
Erasure resilient systematic code with two information packets and up
to 7 redundant packets

emin.gabrielyan@{epfl.ch, switzernet.com}
2005-10-27

HTML – PDF – DOC

Given is the problem:

- The receiver needs to receive any two packets out of all transmitted packets
(information and redundancy) in order to completely recover the two information
packets.

- Length of the packets must be equal and divisible to 3 (minimum 3 bits).

Let the first packet’s first, second and third components be a, b and c, and the second
packet’s components be correspondingly x, y and z.

We will use the following notation:

 – denotes the first packet

a

 – denotes the second packet

x

 – denotes a bitwise XOR result of the first and second packets (we mean an
XOR results when we put the components vertically)

x
a

The redundant packets produced by this code are XOR results of the first packet
with some derivative obtained from the second packet . The derivatives are obtained
by reordering and XOR-ing the three components of the

a c
x

Example of a (4,2) code:

, ,

a x

z
a

x
y
a

In case if is received with one of the redundant pa
the corresponding derivative and extract from the
received with one of redundant packets, we extrac

x

a
yz

 second packet.

ckets, we can produce from
redundant packet. In case
t the derivative from whic
b

bc
yz
yz
bc
bc
 yz
 ,
yx
bc

zy
bc
 x
yz
we
h (
yz

abc
as
bc

you can see) we are capable to build back . Finally if we received the two redundant
packets:

xyz

We XOR them and obtain . It is another derivative of , which can be also
converted back to . Once is found we can restore from any redundant
packet.

x
yzy
zyx

xyz
xyz

abcxyz

This example can be generalized:

- The redundant packets must be built from such self-containing derivatives of
, from which we can fully restore back (needed in the case when we receive

 with one redundant packet). I.e. the derivative of must be reversible.

xyz
xyz

xyzabc

- The XOR result of two self-containing derivatives must be also a self-containing
reversible derivative of (we need this when two redundant packets are
received).

xyz

Equipped with the above formulated point of view we first obtain all reversible
derivatives of . xyz

A derivative of may have one of the following 7 components:

, , , , , ,

Thus we have 210
)!37(

!7
=

−
candidates

The derivative is not reversible and must be removed from the list, if the XOR result of
any of two of its components is equal to the third component.

From 210 candidates we obtain 168 self-containing reversible derivatives of .

These 168 self-containing results consist of the re-ordered versions of the following 28
distinct derivatives:

Component 1 Component 2 Component 3
x y z
x y x+z
x y y+z
x y x+y+z

xyz

x y z
x
y

y
z

z
x

x
y
z

xyz

x x+y z
x x+y x+z
x x+y y+z
x x+y x+y+z
x z y+z
x z x+y+z
x x+z y+z
x x+z x+y+z
y x+y z
y x+y x+z
y x+y y+z
y x+y x+y+z
y z x+z
y z x+y+z
y x+z y+z
y y+z x+y+z

x+y z x+z
x+y z y+z
x+y x+z x+y+z
x+y y+z x+y+z

z x+z y+z
z x+z x+y+z
z y+z x+y+z

x+z y+z x+y+z
where the operation + is a binary XOR

Let us enumerate the list of all derivatives and build a directed Graph whose vertices are
the 168 self-containing reversible derivatives of and there is an arc from one self-
containing derivative of to another one, if the sequential number of the first is
smaller the number of the second one and if the XOR result of these two reversible
derivatives is also reversible (i.e. is in the set of the 168 derivatives).

xyz
xyz

Such a graph has 4032 edges.

Any two adjacent vertices of this Graph can be used for production of two redundant
packets and we have a (2,2) erasure resilient code.

A 3-complete sub-graph of our Graph consist of three distinct reversible derivatives of

, such that an XOR of any of two of these derivatives gives us also a reversible
derivative of . It means that if our Graph has 3-complete sub-graph we can create a
(5,2) erasure resilient code.

xyz
xyz

Indeed, our Graph has 16128 such 3-complete sub-graphs.

Similarly, if we have a k-complete sub-graph in our Graph we can create erasure
resilient code. Hopefully we have also 4-complete sub-graphs and more …

)2,2(+k

Here are the numbers of the k-complete sub-graphs in our Graph

vertices 168
arcs 4032

3-complete sub-graphs 16128
4-complete sub-graphs 6720
5-complete sub-graphs 4032
6-complete sub-graphs 1344
7-complete sub-graphs 192
8-complete sub-graphs 0

Thus with this scheme we have 192 possible (9,2) erasure resilient codes, which can
restore the original two information packets from any two received packets (out of 9
transmitted). Note that with three bits symbols the Reed Solomon code can produce only
blocks of packets. I.e. the largest Reed-Solomon code is RS(7,2). 7123 =−

Below are a few of our codes (the full list is in the output of the AMPL program):

(11,73,140,167,198,292,323)
(11,75,134,182,241,247,314)
(11,78,145,153,212,273,332)
(12,71,137,163,203,290,328)
(12,77,135,178,244,249,309)
(12,80,146,149,217,267,333)

The numbers above refer to a reversible derivative of from the table below. The
derivative must be XOR-ed with in order to obtain the instance of the corresponding
redundant packet.

Number Component 1 Component 2 Component 3
11 x y z
12 x y x+z
13 x y y+z
14 x y x+y+z
18 x x+y z
19 x x+y x+z
20 x x+y y+z
21 x x+y x+y+z
23 x z y
24 x z x+y
27 x z y+z
28 x z x+y+z
30 x x+z y

xyz
abc

Number Component 1 Component 2 Component 3
31 x x+z x+y
34 x x+z y+z
35 x x+z x+y+z
37 x y+z y
38 x y+z x+y
39 x y+z z
40 x y+z x+z
44 x x+y+z y
45 x x+y+z x+y
46 x x+y+z z
47 x x+y+z x+z
53 y x z
54 y x x+z
55 y x y+z
56 y x x+y+z
67 y x+y z
68 y x+y x+z
69 y x+y y+z
70 y x+y x+y+z
71 y z x
73 y z x+y
75 y z x+z
77 y z x+y+z
78 y x+z x
80 y x+z x+y
81 y x+z z
83 y x+z y+z
85 y y+z x
87 y y+z x+y
89 y y+z x+z
91 y y+z x+y+z
92 y x+y+z x
94 y x+y+z x+y
95 y x+y+z z
97 y x+y+z y+z
102 x+y x z
103 x+y x x+z
104 x+y x y+z
105 x+y x x+y+z
109 x+y y z
110 x+y y x+z
111 x+y y y+z
112 x+y y x+y+z
120 x+y z x

Number Component 1 Component 2 Component 3
121 x+y z y
124 x+y z x+z
125 x+y z y+z
127 x+y x+z x
128 x+y x+z y
130 x+y x+z z
133 x+y x+z x+y+z
134 x+y y+z x
135 x+y y+z y
137 x+y y+z z
140 x+y y+z x+y+z
141 x+y x+y+z x
142 x+y x+y+z y
145 x+y x+y+z x+z
146 x+y x+y+z y+z
149 z x y
150 z x x+y
153 z x y+z
154 z x x+y+z
155 z y x
157 z y x+y
159 z y x+z
161 z y x+y+z
162 z x+y x
163 z x+y y
166 z x+y x+z
167 z x+y y+z
177 z x+z y
178 z x+z x+y
181 z x+z y+z
182 z x+z x+y+z
183 z y+z x
185 z y+z x+y
187 z y+z x+z
189 z y+z x+y+z
190 z x+y+z x
191 z x+y+z y
194 z x+y+z x+z
195 z x+y+z y+z
198 x+z x y
199 x+z x x+y
202 x+z x y+z
203 x+z x x+y+z
204 x+z y x

Number Component 1 Component 2 Component 3
206 x+z y x+y
207 x+z y z
209 x+z y y+z
211 x+z x+y x
212 x+z x+y y
214 x+z x+y z
217 x+z x+y x+y+z
219 x+z z y
220 x+z z x+y
223 x+z z y+z
224 x+z z x+y+z
232 x+z y+z x
233 x+z y+z y
235 x+z y+z z
238 x+z y+z x+y+z
239 x+z x+y+z x
241 x+z x+y+z x+y
242 x+z x+y+z z
244 x+z x+y+z y+z
247 y+z x y
248 y+z x x+y
249 y+z x z
250 y+z x x+z
253 y+z y x
255 y+z y x+y
257 y+z y x+z
259 y+z y x+y+z
260 y+z x+y x
261 y+z x+y y
263 y+z x+y z
266 y+z x+y x+y+z
267 y+z z x
269 y+z z x+y
271 y+z z x+z
273 y+z z x+y+z
274 y+z x+z x
275 y+z x+z y
277 y+z x+z z
280 y+z x+z x+y+z
289 y+z x+y+z y
290 y+z x+y+z x+y
291 y+z x+y+z z
292 y+z x+y+z x+z
296 x+y+z x y

Number Component 1 Component 2 Component 3
297 x+y+z x x+y
298 x+y+z x z
299 x+y+z x x+z
302 x+y+z y x
304 x+y+z y x+y
305 x+y+z y z
307 x+y+z y y+z
309 x+y+z x+y x
310 x+y+z x+y y
313 x+y+z x+y x+z
314 x+y+z x+y y+z
316 x+y+z z x
317 x+y+z z y
320 x+y+z z x+z
321 x+y+z z y+z
323 x+y+z x+z x
325 x+y+z x+z x+y
326 x+y+z x+z z
328 x+y+z x+z y+z
331 x+y+z y+z y
332 x+y+z y+z x+y
333 x+y+z y+z z
334 x+y+z y+z x+z

where operation + is a binary XOR

Here is an implementation of the algorithm in AMPL:

reset;

set B ordered = {"x","y","z"};

set A{i in 1..7} within B =
 (if i div 1 mod 2 then {member(1,B)} else {}) union
 (if i div 2 mod 2 then {member(2,B)} else {}) union
 (if i div 4 mod 2 then {member(3,B)} else {});

set S{n in 1..7^3,p in 0..2} within B =
 A[(n-1) div 7^p mod 7 + 1];

#210 members according to Binomial Coefficient (7 over 3) multiplied by
3!
set Binomial =
 {
 n in 1..7^3:
 (S[n,0] symdiff S[n,1] not within {}) and
 (S[n,1] symdiff S[n,2] not within {}) and
 (S[n,2] symdiff S[n,0] not within {})

 };

set Codes ordered =
 { n in Binomial:
 not (
 ((S[n,0] symdiff S[n,1]) symdiff S[n,2] within {}) or
 ((S[n,1] symdiff S[n,2]) symdiff S[n,0] within {}) or
 ((S[n,2] symdiff S[n,0]) symdiff S[n,1] within {})
)
 };

set Graph =
 {
 n in Codes, m in Codes:
 {
 k in Codes:
 ((S[n,0] symdiff S[m,0]) symdiff S[k,0] within {}) and
 ((S[n,1] symdiff S[m,1]) symdiff S[k,1] within {}) and
 ((S[n,2] symdiff S[m,2]) symdiff S[k,2] within {})
 } not within {}
 };

set Codes2 = { (n1,n2) in Graph: n2>n1};

set Codes3 =
 {
 (n1,n2) in Codes2, n3 in Codes:
 n3>n2 and
 (n1,n3) in Codes2 and
 (n2,n3) in Codes2
 };

set Codes4 =
 {
 (n1,n2,n3) in Codes3, n4 in Codes:
 n4>n3 and
 (n1,n4) in Codes2 and
 (n2,n4) in Codes2 and
 (n3,n4) in Codes2
 };

set Codes5 =
 {
 (n1,n2,n3,n4) in Codes4, n5 in Codes:
 n5>n4 and
 (n1,n5) in Codes2 and
 (n2,n5) in Codes2 and
 (n3,n5) in Codes2 and
 (n4,n5) in Codes2
 };

set Codes6 =
 {
 (n1,n2,n3,n4,n5) in Codes5, n6 in Codes:
 n6>n5 and
 (n1,n6) in Codes2 and
 (n2,n6) in Codes2 and

 (n3,n6) in Codes2 and
 (n4,n6) in Codes2 and
 (n5,n6) in Codes2
 };

set Codes7 =
 {
 (n1,n2,n3,n4,n5,n6) in Codes6, n7 in Codes:
 n7>n6 and
 (n1,n7) in Codes2 and
 (n2,n7) in Codes2 and
 (n3,n7) in Codes2 and
 (n4,n7) in Codes2 and
 (n5,n7) in Codes2 and
 (n6,n7) in Codes2
 };

set Codes8 =
 {
 (n1,n2,n3,n4,n5,n6,n7) in Codes7, n8 in Codes:
 n8>n7 and
 (n1,n8) in Codes2 and
 (n2,n8) in Codes2 and
 (n3,n8) in Codes2 and
 (n4,n8) in Codes2 and
 (n5,n8) in Codes2 and
 (n6,n8) in Codes2 and
 (n7,n8) in Codes2
 };

display card(Codes);
display card(Codes2);
display card(Codes3);
display card(Codes4);
display card(Codes5);
display card(Codes6);
display card(Codes7);
display card(Codes8);

for
 {n in Codes:
 (n-1) div 7^0 mod 7 + 1 > (n-1) div 7^1 mod 7 + 1 > (n-1) div 7^2
mod 7 + 1
 }
 display n,S[n,2],S[n,1],S[n,0];

display Codes7;

* * *

© 2005 – Switzernet (www.switzernet.com)

US – Mirror
CH – Mirror

http://www.switzernet.com/
http://4z.com/people/emin-gabrielyan/public/051027-erasure-9-2-resilient
http://switzernet.com/people/emin-gabrielyan/051027-erasure-9-2-resilient

