Erasure resilient MDS code with four redundant packets

Emin Gabrielyan
EPFL / Switzernet Sàrl 2005-11-03
$\underline{\text { HTML }}-\underline{\text { HTM (MS) }}-\underline{\text { PDF }}-\underline{\text { DOC }}$

We are trying to build $(11,7),(10,6)$ and $(9,5)$ MDS codes

Given are:

- 7, 6 or 5 information packets
- 4 redundant packets
- Packet sizes are identical and are divisible by 3, minimum 3 bits
- Information must be retrieved if number of losses does not exceed 4

We must check for which numbers of information packets we can build an MDS code.
Let (a, b, c) be a packet where a, b and c are its first, second and third portions.
Let f be a function which applied to a packet (a, b, c) forms another packet of the same size, whose first, second and third elements are XOR results of some subsets given from $\{a, b, c\}$. Example: $f(x, y, z)=(x+y, z, x+z)$, where operation + is XOR.

We are interested in only invertible functions. There are 168 such functions producing 168 invertible packets. Each function can be represented by a binary 3 by 3 matrix.

Four redundant packets are constructed as follows
$\sum_{i=1}^{k}\left(x_{i}, y_{i}, z_{i}\right)$
$\sum_{i=1}^{k} f_{i}\left(x_{i}, y_{i}, z_{i}\right)$
$\sum_{i=1}^{k} g_{i}\left(x_{i}, y_{i}, z_{i}\right)$
$\sum_{i=1}^{k} h_{i}\left(x_{i}, y_{i}, z_{i}\right)$
where k is the number of information packets, i.e. is equal to 7,6 or 5 .
f, g and h are vectors whose elements are from the list of 168 invertible functions

Restoring two information packets from $(1, f),(1, g)$ and $(1, h)$

In case, two information packets i, j are lost and we received the first and the second redundant packet (the other two are also lost). Then if $f_{i}^{-1} \cdot f_{j}\left(x_{j}, y_{j}, z_{j}\right)+\left(x_{j}, y_{j}, z_{j}\right)$ is invertible for any pair of i and j we can restore (x_{j}, y_{j}, z_{j}) and successively (x_{i}, y_{i}, z_{i}).

Similarly for the cases when two information packets must be restored from the first and third (g-redundant) packets or from the first and fourth (h-redundant) packets.

In the set of 168 invertible functions, there are 4032 subsets of the size of 5 -functions, 1344 subsets of the size of 6 -functions and 192 subsets of the size of 7 -functions, for which the above condition ($f_{i}^{-1} \cdot f_{j}+1$ is invertible) holds for any pair of the subset.

Restoring two information packets from (f, g)

Let us now examine valid combinations of f and g vectors. For the sizes of 5,6 and 7 functions there are $4032 \times 4032 \times 5$!, $1344 \times 1344 \times 6$! and $192 \times 192 \times 7$! possible pairs of f and g vectors. An (f, g) pair is valid only if for any two i and j (the lost packets) the following function:
$f_{i}^{-1} \cdot f_{j}+g_{i}^{-1} \cdot g_{j}$
is invertible

Restoring three information packets from ($1, f, g$)

Additionally, an (f, g)-pair is valid only if it can retrieve, together with the first redundant packet, any three lost information packets.

For that the following function must be invertible for any i, j and k :
$\left(f_{i}^{-1} \cdot f_{j}+1\right)^{-1} \cdot\left(f_{i}^{-1} \cdot f_{k}+1\right)+\left(g_{i}^{-1} \cdot g_{j}+1\right)^{-1} \cdot\left(g_{i}^{-1} \cdot g_{k}+1\right)$

Instead of examining all possible pairs of vectors
$4032 \times 4032 \times 5$! - for 5 information packets (codeword length $=9$)
$1344 \times 1344 \times 6$! - for 6 information packets (codeword length $=10$)
$192 \times 192 \times 7$! - for 7 information packets (codeword length $=11$)
We fixed the f-vector on the first candidate
$(11,73,140,167,198)$ - for 5 information packets
(11,73,140,167,198,292) - for 6
(11,73,140,167,198,292,323) - and for 7
Thus we limited our choice by the following number of pairs
4032×5 ! - for 5 information packets
1344×6 ! - for 6
192×7 ! - and for 7
for 7 information packets we have found 1680 valid (f, g)-pairs
for 6 information packets we have found 1680 valid (f, g)-pairs as well
and for 5 information packets also we have found $\underline{1680 \text { valid (} f, g \text {)-pairs }}$
Thus (10, 7)-code exists, which is an MDS code.

Choosing h-redundant packet, restoring two information packets from (g, h) and three information packets from ($1, g, h$)

For any of 1680 valid (f, g)-pairs we must examine a valid (f, h)-pair, thus there are $1680 \times(1680-1) / 2$ possible (f, g, h) combinations to examine.
(g, h)-pair is valid only if:
$g_{i}^{-1} \cdot g_{j}+h_{i}^{-1} \cdot h_{j}$ is invertible for any two i and j (the case when two information packets must be retrieved from the g and h-redundant packets)
and if:
$\left(g_{i}^{-1} \cdot g_{j}+1\right)^{-1} \cdot\left(g_{i}^{-1} \cdot g_{k}+1\right)+\left(h_{i}^{-1} \cdot h_{j}+1\right)^{-1} \cdot\left(h_{i}^{-1} \cdot h_{k}+1\right)$ is also invertible for any three lost information packets i, j and k (the case when three information packets must be retrieved from the first redundant packets and from the g and h-redundant packets).
there are 28224 valid (g, h)-pairs for 7 information packets
there are also 28224 valid (g, h)-pairs with 6 information packets
and there are 56448 valid (g, h)-pairs with 5 information packets
Restoring three information packets from (f, g, h) and four information packets from ($1, f$, $g, h)$

Three lost information packets can be retrieved from f, g and h-redundant packets if the following function is invertible
$\left(f_{i}^{-1} \cdot f_{j}+g_{i}^{-1} \cdot g_{j}\right)^{-1} \cdot\left(f_{i}^{-1} \cdot f_{k}+g_{i}^{-1} \cdot g_{k}\right)+\left(f_{i}^{-1} \cdot f_{j}+h_{i}^{-1} \cdot h_{j}\right)^{-1} \cdot\left(f_{i}^{-1} \cdot f_{k}+h_{i}^{-1} \cdot h_{k}\right)$
for any three lost information packets i, j and k
Among $28224(g, h)$-pairs with 7 information packets and $28224(g, h)$-pairs with 6 information packets there were none, satisfying the above constraint, thus:
$(11,7)$ MDS code does not exist and
$(10,6)$ MDS code does not exist (at least with this method)
Additionally vector h is valid only if we can also restore any four i, j, k and l lost information packets from the four redundant packets. From the four redundant packets we can obtain these three (by eliminating (x_{i}, y_{i}, z_{i}) corposant)

$$
\begin{aligned}
& \left(f_{i}^{-1} \cdot f_{j}+1\right)\left(x_{j}, y_{j}, z_{j}\right)+ \\
& \left(f_{i}^{-1} \cdot f_{k}+1\right)\left(x_{k}, y_{k}, z_{k}\right)+ \\
& \left(f_{i}^{-1} \cdot f_{l}+1\right)\left(x_{l}, y_{l}, z_{l}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(g_{i}^{-1} \cdot g_{j}+1\right)\left(x_{j}, y_{j}, z_{j}\right)+ \\
& \left(g_{i}^{-1} \cdot g_{k}+1\right)\left(x_{k}, y_{k}, z_{k}\right)+ \\
& \left(g_{i}^{-1} \cdot g_{l}+1\right)\left(x_{l}, y_{l}, z_{l}\right) \\
& \left(h_{i}^{-1} \cdot h_{j}+1\right)\left(x_{j}, y_{j}, z_{j}\right)+ \\
& \left(h_{i}^{-1} \cdot h_{k}+1\right)\left(x_{k}, y_{k}, z_{k}\right)+ \\
& \left(h_{i}^{-1} \cdot h_{l}+1\right)\left(x_{l}, y_{l}, z_{l}\right)
\end{aligned}
$$

From them we can obtain these two by eliminating the (x_{j}, y_{j}, z_{j}) composant:
$\left(\left(f_{i}^{-1} \cdot f_{j}+1\right)^{-1} \cdot\left(f_{i}^{-1} \cdot f_{k}+1\right)+\left(g_{i}^{-1} \cdot g_{j}+1\right)^{-1} \cdot\left(g_{i}^{-1} \cdot g_{k}+1\right)\right)\left(x_{k}, y_{k}, z_{k}\right)+$ $\left(\left(f_{i}^{-1} \cdot f_{j}+1\right)^{-1} \cdot\left(f_{i}^{-1} \cdot f_{l}+1\right)+\left(g_{i}^{-1} \cdot g_{j}+1\right)^{-1} \cdot\left(g_{i}^{-1} \cdot g_{l}+1\right)\right)\left(x_{l}, y_{l}, z_{l}\right)$
$\left(\left(f_{i}^{-1} \cdot f_{j}+1\right)^{-1} \cdot\left(f_{i}^{-1} \cdot f_{k}+1\right)+\left(h_{i}^{-1} \cdot h_{j}+1\right)^{-1} \cdot\left(h_{i}^{-1} \cdot h_{k}+1\right)\right)\left(x_{k}, y_{k}, z_{k}\right)$
$\left(\left(f_{i}^{-1} \cdot f_{j}+1\right)^{-1} \cdot\left(f_{i}^{-1} \cdot f_{l}+1\right)+\left(h_{i}^{-1} \cdot h_{j}+1\right)^{-1} \cdot\left(h_{i}^{-1} \cdot h_{l}+1\right)\right)\left(x_{l}, y_{l}, z_{l}\right)$

From the above two, we can eliminate (x_{k}, y_{k}, z_{k}) and obtain the below function applied to $\left(x_{l}, y_{l}, z_{l}\right)$. If this function is invertible then we can retrieve (x_{l}, y_{l}, z_{l}) and consecutively all other information packets.

$$
\begin{aligned}
& \left(\left(f_{i}^{-1} \cdot f_{j}+1\right)^{-1} \cdot\left(f_{i}^{-1} \cdot f_{k}+1\right)+\left(g_{i}^{-1} \cdot g_{j}+1\right)^{-1} \cdot\left(g_{i}^{-1} \cdot g_{k}+1\right)\right)^{-1} \cdot \\
& \quad\left(\left(f_{i}^{-1} \cdot f_{j}+1\right)^{-1} \cdot\left(f_{i}^{-1} \cdot f_{l}+1\right)+\left(g_{i}^{-1} \cdot g_{j}+1\right)^{-1} \cdot\left(g_{i}^{-1} \cdot g_{l}+1\right)\right) \\
& + \\
& \left(\left(f_{i}^{-1} \cdot f_{j}+1\right)^{-1} \cdot\left(f_{i}^{-1} \cdot f_{k}+1\right)+\left(h_{i}^{-1} \cdot h_{j}+1\right)^{-1} \cdot\left(h_{i}^{-1} \cdot h_{k}+1\right)\right)^{-1} \cdot \\
& \quad\left(\left(f_{i}^{-1} \cdot f_{j}+1\right)^{-1} \cdot\left(f_{i}^{-1} \cdot f_{l}+1\right)+\left(h_{i}^{-1} \cdot h_{j}+1\right)^{-1} \cdot\left(h_{i}^{-1} \cdot h_{l}+1\right)\right)
\end{aligned}
$$

Among $56448(g, h)$-pairs we have found 28224 valid (f, g, h)-triplets with 5 information packets.

Thus $(9,5)$ MDS code exists with four redundant packets
All valid (1, f, g, h) redundant packets are presented here.

AMPL programs:

Trying to find (11, 7)-code

- step 1
- step 2
- step 3
- step 4
- step 5 and conclusions

Trying to find (10, 6)-code

- step 1
- step 2
- step 3
- step 4

Finding (9,5) MDS code

- step 1
- step 2
- step 3
- step 4
- step 5

US - Mirror
CH - Mirror
© 2005, Switzernet (www.switzernet.com)

Relevant links:

051025-erasure-resilient
051027-erasure-9-2-resilient
051031-erasure-10-3-resilient
051101-erasure-9-7-resilient
051102-erasure-10-7-resilient
051103-erasure-9-5-resilient

