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Abstract: Packetized communications over internet behave like erasure channels. For 
example, files or real-time media sent over the internet are chopped into packets, and 
each packet is either received without error or not received. Assuming Maximum 
Distance Separable (MDS) erasure resilient codes; we present a method for computing 
the codeword overhead (needed for a satisfactory transmission) as a function from the 
random loss probability in the network. 
 
 

I. Secure Media Streaming 
 
Assuming an erasure channel and Maximum Distance Separable (MDS) systematic codes 
(such as Reed Solomon codes, or see an erasure resilient checksum code example) given 
is the following problem: 
 

- We are streaming an on-line media from a sender to the receiver over a network 
with a packet’s random loss probability p 

- In order to compensate p percent of network losses, the sender, after every M 
transmitted media packets, is adding some redundant packets relative to these last 
M packets. Since the encoder is systematic and is using MDS codes, the receiver 
can restore the initial media if any of M packets out of all transmitted packets are 
survived (out of M media packets together with their redundant packets) 

http://switzernet.com/people/emin-gabrielyan/051025-erasure-resilient/


- Since we are dealing with on-line media (such as a VOIP phone conversation), M 
cannot be infinitely large 

- Mean of the number of lost packets at the receiver for a block of N transmitted 
packets is , but with random loss pattern, the probability of receiving less 
than  can not be neglected 

pN ⋅
pN ⋅

- Let  be the number of packets in the block containing M media packets 
and redundancy packets. Let the desired probability of unsuccessful 
decoding at the receiver be DER (Decoding Error Rate) 

MN ≥
MN −

 
By sufficiently increasing the N, for a given M and p we can reduce the probability of 
decoding failure to any desired rate. Our question is, which is the smallest N for a given 

 that keeps the decoding failure probability at the receiver below a given DER. 10 <≤ p
 
 

II. Binomial Distribution 
 
The probability of having n erasures in a block of N packets with a random loss 
probability p is known as binomial distribution and denoted as: 
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The above plot shows the distribution of n erasures out of 20=N  packets with  3.0=p
 
The probability of having less than M survived packets in a block of N packets is the 
probability of having  or more erasures; it is computed and denoted as follows: 1+−MN
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For a given M and p, with increase of N this probability decreases. Assume M is 5 and 

. The below plot shows four Binomial distributions for a value of N starting from 
9 and enlarging up to 15. 

3.0=p
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For a given N the sum of histograms marked in yellow ),1( MMNI p +−  is the 
probability of having more than MN −  erasures, i.e. the probability of decoding failure 
at the receiver. 
 
These probabilities are plotted on the chart below. 
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If our objective (in the same example with 5=M  and 3.0=p ) is to have a DER below 
1%, we can transmit the media in blocks of 13 packets (containing 8 redundant packets). 
 
For a given M and DER we need a fast method for computing the minimal required N 
needed for successful media streaming at network’s random loss probability p. 
 
 

III. Fast computation of Binomial Distribution 
 
The below representation of binomial contains less multiplications and divisions and we 
have no components containing very large numbers and therefore have less precision 
errors: 
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Additional speedup is obtained by applying the above method for computing the binomial 
only at  and by obtaining the remaining values of the binomial, 
iteratively, from the value computed at k: 

)( pNroundk ⋅=
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Below is an implementation of the algorithm in AMPL: 
 
reset; 
param ver symbolic = "a46a"; 
 
param p; 
param q=1-p; 
param N; 
 
param k=round(N*p); 
 
param pq= 
 if k in interval [1,N/2]   then p*q^((N-k)/k) else 
 if k in interval (N/2,N-1] then p^(k/(N-k))*q ; 
 
param Bk= 
  if k==0 then     q^N else 
  if k==N then     p^N else 
  if k in interval [1,N/2]   then prod{i in 1..k}   ((N-k+i)/i*pq) else
  if k in interval (N/2,N-1] then prod{i in 1..N-k} ((k+i)/i*pq) ; 
 
param Binomial{n in 0..N} = 
  if n=k then Bk 
  else if n>k then Binomial[n-1]*(N-n+1)/n*p/q 
  else if n<k then Binomial[n+1]*(n+1)/(N-n)*q/p; 
 
data; 
param N=20; 
param p=0.3; 
model; 
 
param file symbolic = ver & "-out.csv"; 
printf ",Binomial Distribution\n" > (file); 
for{n in 0..N} 
{ 
  printf "%d,%.20f\n",n,Binomial[n] > (file); 
} 
close (file); 
 
 

IV. Computing the minimally needed length of the transmitted codeword for 
maintaining the decoding failure probability satisfactorily low 

 
The decoding failure probability for a given N is always more than  NpM ⋅
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Binomial distribution for , 12=N 3=M , 7.0=p  
 
Therefore the lower bound for N seeking a failure probability less than or equal to DER 
is: 
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From the other side if for a given N  

( ) DERNMNPM p ≤+−⋅ 1  

Then NN ≤  
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Binomial distribution with , 15=N 3=M , 7.0=p  
 
The upper bound N  for N is chosen as the smallest from sequence ...,8,4,2 NNN ⋅⋅⋅ , 

for which ( ) DERNMNPM p ≤+−⋅ 1 : 
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For every { }NNN ...∈  in the interval from the lower bound to the upper bound, we 
compute the exact value of the failure probability, and chose the lowest N at which the 
failure probability is below DER. 
 
Below is an implementation of the algorithm in AMPL: 
 
reset; 
param ver symbolic = "a73a"; 
 
param M integer >=1; 
param DER; 
 
set P within interval [0,1] = setof{p in 0..0.9 by 0.001} round(p,10); 
 
param minN{p in P} = max(M,if p=0 then 0 else 
floor(log10(DER/M)/log10(p))); 
 
param maxN_probe{p in P, pr in 1..4} = minN[p]*2^pr; 
 
param Binomial_probe{p in P, pr in 1..4} = 
  if M>=2 then 
    prod{i in 1..M-1} 
    ( 
      (maxN_probe[p,pr]-M+1+i)/i * 
        p^((maxN_probe[p,pr]-M+1)/(M-1))*(1-p) 
    ) 
  else 
    p^maxN_probe[p,pr]; 
 
param maxN{p in P} = maxN_probe[p, min{pr in 1..4: 
Binomial_probe[p,pr]<=DER/M} pr]; 
 
set NN{p in P} = {minN[p]..maxN[p]}; 
 
param Binomial1{p in P, Ntr in NN[p]}= 
  if M>=2 then 
    prod{i in 1..M-1}((Ntr-M+1+i)/i*p^((Ntr-M+1)/(M-1))*(1-p)) 
  else 
    p^Ntr; 
 
param pbyq{p in P} = p/(1-p); 
param Binomial{p in P, Ntr in NN[p], n in Ntr-M+1..Ntr} = 
  if n=Ntr-M+1 



  then 
    Binomial1[p,Ntr] 
  else 
    Binomial[p,Ntr,n-1]*(Ntr-n+1)/n*pbyq[p]; 
 
param Failure{p in P, Ntr in NN[p]} = sum{i in Ntr-
M+1..Ntr}Binomial[p,Ntr,i]; 
 
param goodN{p in P} = min{Ntr in NN[p]: Failure[p,Ntr]<=DER} Ntr; 
 
param file symbolic = ver & "-out.csv"; 
 
let DER := 1e-5; 
 
param log symbolic = "benchmark.log"; 
param benchmark_rec symbolic; 
param benchmark_start; 
param benchmark_stop; 
let benchmark_start := _ampl_time; 
printf "Version %s:\n",ver; 
 
printf ",FEC\n" > (file); 
for{m in 1..15} 
{ 
  let M := m; 
  print M, DER; 
  for{p in P} 
  { 
    printf "%f,%f\n",p, 
      goodN[p]/M 
      > (file); 
  } 
  printf "\n" > (file); 
} 
close (file); 
 
let benchmark_stop := _ampl_time; 
let benchmark_rec := sprintf("%s, %s, done in %f seconds", 
  sub(ctime(),"^[^ ]* *",""),ver,benchmark_stop-benchmark_start); 
print benchmark_rec; 
print benchmark_rec >> (log); 
close (log); 
 
 
Codeword overheads as functions from random loss probability are plotted for various 
numbers of media packets in the block: 
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The smallest values of N at which the decoding failure probability is still below 

 for all M in {1..15}. 510−=DER
 
The orange curve represents the overhead of an ideal communication that reached its 
Shannon limit. Our curve will ultimately reach the Shannon limit when M is infinitely 
large. But since the streaming buffer is limited by real-time media constraints, M cannot 
grow too large and therefore the real time media streaming is necessarily separated from 
the Shannon limit by a certain gap. 
 
 

V. Interpolation 
 
Instead of an integer codeword length function of p, we would like to have a curve 
crossing smoothly also the non integer values between two 1−N  and N. 
 
Let us remind that N is chosen such that the failure probability at N is below DER and at 

 is above: 1−N
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The failure probabilities for N and 1−N  are known and already computed. 
 
We know that the lower bound of ),1( MMNI p +−  is  (when NpM ⋅ 1=M , it is an 

exact value). Considering the shape of the lower bound  as sufficiently good 
approximation, we thus will chose a similar function for finding the real value x between 
two integers  and N, at which “length” the failure probability is supposedly equal 
exactly to DER. 
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For two failure probabilities at N and 1−N  we may say 
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where M ′  and  are some accordingly chosen values for the two probabilities at p′ 1−N  
and N 
 
Precisely the values of M ′  and p′  are the following: 
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But as we will see below we will not need to refer to the values of M ′  and : p′
 
The real value  is computed to respect the same interpolation: NxN ≤≤−1
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Here is the corresponding AMPL plug-in to be added to the previous script:  
 
param codeword{p in P} = 
 if goodN[p]-1 in NN[p] and Failure[p,goodN[p]-1]>DER 
   then 
     goodN[p]-1 + 
       (log(Failure[p,goodN[p]-1]) - log(DER)) / 
       (log(Failure[p,goodN[p]-1]) - log(Failure[p,goodN[p]])) 
   else goodN[p]; 
 
The full text of the AMPL script is here. 



 
Just for a comparison, the below chart compares the above obtained logarithmical 
interpolation with this the following linear formula for x, whose curve has much worst 
shape. 
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Codeword size to be transmitted for satisfying  with 510−=DER 3=M  
 
Below are smoothened curves of required codeword sizes for various M. The orange 
curve is the theoretical lower bound resulted from the Shannon limit. 
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Codeword overhead 
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VI. A coarse approximation 
 

The codeword overhead 
M
N  can be quite well approximated with 
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where c is some constant (see an excel file) 
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Codeword overhead 
M
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