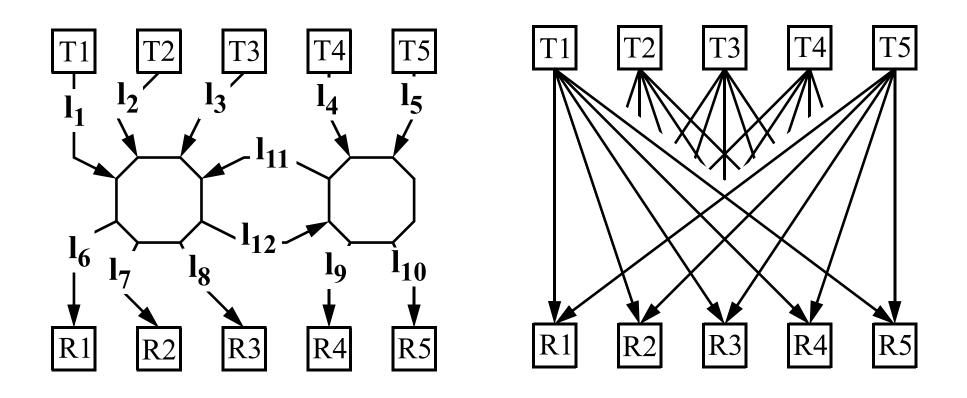
ICT'2003 10th International Conference on Telecommunications

February 23 - March 1, 2003, Tahiti Sofitel Coralia Maeva Beach Hotel Papeete, French Polynesia

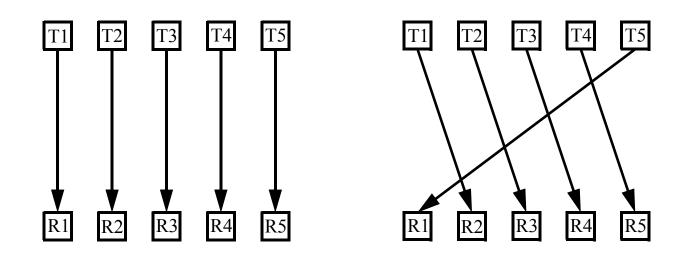
Network Topology Aware Scheduling of Collective Communications

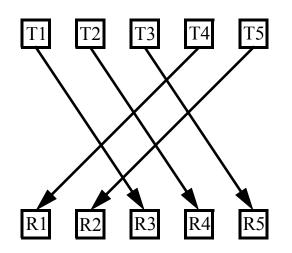
Emin Gabrielyan, Roger D. Hersch

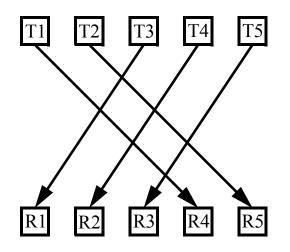
Swiss Federal Institute of Technology Lausanne

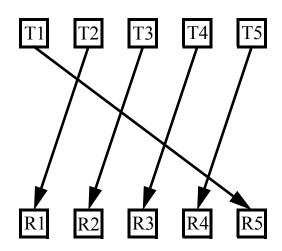

ICT'2003, 10th International Conference on Telecommunications February 23 - March 1, 2003, Tahiti

Network Topology Aware Scheduling of Collective Communications

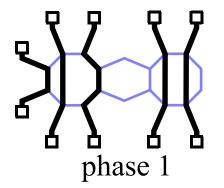

Emin Gabrielyan, Roger D. Hersch

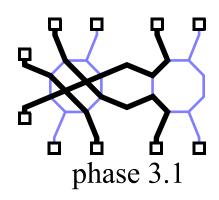

Swiss Federal Institute of Technology Lausanne

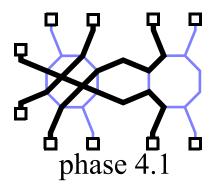

25-transmission request

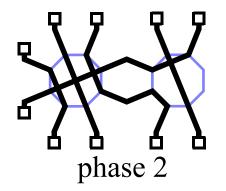


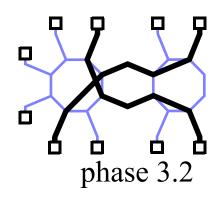
Round-robin schedule

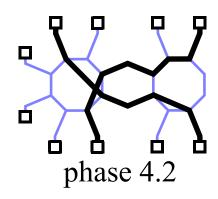


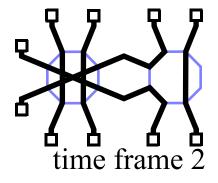


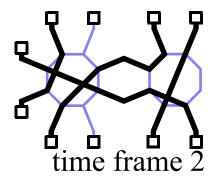


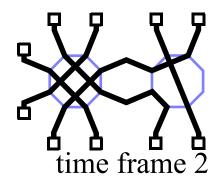


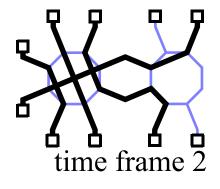

Round-robin Throughput

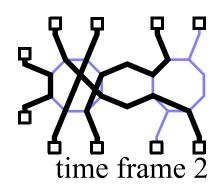


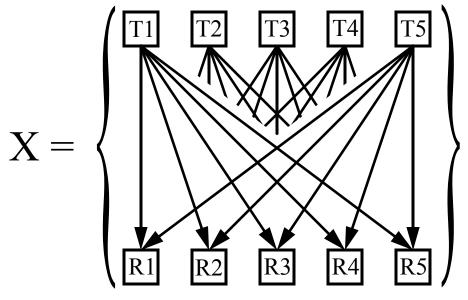


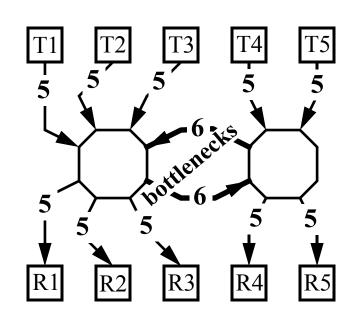





$$T_{roundrobin} = 25/7 \cdot 1 Gbps = 3.57 Gbps$$


Liquid schedule





$$T_{liquid} = 25/6 \cdot 1Gbps = 4.16Gbps$$

Transfers and Load of Links

The 25 transfer traffic

$$\lambda(l_1, X) = 5, \dots \lambda(l_{12}, X) = 6$$

Transfers: $\{l_1, l_6\}, ..., \{l_1, l_{12}, l_9\}, ...$

Duration of Traffic

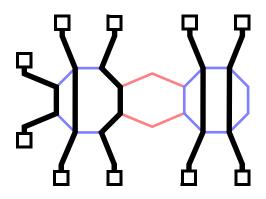
$$\lambda(l_1, X) = 5, \dots \lambda(l_{10}, X) = 5$$

$$\lambda(l_{11}, X) = 5, \dots \lambda(l_{12}, X) = 6$$

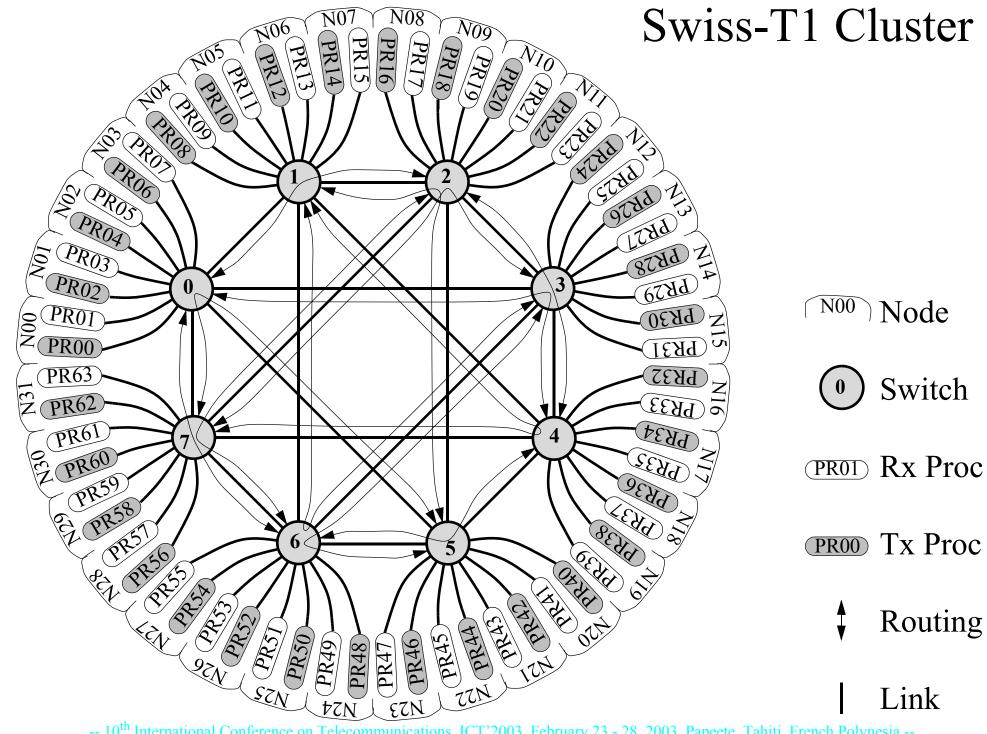
$$\Lambda(X) = 6$$

$$X = \left\{ \begin{array}{l} \{l_{1}, l_{6}\}, \{l_{1}, l_{7}\}, \{l_{1}, l_{8}\}, \{l_{1}, l_{12}, l_{9}\}, \{l_{1}, l_{12}, l_{10}\}, \\ \{l_{2}, l_{6}\}, \{l_{2}, l_{7}\}, \{l_{2}, l_{8}\}, \{l_{2}, l_{12}, l_{9}\}, \{l_{2}, l_{12}, l_{10}\}, \\ \{l_{3}, l_{6}\}, \{l_{3}, l_{7}\}, \{l_{3}, l_{8}\}, \{l_{3}, l_{12}, l_{9}\}, \{l_{3}, l_{12}, l_{10}\}, \\ \{l_{4}, l_{11}, l_{6}\}, \{l_{4}, l_{11}, l_{7}\}, \{l_{4}, l_{11}, l_{8}\}, \{l_{4}, l_{9}\}, \{l_{4}, l_{10}\}, \\ \{l_{5}, l_{11}, l_{6}\}, \{l_{5}, l_{11}, l_{7}\}, \{l_{5}, l_{11}, l_{8}\}, \{l_{5}, l_{9}\}, \{l_{5}, l_{10}\} \end{array} \right\}$$

Liquid Throughput

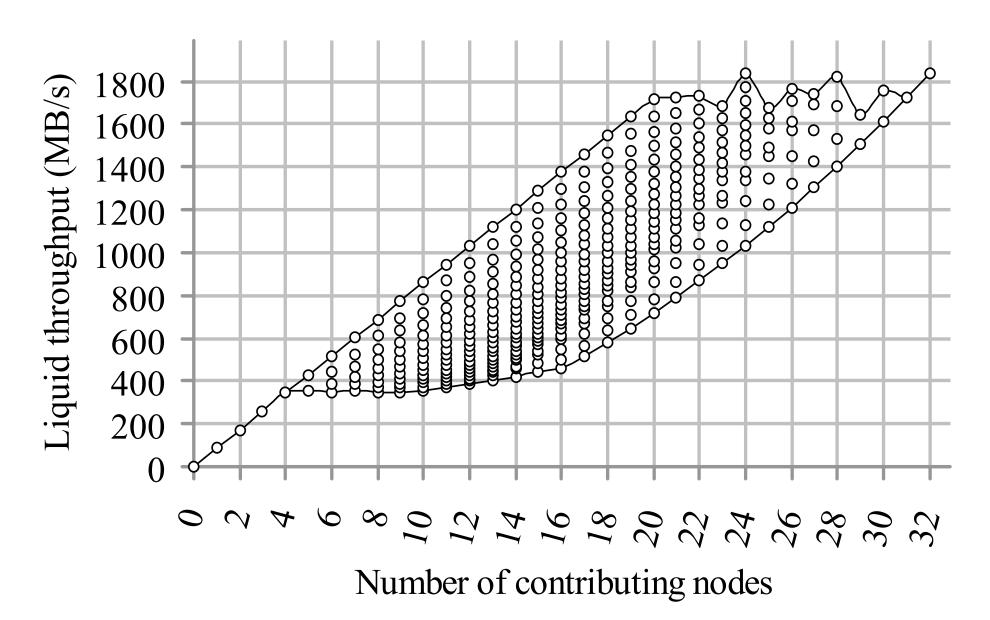

$$X = \left\{ \begin{array}{l} \{l_{1}, l_{6}\}, \{l_{1}, l_{7}\}, \{l_{1}, l_{8}\}, \{l_{1}, l_{12}, l_{9}\}, \{l_{1}, l_{12}, l_{10}\}, \\ \{l_{2}, l_{6}\}, \{l_{2}, l_{7}\}, \{l_{2}, l_{8}\}, \{l_{2}, l_{12}, l_{9}\}, \{l_{2}, l_{12}, l_{10}\}, \\ \{l_{3}, l_{6}\}, \{l_{3}, l_{7}\}, \{l_{3}, l_{8}\}, \{l_{3}, l_{12}, l_{9}\}, \{l_{3}, l_{12}, l_{10}\}, \\ \{l_{4}, l_{11}, l_{6}\}, \{l_{4}, l_{11}, l_{7}\}, \{l_{4}, l_{11}, l_{8}\}, \{l_{4}, l_{9}\}, \{l_{4}, l_{10}\}, \\ \{l_{5}, l_{11}, l_{6}\}, \{l_{5}, l_{11}, l_{7}\}, \{l_{5}, l_{11}, l_{8}\}, \{l_{5}, l_{9}\}, \{l_{5}, l_{10}\} \end{array} \right\}$$

the throughput of a single link—total number of transfers—


$$T_{liquid} = \frac{\#(X)}{\Lambda(X)} \cdot T_{link} = \frac{25}{6} \cdot 1 Gbps = 4.17 Gbps$$
traffic's duration (the load of its bottlenecks)

Schedules yielding the liquid throughput

$$X = \left\{ \begin{array}{l} \{l_1, l_6\}, \{l_1, l_7\}, \{l_1, l_8\}, \{l_1, l_{12}, l_9\}, \{l_1, l_{12}, l_{10}\}, \\ \{l_2, l_6\}, \{l_2, l_7\}, \{l_2, l_8\}, \{l_2, l_{12}, l_9\}, \{l_2, l_{12}, l_{10}\}, \\ \{l_3, l_6\}, \{l_3, l_7\}, \{l_3, l_8\}, \{l_3, l_{12}, l_9\}, \{l_3, l_{12}, l_{10}\}, \\ \{l_4, l_{11}, l_6\}, \{l_4, l_{11}, l_7\}, \{l_4, l_{11}, l_8\}, \{l_4, l_9\}, \{l_4, l_{10}\}, \\ \{l_5, l_{11}, l_6\}, \{l_5, l_{11}, l_7\}, \{l_5, l_{11}, l_8\}, \{l_5, l_9\}, \{l_5, l_{10}\} \end{array} \right\}$$

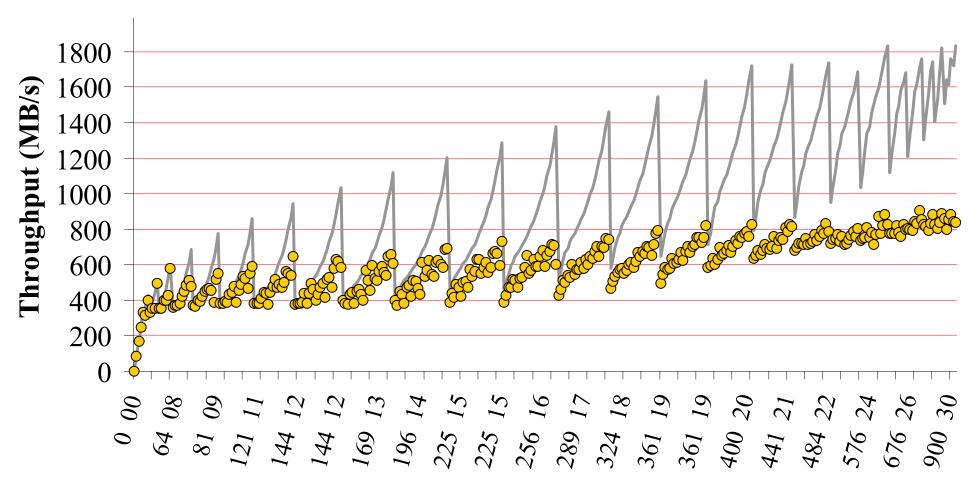


- Without a right schedule we may have intervals when the access to the bottleneck links is blocked by other transmissions.
- Our goal is to schedule the transfers such that all bottlenecks are always kept occupied ensuring that the liquid throughput is obtained.
- A schedule yielding the liquid throughput we call as a liquid schedule and our objective is to find a liquid schedule whenever it exists.

-- 10th International Conference on Telecommunications, ICT'2003, February 23 - 28, 2003, Papeete, Tahiti, French Polynesia --

363 Test Traffics

363 Topology Test-bed



Topology (contributing nodes)

-- 10th International Conference on Telecommunications, ICT'2003, February 23 - 28, 2003, Papeete, Tahiti, French Polynesia --

Round-robin throughput

— theoretical liquid • measured round-robin

Transfers / Contributing nodes

Team: a set of mutually non-congesting transfers using all bottlenecks

$$X = \begin{cases} \{l_{1}, l_{6}\}, \{l_{1}, l_{7}\}, \{l_{1}, l_{8}\}, \{l_{1}, \mathbf{l_{12}}, l_{9}\}, \{l_{1}, \mathbf{l_{12}}, l_{10}\}, \\ \{l_{2}, l_{6}\}, \{l_{2}, l_{7}\}, \{l_{2}, l_{8}\}, \{l_{2}, \mathbf{l_{12}}, l_{9}\}, \{l_{2}, \mathbf{l_{12}}, l_{10}\}, \\ \{l_{3}, l_{6}\}, \{l_{3}, l_{7}\}, \{l_{3}, l_{8}\}, \{l_{3}, \mathbf{l_{12}}, l_{9}\}, \{l_{3}, \mathbf{l_{12}}, l_{10}\}, \\ \{l_{4}, \mathbf{l_{11}}, l_{6}\}, \{l_{4}, \mathbf{l_{11}}, l_{7}\}, \{l_{4}, l_{11}, l_{8}\}, \{l_{4}, l_{9}\}, \{l_{4}, l_{10}\}, \\ \{l_{5}, \mathbf{l_{11}}, l_{6}\}, \{l_{5}, \mathbf{l_{11}}, l_{7}\}, \{l_{5}, l_{11}, l_{8}\}, \{l_{5}, l_{9}\}, \{l_{5}, l_{10}\} \end{cases}$$

schedule α is liquid \Leftrightarrow

load of the bottlenecks number of timeframes

$$\alpha = \begin{cases} \begin{cases} \{l_{1}, l_{12}, l_{9}\}, \\ \{l_{2}, l_{7}\}, \\ \{l_{3}, l_{8}\}, \\ \{l_{4}, l_{11}, l_{6}\}, \\ \{l_{5}, l_{10}\} \end{cases}, \begin{cases} \{l_{1}, l_{12}, l_{10}\}, \\ \{l_{2}, l_{12}, l_{9}\}, \\ \{l_{4}, l_{11}, l_{7}\}, \\ \{l_{5}, l_{10}\} \end{cases}, \begin{cases} \{l_{1}, l_{12}, l_{10}\}, \\ \{l_{4}, l_{10}\}, \\ \{l_{5}, l_{11}, l_{7}\} \end{cases}, \\ \begin{cases} \{l_{1}, l_{7}\}, \\ \{l_{2}, l_{12}, l_{10}\}, \\ \{l_{2}, l_{12}, l_{10}\}, \\ \{l_{3}, l_{12}, l_{9}\}, \\ \{l_{5}, l_{11}, l_{8}\} \end{cases}, \begin{cases} \{l_{3}, l_{12}, l_{10}\}, \\ \{l_{4}, l_{11}, l_{8}\} \end{cases}, \begin{cases} \{l_{3}, l_{12}, l_{10}\}, \\ \{l_{4}, l_{11}, l_{8}\} \end{cases}, \end{cases}$$

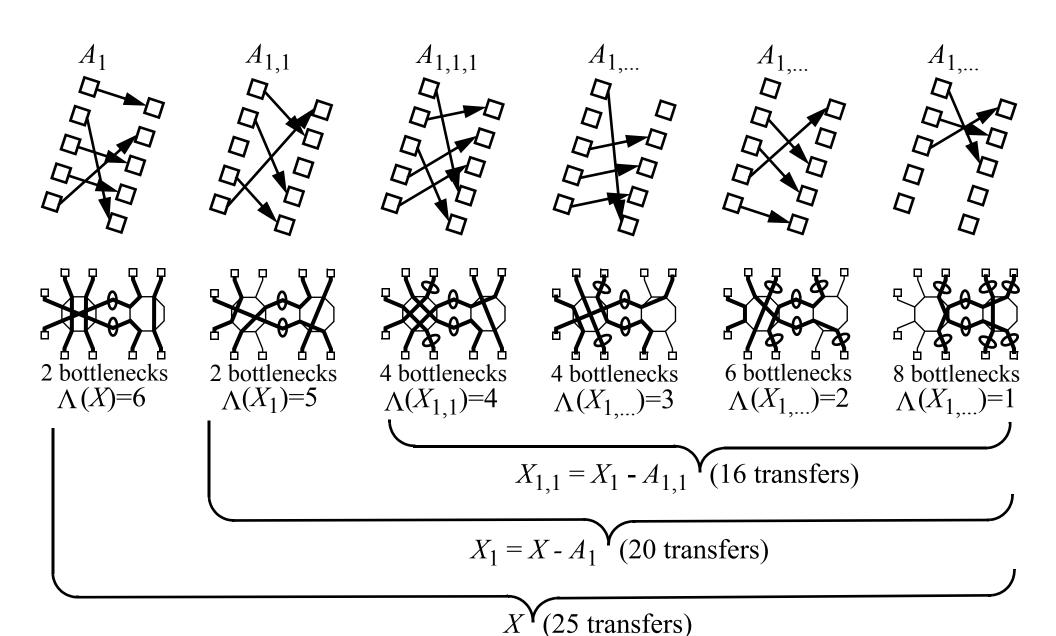
$$A \text{ is a team of } X$$

$$\Leftrightarrow \#(\alpha) = \Lambda(X) \Leftrightarrow$$

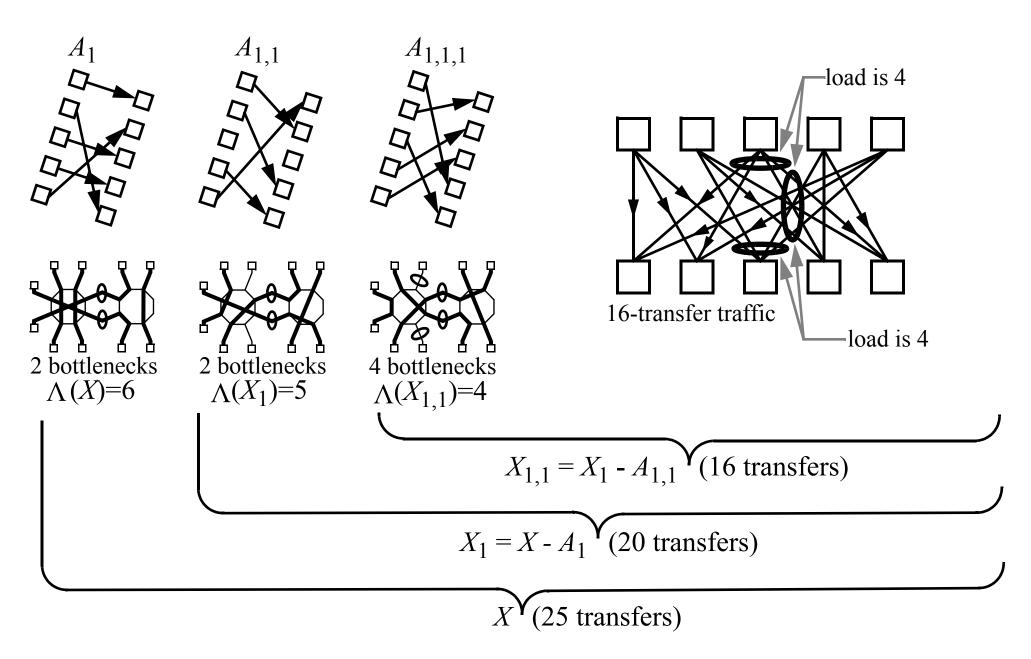
-- 10th International Conference on Telecommunications, ICT'2003, February 23 - 28, 2003, Papeete, Tahiti, French Polynesia --

$\mathfrak{I}(X)$, all teams of the traffic X

- - transfer *x*
- - transfers congesting with *x*
- \circ transfers non-congesting with x


- To cover the full solution space when constructing a liquid schedule an efficient technique obtaining the whole set of possible teams of a traffic is required.
- We designed an efficient algorithm enumerating all teams of a traffic traversing each team once and only once.
- This algorithm obtains each team by subsequent partitioning of the set of all teams.
 - We introduced triplets consisting of subsets of the traffic, representing one-by-one partitions of the set of all teams.

Liquid schedule search tree


$$\begin{array}{|c|c|c|c|c|} X \to & \&(X) = \{A_1, A_2, A_3 \dots A_n\} \\ & X_1 = X - A_1 \to & \&(X_1) = \{A_{1, 1}, A_{1, 2} \dots\} \\ & X_{1, 1} = X_1 - A_{1, 1} \\ & X_{1, 2} = X_1 - A_{1, 2} \\ & \dots \\ & X_2 = X - A_2 \to & \&(X_2) = \{A_{2, 1}, A_{2, 2} \dots\} \\ & X_{2, 1} = X_2 - A_{2, 1} \\ & X_{2, 2} = X_2 - A_{2, 2} \end{array}$$

-- 10th International Conference on Telecommunications, ICT'2003, February 23 - 28, 2003, Papeete, Tahiti, French Polynesia --

Additional bottlenecks

Prediction of dead-ends

Liquid schedule search optimization

teams of the reduced traffic
$$T(Y) \subset \{A \in \mathfrak{F}(X) | A \subset Y\}$$
 — original traffic's teams formed from the reduced traffic

$$X \to \wp(X) = \{A_1, A_2, A_3 ... A_n\}$$

$$X_1 = X - A_1 \to \wp(X_1) = \{A_{1, 1}, A_{1, 2} ...\}$$

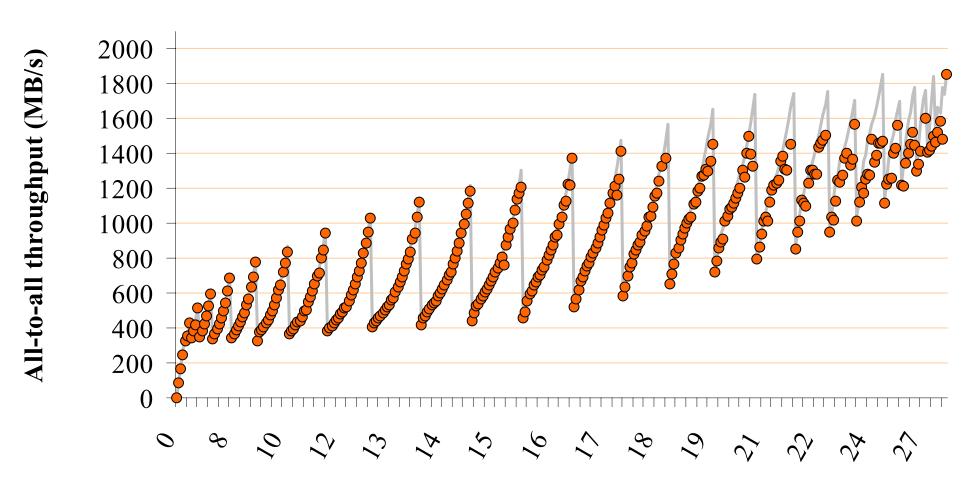
$$X_{1, 1} = X_1 - A_{1, 1}$$

$$X_{1, 2} = X_1 - A_{1, 2}$$
...
$$X_2 = X - A_2 \to \wp(X_2) = \{A_{2, 1}, A_{2, 2} ...\}$$

decreasing the search space without affecting the solution space

$$\wp(Y) = \{ A \in \Im(X) | A \subset Y \} \rightarrow \wp(Y) = \Im(Y)$$

Liquid schedules construction

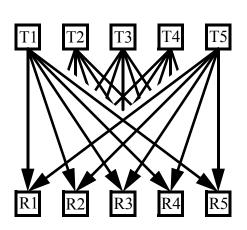

$$\mathfrak{I}^{full}(Y) \subset \mathfrak{I}(Y)$$
Full teams of the reduced traffic

Choice =
$$\wp(Y) = \Im(Y)$$

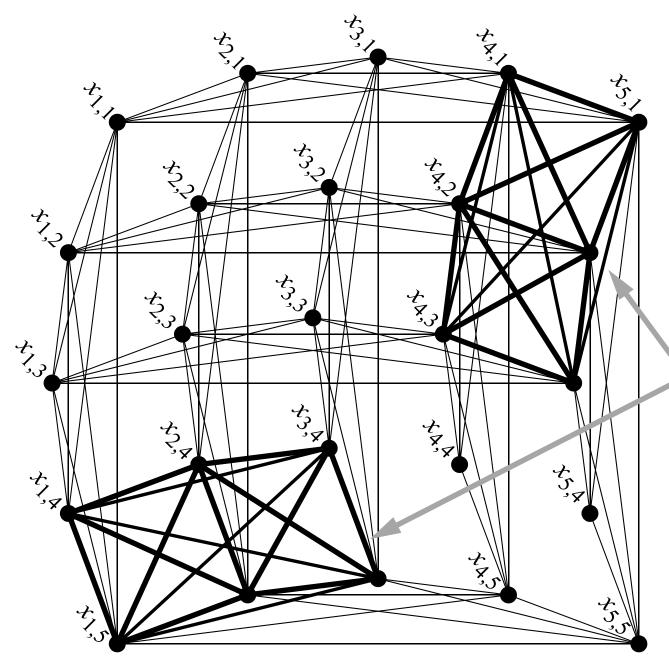
Choice = $\wp(Y) = \Im^{full}(Y)$

additionally decreasing the search space without affecting the solution space

For more than 90% of the test-bed topologies construction of a global liquid schedule is completed in a fraction of a second (less than 0.1s).

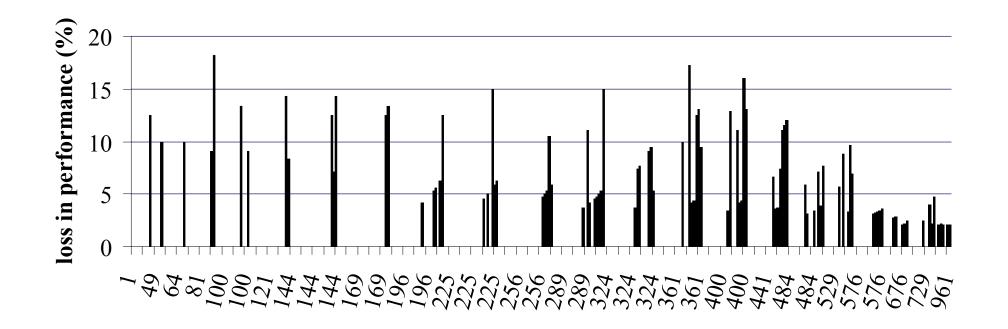

Results


Number of contributing nodes for the 363 sub-topologies


— liquid throughput • carried out according to the liquid schedules

Congestion Graph

The 25 vertices of the graph represent the 25 transfers transfers. The edges represent congestion relations between transfers, i.e. each edge represents one or more communication links shared by two transfers.



Bold edges represent all congestions due to **bottleneck links**

-- 10th International Conference on Telecommunications, ICT'2003, February 23 - 28, 2003, Papeete, Tahiti, French Polynesia --

Loss of performance induced by schedules computed with a graph colouring heuristic algorithm

• For 74% of the topologies Dsatur algorithm does not induce a loss of performance.

number of transfers for each of 363 topologies

- For 18% of topologies, the performance loss is bellow 10%.
- For 8% of topologies, the loss of performance is between 10% and 20%.

Conclusion

- Data exchanges relying on the liquid schedules may be carried out several times faster compared with topology-unaware schedules.
- Thanks to introduced theoretical model we considerably reduce the liquid schedule search space without affecting the solution space.
- Our method may be applied to applications requiring efficiency in concurrent continuous transmissions, such as video and voice traffic management, high energy physics data acquisition and reassembling.
- Liquid scheduling is applicable in wormhole, cut-through networks and can be useful in wavelength assignment problem in WDM optical networks.

Thank You!

Contact: Emin. Gabrielyan@epfl.ch