

Computing the needed redundancy overhead of an erasure resilient

code for a successful media transmission over a network with random
packet loss probability

Emin Gabrielyan

EPFL / Switzernet
emin.gabrielyan@{epfl.ch, switzernet.com}

2005-10-27

HTML – DOC – PDF

Table of contents:

I. SECURE MEDIA STREAMING .. 1
II. BINOMIAL DISTRIBUTION ... 2
III. FAST COMPUTATION OF BINOMIAL DISTRIBUTION.. 4
IV. COMPUTING THE MINIMALLY NEEDED LENGTH OF THE TRANSMITTED

CODEWORD FOR MAINTAINING THE DECODING FAILURE PROBABILITY
SATISFACTORILY LOW... 5

V. INTERPOLATION... 9
VI. A COARSE APPROXIMATION .. 12

Abstract: Packetized communications over internet behave like erasure channels. For
example, files or real-time media sent over the internet are chopped into packets, and
each packet is either received without error or not received. Assuming Maximum
Distance Separable (MDS) erasure resilient codes; we present a method for computing
the codeword overhead (needed for a satisfactory transmission) as a function from the
random loss probability in the network.

I. Secure Media Streaming

Assuming an erasure channel and Maximum Distance Separable (MDS) systematic codes
(such as Reed Solomon codes, or see an erasure resilient checksum code example) given
is the following problem:

- We are streaming an on-line media from a sender to the receiver over a network
with a packet’s random loss probability p

- In order to compensate p percent of network losses, the sender, after every M
transmitted media packets, is adding some redundant packets relative to these last
M packets. Since the encoder is systematic and is using MDS codes, the receiver
can restore the initial media if any of M packets out of all transmitted packets are
survived (out of M media packets together with their redundant packets)

http://switzernet.com/people/emin-gabrielyan/051025-erasure-resilient/

- Since we are dealing with on-line media (such as a VOIP phone conversation), M
cannot be infinitely large

- Mean of the number of lost packets at the receiver for a block of N transmitted
packets is , but with random loss pattern, the probability of receiving less
than can not be neglected

pN ⋅
pN ⋅

- Let be the number of packets in the block containing M media packets
and redundancy packets. Let the desired probability of unsuccessful
decoding at the receiver be DER (Decoding Error Rate)

MN ≥
MN −

By sufficiently increasing the N, for a given M and p we can reduce the probability of
decoding failure to any desired rate. Our question is, which is the smallest N for a given

 that keeps the decoding failure probability at the receiver below a given DER. 10 <≤ p

II. Binomial Distribution

The probability of having n erasures in a block of N packets with a random loss
probability p is known as binomial distribution and denoted as:

nNn
p qp

n
N

NnP −⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=)(

where
)!(!

!
nNn

N
n
N

−⋅
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

and 1−= pq

Binomial Distribution

0.
01

0.
03

0.
07

0.
13

0.
18 0.

19

0.
16

0.
11

0.
07

0.
03

0.
01

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The above plot shows the distribution of n erasures out of 20=N packets with 3.0=p

The probability of having less than M survived packets in a block of N packets is the
probability of having or more erasures; it is computed and denoted as follows: 1+−MN

∑
+−=

−⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+−

N

MNn

nNn
p qp

n
N

MMNI
1

),1(

For a given M and p, with increase of N this probability decreases. Assume M is 5 and

. The below plot shows four Binomial distributions for a value of N starting from
9 and enlarging up to 15.

3.0=p

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
9

11
13
15

0

0.05

0.1

0.15

0.2

0.25

0.3

For a given N the sum of histograms marked in yellow),1(MMNI p +− is the
probability of having more than MN − erasures, i.e. the probability of decoding failure
at the receiver.

These probabilities are plotted on the chart below.

0.
09

88
1

0.
02

16
2

0.
00

40
3

0.
00

06
7

0

0.02

0.04

0.06

0.08

0.1

0.12

9 11 13 15

If our objective (in the same example with 5=M and 3.0=p) is to have a DER below
1%, we can transmit the media in blocks of 13 packets (containing 8 redundant packets).

For a given M and DER we need a fast method for computing the minimal required N
needed for successful media streaming at network’s random loss probability p.

III. Fast computation of Binomial Distribution

The below representation of binomial contains less multiplications and divisions and we
have no components containing very large numbers and therefore have less precision
errors:

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=

<<⎟
⎠
⎞

⎜
⎝
⎛ ⋅

+

≤<⎟
⎠
⎞

⎜
⎝
⎛ ⋅

+−

=

=⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∏

∏
−

=

=−

Nkifp

NkNifqpp
i

ik

Nkifpqq
i

ikN

kifq

qp
k
N

N

kN

i

k

i

N

kNk

2

2
0

0

1

1

k
kN

qppqq
−

⋅=

kN
k

pqqpp −⋅=

Additional speedup is obtained by applying the above method for computing the binomial
only at and by obtaining the remaining values of the binomial,
iteratively, from the value computed at k:

)(pNroundk ⋅=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⋅
−
+

⋅+

⋅
+−

⋅−

=

p
q

nN
nNnp

or
q
p

n
nNNnp

Nnp

p

p

p
1)1(

1)1(

)(

Below is an implementation of the algorithm in AMPL:

reset;
param ver symbolic = "a46a";

param p;
param q=1-p;
param N;

param k=round(N*p);

param pq=
 if k in interval [1,N/2] then p*q^((N-k)/k) else
 if k in interval (N/2,N-1] then p^(k/(N-k))*q ;

param Bk=
 if k==0 then q^N else
 if k==N then p^N else
 if k in interval [1,N/2] then prod{i in 1..k} ((N-k+i)/i*pq) else
 if k in interval (N/2,N-1] then prod{i in 1..N-k} ((k+i)/i*pq) ;

param Binomial{n in 0..N} =
 if n=k then Bk
 else if n>k then Binomial[n-1]*(N-n+1)/n*p/q
 else if n<k then Binomial[n+1]*(n+1)/(N-n)*q/p;

data;
param N=20;
param p=0.3;
model;

param file symbolic = ver & "-out.csv";
printf ",Binomial Distribution\n" > (file);
for{n in 0..N}
{
 printf "%d,%.20f\n",n,Binomial[n] > (file);
}
close (file);

IV. Computing the minimally needed length of the transmitted codeword for
maintaining the decoding failure probability satisfactorily low

The decoding failure probability for a given N is always more than NpM ⋅

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10 11 12

M*p^N

Binomial distribution for , 12=N 3=M , 7.0=p

Therefore the lower bound for N seeking a failure probability less than or equal to DER
is:

⎟
⎠
⎞

⎜
⎝
⎛=

M
DERN plog

From the other side if for a given N

() DERNMNPM p ≤+−⋅ 1

Then NN ≤

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M*P(N-M+1|p,N)

Binomial distribution with , 15=N 3=M , 7.0=p

The upper bound N for N is chosen as the smallest from sequence ...,8,4,2 NNN ⋅⋅⋅ ,

for which () DERNMNPM p ≤+−⋅ 1 :

()NN i
c

i
⋅=

≥

=

2min
4

1

such that:

M
DERqp

k
kMNM

k

M
MNi i

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅

++−⋅∏
−

=

−
+−⋅1

1

1
1212

For every { }NNN ...∈ in the interval from the lower bound to the upper bound, we
compute the exact value of the failure probability, and chose the lowest N at which the
failure probability is below DER.

Below is an implementation of the algorithm in AMPL:

reset;
param ver symbolic = "a73a";

param M integer >=1;
param DER;

set P within interval [0,1] = setof{p in 0..0.9 by 0.001} round(p,10);

param minN{p in P} = max(M,if p=0 then 0 else
floor(log10(DER/M)/log10(p)));

param maxN_probe{p in P, pr in 1..4} = minN[p]*2^pr;

param Binomial_probe{p in P, pr in 1..4} =
 if M>=2 then
 prod{i in 1..M-1}
 (
 (maxN_probe[p,pr]-M+1+i)/i *
 p^((maxN_probe[p,pr]-M+1)/(M-1))*(1-p)
)
 else
 p^maxN_probe[p,pr];

param maxN{p in P} = maxN_probe[p, min{pr in 1..4:
Binomial_probe[p,pr]<=DER/M} pr];

set NN{p in P} = {minN[p]..maxN[p]};

param Binomial1{p in P, Ntr in NN[p]}=
 if M>=2 then
 prod{i in 1..M-1}((Ntr-M+1+i)/i*p^((Ntr-M+1)/(M-1))*(1-p))
 else
 p^Ntr;

param pbyq{p in P} = p/(1-p);
param Binomial{p in P, Ntr in NN[p], n in Ntr-M+1..Ntr} =
 if n=Ntr-M+1

 then
 Binomial1[p,Ntr]
 else
 Binomial[p,Ntr,n-1]*(Ntr-n+1)/n*pbyq[p];

param Failure{p in P, Ntr in NN[p]} = sum{i in Ntr-
M+1..Ntr}Binomial[p,Ntr,i];

param goodN{p in P} = min{Ntr in NN[p]: Failure[p,Ntr]<=DER} Ntr;

param file symbolic = ver & "-out.csv";

let DER := 1e-5;

param log symbolic = "benchmark.log";
param benchmark_rec symbolic;
param benchmark_start;
param benchmark_stop;
let benchmark_start := _ampl_time;
printf "Version %s:\n",ver;

printf ",FEC\n" > (file);
for{m in 1..15}
{
 let M := m;
 print M, DER;
 for{p in P}
 {
 printf "%f,%f\n",p,
 goodN[p]/M
 > (file);
 }
 printf "\n" > (file);
}
close (file);

let benchmark_stop := _ampl_time;
let benchmark_rec := sprintf("%s, %s, done in %f seconds",
 sub(ctime(),"^[^]* *",""),ver,benchmark_stop-benchmark_start);
print benchmark_rec;
print benchmark_rec >> (log);
close (log);

Codeword overheads as functions from random loss probability are plotted for various
numbers of media packets in the block:

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8

p

N/M
1/(1-p)

M from 1 to 15

The smallest values of N at which the decoding failure probability is still below

 for all M in {1..15}. 510−=DER

The orange curve represents the overhead of an ideal communication that reached its
Shannon limit. Our curve will ultimately reach the Shannon limit when M is infinitely
large. But since the streaming buffer is limited by real-time media constraints, M cannot
grow too large and therefore the real time media streaming is necessarily separated from
the Shannon limit by a certain gap.

V. Interpolation

Instead of an integer codeword length function of p, we would like to have a curve
crossing smoothly also the non integer values between two 1−N and N.

Let us remind that N is chosen such that the failure probability at N is below DER and at

 is above: 1−N

),1(),11(MMNIDERMMNI pp +−≥≥+−−

The failure probabilities for N and 1−N are known and already computed.

We know that the lower bound of),1(MMNI p +− is (when NpM ⋅ 1=M , it is an

exact value). Considering the shape of the lower bound as sufficiently good
approximation, we thus will chose a similar function for finding the real value x between
two integers and N, at which “length” the failure probability is supposedly equal
exactly to DER.

NpM ⋅

1−N

For two failure probabilities at N and 1−N we may say

1),11(−′⋅′=+−− N
p pMMMNI

N
p pMMMNI ′⋅′=+−),1(

where M ′ and are some accordingly chosen values for the two probabilities at p′ 1−N
and N

Precisely the values of M ′ and p′ are the following:

),11(
),1(

MMNI
MMNI

p
p

p

+−−

+−
=′

N
p

p
MMNI

M
′
+−

=′
),1(

But as we will see below we will not need to refer to the values of M ′ and : p′

The real value is computed to respect the same interpolation: NxN ≤≤−1

),11(1 MMNIpM p
N +−−=′⋅′ −

DERpM x =′⋅′
),1(MMNIpM p

N +−=′⋅′

M
DERx p ′

= ′log

N

p
p p

MMNI
DER ′⋅

+−
= ′),1(

log

),1(
log

MMNI
DERN

p
p +−

+= ′

),1(
log

MMNI
DERN

p
p +−

+= ′

),1(ln),11(ln
),1(lnln

MMNIMMNI
MMNIDER

N
pp

p

+−−++−

+−−
−=

),1(ln),11(ln
ln),11(ln

1
MMNIMMNI

DERMMNI
N

pp

p

+−−++−

−++−
+−=

Here is the corresponding AMPL plug-in to be added to the previous script:

param codeword{p in P} =
 if goodN[p]-1 in NN[p] and Failure[p,goodN[p]-1]>DER
 then
 goodN[p]-1 +
 (log(Failure[p,goodN[p]-1]) - log(DER)) /
 (log(Failure[p,goodN[p]-1]) - log(Failure[p,goodN[p]]))
 else goodN[p];

The full text of the AMPL script is here.

Just for a comparison, the below chart compares the above obtained logarithmical
interpolation with this the following linear formula for x, whose curve has much worst
shape.

),1(),11(
),11(

1
MMNIMMNI

DERMMNI
Nx

pp

p

+−−++−

−++−
+−=

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 0.01 0.02 0.03 0.04 0.05

p

N logarithmic interpolation linear interpolation

Codeword size to be transmitted for satisfying with 510−=DER 3=M

Below are smoothened curves of required codeword sizes for various M. The orange
curve is the theoretical lower bound resulted from the Shannon limit.

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8

p

N/M
1/(1-p)

M from 1 to 10

Codeword overhead

M
N for with 510−=DER { }10..1∈M

VI. A coarse approximation

The codeword overhead
M
N can be quite well approximated with

M
M

DER

c
p ⎟

⎠
⎞

⎜
⎝
⎛

⋅+
log

1

where c is some constant (see an excel file)

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8

N/M 1+c*log(DER/M,p)/M

Codeword overhead
M
N for with 510−=DER 7=M and 6.1=c

* * *

© 2005, Switzernet (www.switzernet.com)

US – Mirror
CH – Mirror

http://www.switzernet.com/
http://4z.com/people/emin-gabrielyan/public/051026-fec-overhead/
http://switzernet.com/people/emin-gabrielyan/051026-fec-overhead/

	Secure Media Streaming
	Binomial Distribution
	Fast computation of Binomial Distribution
	Computing the minimally needed length of the transmitted cod
	Interpolation
	A coarse approximation

