures that the LT process releases encoding symbols incre-
mentally to cover the input symbols. Initially only a small
fraction of the encoding symbols are of degree one and thus
they cover only a small fraction of the input symbols. Cov-
ered input symbols are processed one at a time, and each
one processed releases potentially other encoding symbols
to randomly cover unprocessed input symbols. The goal of
the degree distribution design is to slowly release encoding
symbols as the process evolves to keep the ripple small so as
to prevent redundant coverage of input symbols in the rip-
ple by multiple encoding symbols, but at the same time to
release the encoding symbols fast enough so that the ripple
does not disappear before the process ends.

Because the neighbors of an encoding symbol are cho-
sen at random independently of all other encoding symbols,
it is easy to verify that the step at which a particular en-
coding symbol is released is independent of all the other
encoding symbols. Furthermore, once an encoding sym-
bol is released it covers a uniformly chosen input symbol
among the unprocessed input symbols, independent of all
other encoding symbols. These properties make the LT pro-
cess especially amenable to the design of good degree dis-
tributions and analysis of the process with respect to these
distributions.

It is not hard to verify that there is a one to one corre-
spondence between the LT process and the decoder, i.e., an
encoding symbol covers an input symbol if and only if the
encoding symbol can recover that input symbol. Thus, the
LT process succeeds if and only if the decoder successfully
recovers all symbols of the data. The total number of en-
coding symbols needed to cover all the input symbols cor-
responds exactly to the total number of encoding symbols
needed to recover the data. The sum of the degrees of these
encoding symbols corresponds exactly to the total number
of symbol operations needed to recover the data.

3. LT Degree Distributions

Recall that each encoding symbol has a degree chosen
independently from a degree distribution.

Definition 3 (degree distribution): For all d, ρ(d) is the
probability that an encoding symbol has degree d.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)

$ IEEE

As we now develop, the random behavior of the LT pro-
cess is completely determined by the degree distribution
ρ(·), the number of encoding symbols K , and the number
of input symbols k. Our objective is to design degree distri-
butions that meet the following two design goals.

• As few encoding symbols as possible on average are
required to ensure success of the LT process. Recall
that the number of encoding symbols that ensure suc-
cess of the LT process corresponds to the number of
encoding symbols that ensure complete recovery of the
data.

• The average degree of the encoding symbols is as low
as possible. The average degree is the number of sym-
bol operations on average it takes to generate an encod-
ing symbol. The average degree times K is the number
of symbol operations on average it takes to recover the
entire data.

The classical process of throwing balls into bins can be
viewed as a special case of the LT process where all encod-
ing symbols have degree one and thus are all released and
thrown initially, i.e. the following distribution.

Definition 4 (All-At-Once distribution): ρ(1) = 1.

In terms of LT codes, this corresponds to generating each
encoding symbol by selecting a random input symbol and
copying its value to the encoding symbol. The analysis of
the classical balls and bins process implies that k · ln(k/δ)
encoding symbols are needed to cover all k input symbols
with probability at least 1 − δ with respect to the All-At-
Once distribution. This result can be easily modified to
show that for any distribution the sum of the degrees of the
encoding symbols must be at least k · ln(k/δ) to cover all
input symbols at least once. Thus, although the total num-
ber of symbol operations with respect to the All-At-Once
distribution is minimal, the number of encoding symbols
required to cover the k input symbols is an unacceptable
ln(k/δ) times larger than the minimum possible. Below we
develop the Soliton distribution that ensures that just over
k encoding symbols with the sum of their degrees being
O(k · ln(k/δ)) suffice to cover all k input symbols. Thus,
both the number of encoding symbols and the total number
of symbol operations are near minimal with respect to the
Soliton distribution.

3.1 Some preliminary probabilistic analysis

We first analyze the probability that a particular encod-
ing symbol of degree i is released when L input symbols
remain unprocessed. Since the input symbols neighbors of
an encoding symbol are chosen independently of all other

encoding symbols, it follows that the probability that this
encoding symbol is released when L input symbols remain
unprocessed is independent of all other encoding symbols.

Definition 5 (encoding symbol release): Let us say that an
encoding symbol is released when L input symbols remain
unprocessed if it is released by the processing of the k−Lth

input symbol, at which point the encoding symbol randomly
covers one of the L unprocessed input symbols.

Definition 6 (degree release probability): Let q(i, L) be
the probability that an encoding symbol of degree i is re-
leased when L input symbols remain unprocessed.

Proposition 7 (degree release probability formula)

• q(1, k) = 1.

• For i = 2, . . . , k, for all L = k − i + 1, . . . , 1,

q(i, L) =
i(i − 1) · L · ∏i−3

j=0 k − (L + 1) − j∏i−1
j=0 k − j

• For all other i and L, q(i, L) = 0.

Proof: This is the probability that i−2 of the neighbors of
the encoding symbol are among the first k−(L+1) symbols
processed, one neighbor is processed at step k − L, and
the remaining neighbor is among the L unprocessed input
symbols. �

Definition 8 (overall release probability): Let r(i, L) be
the probability that an encoding symbol is chosen to be of
degree i and is released when L input symbols remain un-
processed, i.e. r(i, L) = ρ(i) ·q(i, L). Let r(L) be the over-
all probability that an encoding symbol is released when L
input symbols remain unprocessed, i.e., r(L) =

∑
i r(i, L).

3.2 The Ideal Soliton distribution

The basic property required of a good degree distribution
is that input symbols are added to the ripple at the same
rate as they are processed. This property is the inspiration
for the name Soliton distribution, as a soliton wave is one
where dispersion balances refraction perfectly [29].

A desired effect is that as few released encoding symbols
as possible cover a input symbol that is already in the rip-
ple. This is because released encoding symbols that cover
input symbols already in the ripple are redundant. Since re-
leased encoding symbols cover a random input symbol from
among the unprocessed input symbols, this implies that the
ripple size should be kept small at all times. On the other
hand, if the ripple vanishes before all k input symbols are

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)

$ IEEE

covered then the overall process ends in failure. The rip-
ple size should be kept large enough to ensure that the rip-
ple does not disappear prematurely. The desired behavior is
that the ripple size never gets too small or too large.

The Ideal Soliton distribution displays ideal behavior in
terms of the expected number of encoding symbols needed
to recover the data. Unfortunately, like most ideal things,
this distribution is quite fragile, in fact so much so that it
is useless in practice. However, its description and analysis
captures many of the crucial elements of the robust distri-
butions described later.

Definition 9 (Ideal Soliton distribution): The Ideal Soliton
distribution is ρ(1), . . . , ρ(k), where

• ρ(1) = 1/k

• For all i = 2, . . . , k, ρ(i) = 1/i(i − 1).

Note that
∑

i ρ(i) = 1 as required of a probability distri-
bution. One way to choose a sample from this distribution
is to first choose a random real value v ∈ (0, 1], and then for
i = 2, . . . , k, let the sample value be i if 1/i < v ≤ 1/i−1,
and let the sample value be 1 if 0 < v ≤ 1/k. The expected
degree of an encoding symbol is

∑k
i=1 i/i(i − 1) = H(k),

where H(k) ≈ ln(k) is the harmonic sum up to k.

Proposition 10 (uniform release probability): For the
Ideal Soliton distribution, r(L) = 1/k for all L = k, . . . , 1.

Proof: For L = k all encoding symbols of degree one
are released, and an encoding symbol is of degree one with
probability 1/k, and thus the statement is true for L = k.
For all other values of L, from Proposition 7,

r(i, L) =
L · ∏i−3

j=0 k − (L + 1) − j∏i−1
j=0 k − j

It can be verified that k · r(i, L) can be interpreted as the
probability that when throwing balls uniformly at random
among k − 1 bins, eliminating each bin as it is covered by
a ball, that it is the i − 1rst ball thrown that lands in one of
L designated bins. These events are mutually exclusive for
different values of i, and since i = 2, . . . , k − L + 1 covers
all the possible outcomes,

k · r(L) = k ·
k−L+1∑

i=1

r(i, L) = 1.

�
Suppose the expected behavior of the LT process is its

actual behavior. Then, the Ideal Soliton distribution works
perfectly, i.e. exactly k encoding symbols are sufficient to
cover each of the k input symbols exactly once. This is

because if there are k encoding symbols then by Proposi-
tion 10 exactly one encoding symbol is expected to be re-
leased initially and exactly one encoding symbol is expected
to be released each time an input symbol is processed. If the
expected behavior actually happens, then there is always ex-
actly one input symbol in the ripple, and when this symbol
is processed the released encoding symbol covers an input
symbol among the unprocessed input symbols to reestablish
this condition, etc.

However, this heuristic analysis makes the completely
unrealistic assumption that the expected behavior is the ac-
tual behavior, and this is far from the truth. In fact, the Ideal
Soliton distribution works very poorly in practice because
the expected size of the ripple is one, and even the small-
est variance causes the ripple to vanish and thus the overall
process fails to cover and process all input symbols.

Note that for the Ideal Soliton distribution the sum of
the degrees of k encoding symbols is on average k · ln(k).
Recall that for the All-At-Once distribution it takes on av-
erage k · ln(k) encoding symbols to cover all input symbols
with constant probability. It is interesting that the number of
symbol operations for the Ideal Soliton distribution and for
the All-At-Once distribution coincide, although the number
of encoding symbols is quite different. The intuition for
this is that for any distribution the sum of the degrees of all
the encoding symbols needs to be around k · ln(k) in order
to cover all the input symbols, but the Ideal Soliton distri-
bution compresses this into the fewest number of encoding
symbols possible. Thus, the total amount of computation is
the same in both cases (since it is proportional to the sum of
the degrees of all the encoding symbols). However, the to-
tal amount of information that needs to be received (which
is proportional to the number of encoding symbols) is com-
pressed to the minimum possible with the Ideal Soliton dis-
tribution.

3.3 The Robust Soliton distribution

Although the Ideal Soliton distribution works poorly in
practice, it does give insight into a robust distribution. The
problem with the Ideal Soliton distribution is that the ex-
pected ripple size (one) is too small. Any variation in the
ripple size is likely to make the ripple disappear and then
the overall process fails. The Robust Soliton distribution
ensures that the expected size of the ripple is large enough
at each point in the process so that it never disappears com-
pletely with high probability. On the other hand, in order
to minimize the overall number of encoding symbols used,
it is important to minimize the expected ripple size so that
not too many released encoding symbols redundantly cover
input symbols already in the ripple.

Let δ be the allowable failure probability of the decoder
to recover the data for a given number K of encoding sym-

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)

$ IEEE

bols. The idea here is to design the distribution so that the
expected ripple size is about ln(k/δ)

√
k throughout the pro-

cess. The intuition is that the probability a random walk of
length k deviates from its mean by more than ln(k/δ)

√
k

is at most δ. As we describe below, it turns out this can be
achieved using K = k + O(ln2(k/δ)

√
k) encoding sym-

bols.

Definition 11 (Robust Soliton distribution): The Robust
Soliton distribution is µ(·) defined as follows. Let R =
c · ln(k/δ)

√
k for some suitable constant c > 0. Define

τ(i) =

R/ik for i = 1, . . . , k/R − 1
R ln(R/δ)/k for i = k/R

0 for i = k/R + 1, . . . , k

Add the Ideal Soliton distribution ρ(·) to τ(·) and normalize
to obtain µ(·):
• β =

∑k
i=1 ρ(i) + τ(i).

• For all i = 1, . . . , k, µ(i) = (ρ(i) + τ(i))/β.

The intuition for the supplement τ(·) is the following.
At the beginning, τ(1) ensures that the ripple starts off at a
reasonable size. Consider the process in the middle. Sup-
pose that an input symbol is processed and L input symbols
remain unprocessed. Since the ripple size decreases by one
each time an input symbol is processed, on average the rip-
ple should be increased by one to make up for this decrease.
If the ripple size is R then the chance that a released en-
coding symbol adds to the ripple is only (L − R)/L. This
implies that at this point it requires L/(L−R) released en-
coding symbols on average to add one to the ripple. From
Proposition 7 it is possible to verify that the release rate of
encoding symbols of degree i for i within a constant factor
of k/L make up a constant portion of the release rate when
L input symbols remain unprocessed. Thus, if the ripple
size is to be maintained at approximately R, then the den-
sity of encoding symbols with degree i = k/L should be
proportional to

L

i(i − 1) · (L − R)
=

k

i(i − 1) · (k − iR)

=
1

i(i − 1)
+

R

(i − 1)(k − iR)
≈ ρ(i) + τ(i),

for i = 2, . . . , k/R−1. The final spike τ(k/R) ensures that
all the input symbols unprocessed when L = R are all cov-
ered. This is similar to simultaneously releasing R ln(R/δ)
encoding symbols when R input symbols remain unpro-
cessed to cover them all at once. Thus, the wastage caused
by releasing enough encoding symbols to cover each of
these input symbols at least once is only a small fraction
of the total number k of input symbols.

We set the number of encoding symbols to K = kβ.
This implies that k · (ρ(i)+ τ(i)) is the expected number of
encoding symbols of degree i.

3.4 Analysis of Robust Soliton distribution

In this subsection we provide a theoretical analysis of
the properties of the Robust Soliton distribution. As is of-
ten the case when proving theorems, in several places we
make pessimistic estimates that enable a simple, compre-
hensive, and complete analysis. Heuristic techniques can
be used to provide a design and analysis that leads to lower
reception overhead and average degree based on computer
simulations, but the description of this is beyond the scope
of this paper.

Theorem 12 (number of encoding symbols): The number
of encoding symbols is K = k + O(

√
k · ln2(k/δ)).

Proof:

K = kβ = k ·
(∑

i

ρ(i) + τ(i)
)

= k +
k/R−1∑

i=1

R

i
+ R ln(R/δ)

≤ k + R · H(k/R) + R · ln(R/δ).

�

Theorem 13 (average degree of an encoding symbol): The
average degree of an encoding symbol is D = O(ln(k/δ)).

Proof:

D =
∑

i i · (ρ(i) + τ(i))
β

≤
∑

i

i · (ρ(i) + τ(i))

=
k+1∑
i=2

1
i − 1

+
k/R−1∑

i=1

R

k
+ ln(R/δ)

≤ H(k) + 1 + ln(R/δ).

�
The following propositions are used in the proof of the

theorem below that the LT process succeeds with high prob-
ability.

Proposition 14 (robust uniform release probability): For
all L = k−1, . . . , R, K ·r(L) ≥ L/(L−θR) for a suitable
constant θ ≥ 0, excluding the contribution of τ(k/R).

Proof: (Sketch) This proof uses the contributions of
τ(2), . . . , τ(k/R−1) and the Ideal Soliton distribution ρ(·).

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)

$ IEEE

For L = k/2, . . . , k − 1, using Proposition 7 and Proposi-
tion 10,

K · r(L) ≥ K ·
((∑

i
1

i(i−1) · q(i, L)
)

+ τ(2) · q(2, L)

β

)

= 1 + k · τ(2) · q(2, L)

= 1 +
RL

k(k − 1)
≥ L

L − R/6
.

More generally, for L ≥ R,

K · r(L) ≥ 1 + k ·
k/L∑

d=k/2L

τ(d) · q(d, L)

Then, using Proposition 7 and Proposition 10,

k ·
k/L∑

d=k/2L

τ(d) · q(d, L)

=
k/L∑

d=k/2L

RL(d − 1)
k(k − 1)

·
d−3∏
j=0

(
1 − L − 1

k − j − 2

)
.

For all v = k/2L, . . . , k/L,

d−3∏
j=0

(
1− L − 1

k − j − 2

)
≥

(
1− L

k(1 − 1
L − 2

k)

) k
L−3

≈ 1/e.

Thus,

k ·
k/L∑

d=k/2L

τ(d) · q(d, L) � R

8eL
.

Putting this together yields

K · r(L) � 1 +
R

8eL
≥ L

L − θR

for θ = 1
16e . �

Proposition 15 (robust release at end probability): Using
only the contribution of τ(k/R), K ·∑2R

L=R r(L) ≥ γ ·R ·
ln(R/δ) for a suitable constant γ > 0.

Proof: (Sketch) Fix L between 2R and R. It is not hard
to show that K · τ(k/R)/β · q(k/R, L) ≥ γ · ln(R/δ) for
an appropriate constant γ > 0. �

Proposition 16 (pessimistic filtering): Suppose a particu-
lar encoding symbol is released when L input symbols re-
main unprocessed and there are X input symbols in the rip-
ple. If the probability that the encoding symbol lands on an
input symbol not currently in the ripple is lowered to any
value that is at most (L − X)/L then the success proba-
bility of the LT process is at most what it was before the
modification.

Theorem 17 (high probability recovery): The decoder
fails to recover the data with probability at most δ from a
set of K encoding symbols.

Proof: (Sketch) The main point of the proof is that the
ripple size variation is very similar to a random walk, and
thus the probability that the ripple size deviates from its ex-
pected value in k steps by a multiple of

√
k is small.

Since the expected number of encoding symbols of de-
gree one is R, a Chernoff bound shows that with probability
at least 1− δ/3 the initial size of the ripple due to encoding
symbols of degree one is at least θR/2, and we can filter the
original ripple size down to θR/2.

The argument will be made that the ripple does not dis-
appear for L = k − 1, . . . , R with high probability, and
this portion of the argument will not use the τ(k/R) spike
added to the µ(·) distribution, as the τ(k/R) spike will be
used separately to show that the last R input symbols are
covered. Using Proposition 16 and Proposition 14, we can
pessimistically filter the distribution for each of the K en-
coding symbols so that r(L) = L/((L − θR)K). Let
XL be the number of encoding symbols that are released
due to the processing of the input symbol that leaves L
input symbols unprocessed in this filtered distribution, i.e.
E[XL] = L/(L − θR).

Assume for now that the ripple size is always between
zero and θR, and later this assumption is removed. Each
time an encoding symbol is released when L input sym-
bols remain unprocessed it adds to the ripple with prob-
ability at least (L − θR)/L. Using Proposition 16, each
such encoding symbol released can be pessimistically fil-
tered so that it adds to the ripple with probability exactly
(L − θR)/L. Let YL be the zero-one valued random vari-
able such that Pr[YL = 1] = (L − θR)/L. Note that for
any I ⊆ {R, . . . , k − 1},

θR/2 +
∑
L′∈I

XL′ · YL′ − (k − L)

is the size of the ripple when L input symbols remain un-
processed under the above assumption. Note that∣∣ ∑

L′∈I

XL′ · YL′ − (k − L)
∣∣

≤ ∣∣ ∑
L′∈I

XL′ · YL′ − E[XL′] · YL′
∣∣

+
∣∣ ∑

L′∈I

E[XL′] · YL′ − E[XL′] · E[YL′]
∣∣

+
∣∣ ∑

L′∈I

E[XL′] · E[YL′] − (k − L)
∣∣.

Using Chernoff Bounds, it can be shown that

Pr
[∣∣ ∑

L′∈I

XL′ · YL′ − E[XL′] · YL′
∣∣ ≥ θR/4

] ≤ δ/6k

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)

$ IEEE

and

Pr
[∣∣ ∑

L′∈I

E[XL′]·YL′−E[XL′]·E[YL′]
∣∣ ≥ θR/4

] ≤ δ/6k.

Furthermore,∑
L′∈I

E[XL′] · E[YL′] − (k − L) = 0.

From this it follows that under the assumption the proba-
bility the ripple size varies from its original value of θR/2
by at least θR/2 over the interval I is at most δ/3k. This
shows that

Pr
[∣∣ ∑

L′∈I

XL′ · YL′ − (k − L)
∣∣ ≥ θR/2

] ≤ δ/3k,

it can be concluded the ripple size is greater than zero and
at most θR at the end of interval I with probability at least
1−δ/3k. Since there are k−R intervals, this shows that the
ripple is strictly above zero and below θR for all intervals.
This shows that the assumption made about the maximum
ripple size is true and the process is successful until R input
symbols remain unprocessed with probability at least 1 −
δ/3.

We now consider the covering and processing of the last
R symbols. Proposition 15 can be used to show that enough
encoding symbols are released between when 2R and R in-
put symbols remain unprocessed to cover with probability
at least 1 − δ/3 the final R unprocessed input symbols.

Overall, the LT process completes successfully with
probability at least 1 − δ. �

One interesting aspect is the comparison between the LT
process with respect to the All-At-Once distribution and the
Robust Soliton distribution. For both the sum of the de-
grees of the encoding symbols needed to cover all k of the
input symbols is approximately k ln(k/δ). However, since
each encoding symbol is of degree one with respect to the
All-At-Once distribution which corresponds to the classi-
cal process, it also takes approximately k ln(k/δ) encoding
symbols to cover all of the input symbols. With the Ro-
bust Soliton distribution, the same amount of degree is dis-
tributed essentially among the smallest number of encoding
symbols possible, with the net result that it takes close to
the minimum number of encoding symbols to recover all k
input symbols.

References

[1] M. Adler, Y. Bartal, J.W. Byers, M. Luby, D. Raz. A
Modular Analysis of Network Transmission Protocols
Proceedings of Fifth Israeli Symposium on Theory of
Computing and Systems, June 1997.

[2] J. Bloemer, M. Kalfane, M. Karpinski, R. Karp,
M. Luby, D. Zuckerman. An XOR-Based Erasure-
Resilient Coding Scheme. ICSI TR-95-048, Technical
report at ICSI, August 1995.

[3] J.W. Byers, J. Considine, M. Mitzenmacher, S. Rost.
Informed Content Delivery Across Adaptive Overlay
Networks. Proceedings of ACM SIGCOMM 2002,
Pittsburgh PA, August 19 – 23, 2002.

[4] J.W. Byers, M. Frumin, G. Horn, M. Luby, M. Mitzen-
macher, A. Roetter, W. Shaver. FLID-DL: Congestion
control for layered multicast. Proceedings of 2nd Int.
Workshop Netw. Group Comm., pages 71–81, Stan-
ford, California, November 2000.

[5] J.W. Byers, M. Luby, M. Mitzenmacher. Access-
ing Multiple Mirror Sites in Parallel: Using Tornado
Codes to Speed Up Downloads. Proceedings of IEEE
INFOCOM ’99, New York, NY, pp. 275 – 283.

[6] J.W. Byers, M. Luby, M. Mitzenmacher. A Digital
Fountain Approach to Asynchronous Reliable Multi-
cast. IEEE J. on Selected Areas in Communications,
Special Issue on Network Support for Multicast Com-
munications, 2002.

[7] J.W. Byers, M. Luby, M. Mitzenmacher, A. Rege.
A Digital Fountain Approach to Reliable Distribution
of Bulk Data. Proceedings of ACM SIGCOMM ’98,
pages 56–67, Vancouver, September 1998.

[8] S. Floyd, V. Jacobson, C.G. Lin, S. McCanne, L.
Zhang. A Reliable Multicast Framework for Light-
Weight Sessions and Application Level Framing. Pro-
ceedings of ACM SIGCOMM ’95, pp. 343-356, Au-
gust 1995.

[9] J. Gemmell. ECRSM - Erasure Correcting Scalable
Reliable Multicast. Microsoft Research Technical Re-
port MS-TR-97-20, June 1997.

[10] T.V. Lakshman, U. Madhow. The performance of
TCP/IP for networks with high bandwidth-delay prod-
ucts. IEEE/ACM Trans. Networking, 5(3):336–350,
June 1997.

[11] J.C. Lin, S. Paul. RMTP: A Reliable Multicast Trans-
port Protocol. Proceedings of IEEE INFOCOM ’96,
pp. 1414-1424, March 1996.

[12] M. Luby. Information Additive Code Generator and
Decoder for Communication Systems. U.S. Patent No.
6,307,487, Oct. 23, 2001.

[13] M. Luby. Information Additive Code Generator and
Decoder for Communication Systems. US Patent No.
6,373,406, April 16, 2002.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)

$ IEEE

[14] M. Luby, V. K Goyal, S. Skaria, G. Horn. Wave and
Equation Based Rate Control using Multicast Round-
trip Time. Proceedings of ACM SIGCOMM 2002,
Pittsburgh PA, August 19 – 23, 2002.

[15] M. Luby, M. Mitzenmacher, A. Shokrollahi. Analy-
sis of Random Processes via And-Or Tree Evaluation.
Proceedings of 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, San Francisco, California, Jan-
uary 25–27, 1998.

[16] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spiel-
man, V. Stemann. Practical Loss-Resilient Codes. Pro-
ceedings of 9th Annual ACM Symposium on Theory of
Computing, 1997.

[17] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spiel-
man. Efficient Erasure Correction Codes. IEEE Trans.
on Information Theory, Special Issue on Codes and
Graphs and Iterative Algorithms, Vol. 47, No. 2, Feb.
2001.

[18] F. J. MacWilliams, N.J.A. Sloane. The Theory of
Error-Correcting Codes. North Holland, Amsterdam,
1977.

[19] S. McCanne, V. Jacobson, M. Vetterli. Receiver-
driven Layered Multicast. Proceedings of ACM SIG-
COMM ’96, pp. 117-130, 1996.

[20] C. K. Miller. Reliable Multicast Protocols: A Practi-
cal View. Proceedings of 22nd Annual Conference on
Local Computer Networks (LCN ’97), 1997.

[21] J. Nonnenmacher, E.W. Biersack. Reliable Multi-
cast: Where to Use Forward Error Correction. Pro-
ceedings of IFIP 5th Int’l Workshop on Protocols for
High Speed Networks, pp. 135-148, Sophia Antipolis,
France, October 1996, Chapman and Hall.

[22] J. Nonnenmacher, E.W. Biersack. Asynchronous Mul-
ticast Push: AMP. Proceedings of International
Conference on Computer communications, Cannes,
France, November 1997.

[23] J. Nonnenmacher, E.W. Biersack, D. Towsley. Parity-
Based Loss Recovery for Reliable Multicast Trans-
missions. Proceedings of ACM SIGCOMM ’97, 1997.

[24] M. O. Rabin. Efficient Dispersal of Information for
Security, Load Balancing, and Fault Tolerance. Jour-
nal of the ACM, Vol. 38, pp. 335-348, 1989.

[25] I.S. Reed, G. Solomon. Polynomial Codes Over Cer-
tain Finite Fields. J. Soc. Indust. Appl. Math, Vol. 8,
pp. 300-304, 1960.

[26] L. Rizzo. Effective Erasure Codes for Reliable Com-
puter Communication Protocols. Computer Commu-
nication Review, April 1997.

[27] L. Rizzo, L. Vicisano. A Reliable Multicast Data
Distribution Protocol Based on Software FEC Tech-
niques. Proceedings of HPCS ’97, Greece, June 1997.

[28] E. Schooler, J. Gemmell. Using multicast FEC to
solve the midnight madness problem. Microsoft Re-
search Technical Report MS-TR-97-25, September,
1997.

[29] J. Scott. Report on Waves. Report of the four-
teenth meeting of the British Association for the Ad-
vancement of Science, York, September 1844 (London
1845), pp 311-390, Plates XLVII-LVII)

[30] L. Vicisano, L. Rizzo, J. Crowcroft. TCP-like conges-
tion control for layered multicast data transfer. Pro-
ceedings of IEEE INFOCOM, volume 3, pages 996–
1003, San Francisco, California, March–April 1998.

[31] J. Widmer, M. Handley. Extending equation-based
congestion control to multicast applications. Proceed-
ings of ACM SIGCOMM, pages 275–286, San Diego,
California, August 2001.

[32] R. Yavatkar, J. Griffoen, M. Sudan. A Reliable Dis-
semination Protocol for Interactive Collaborative Ap-
plications. Proceedings of ACM Multimedia ’95, San
Francisco, California, 1995, pp. 333-344.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)

$ IEEE

